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Abstract  Control charts are widely used in quality control to monitor and detect changes in the process location and 

variability. In this paper, we present a control chart based on Gastwirth estimator for monitoring the process location. The 

performance of the proposed control chart is evaluated through various performance measures providing a comprehensive 

analysis of its shift detection capability. The proposed control chart is compared with its competitors. The control chart is 

demonstrated through an example to showcase its application in reality.  
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1. Introduction 

Control charts are vital tools in statistical quality control, 

offering a visual means of monitoring process parameters 

over time. They enable practitioners to distinguish between 

chance and assignable causes of variation, which signals 

potential issues that require intervention. By continuously 

monitoring process mean and variance, control charts 

facilitate timely decision-making and help maintain quality 

products. Specifically, control charts for monitoring process 

location are crucial for ensuring that the mean of a process 

remains stable over time. The early work of Shewhart (1931) 

laid the foundation for control charts which assume 

normality and utilize 3-sigma control limits to detect shifts  

in process mean. Page (1961) introduced cumulative sum 

control charts (CUSUM) which are sensitive to detect  

small shifts in the process mean. Roberts (1959) proposed 

exponentially weighted moving average (EWMA) control 

chart which assigns weights to previous observations, 

making it more sensitive to detect small shifts. Montgomery 

(1996) provides a comprehensive overview of control charts, 

discussing various types of control charts, their underlying 

concepts and applications in monitoring process stability in 

detecting shifts in process parameters. 

Many control charts for process location parameter rely on 

the assumption that the underlying process has normal 

distribution. However, in practice, this assumption need  

not be valid. For example, in glass industry, the thickness  

of glass sheets used for windows, screens or optical 

applications is critical to monitor the process parameter. The 

 

* Corresponding author: 

bhat_sharada@yahoo.com (Sharada V. Bhat) 

Received: Oct. 23, 2024; Accepted: Nov. 16, 2024; Published: Nov. 22, 2024 

Published online at http://journal.sapub.org/ajms 

 

thickness measurements are often symmetrically distributed 

around a target value due to production techniques like the 

float glass process. Some slight variations in the cooling 

process or other external factors can result in occasional 

extreme deviations which lead to a heavy-tailed distribution, 

where control charts based on normality may fail to detect 

these changes. 

As a result, it is essential to propose control charts that do 

not rely on the assumption of normal distribution. To address 

this issue, it is necessary to develop control charts that are 

resilient to non normality. Some significant studies that do 

not rely on the assumption of normality include control 

charts based on sign statistics proposed by Amin et al. (1995), 

distribution-free Shewhart type control chart based on signed 

ranks developed by Bakir (2004), synthetic control chart 

developed by Pawar and Shirke (2010), Shewhart type 

nonparametric control chart based on the run statistic 

suggested by Zombade and Ghute (2019). A comprehensive 

overview of nonparametric control charts, detailing various 

methodologies for quality control is studied by Chakraborti 

(2019). Here, the author emphasizes the robustness and 

applicability of nonparametric approaches in statistical 

process control providing practical insights and examples for 

practitioners. Bhat and Patil (2024a and 2024b) propose 

control charts for process location based on sample median 

and sample midrange respectively to monitor the process 

location parameter, employing Shewhart's methodology.  

In this paper, we propose a control chart that employs a 

robust statistical measure to improve monitoring accuracy 

and enhance shift detection in process location, especially in 

the presence of outliers and under non normal distributions. 

Section 2 deals with proposed control chart and section     

3 discusses the evaluation of proposed control chart. In 

sections 4 and 5, we respectively deal with illustration of the 
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proposed control chart through examples and conclusions 

based on our observations. 

2. Control Chart Based on Gastwirth 
Estimator 

In this section, we propose control chart based on 

Gastwirth estimator (G) due to Gastwirth (1966) which is a 

robust estimator. Suppose 𝑋1, 𝑋2, . . . , 𝑋𝑛  is a random sample 

of size 𝑛 from a distribution with cumulative density function 

𝐹(𝑥), then G is given by 

 𝐺 = 0.3𝑄1

3
(𝑥)  +  0.4𝑄1

2
(𝑥)  +  0.3𝑄2

3

(𝑥)  (1) 

where 𝑄𝑝  is 𝑝𝑡ℎ  sample quantile. 

Also, suppose  𝑋(𝑖) represents 𝑖𝑡ℎ  order statistic, then 
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 and 𝑋
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3
 
 represent 33rd, 50th and 66th 

percentiles of the data. The estimator is useful from practical 

point of view as it has better efficiency than median and is 

also robust. It has better computational efficiency than other 

robust estimators like estimators due to Harrel and Davis 

(1982) and Hodges and Lehmann (1963). Also, it is helpful 

in estimating the location parameter in the presence of outliers 

or when process has non-normal distribution. Its approach of 

using fixed weights enable its utility across various symmetric 

distributions. 

According to DasGupta (2008), G has asymptotically 

normal distribution with mean  

  𝜇(𝐺) = 0.3𝜉1

3
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2
 +  0.3𝜉2

3
  (3) 

and variance 𝜎𝐺
2, where 𝜉1

3
, 𝜉1

2
 and 𝜉2

3

 are respectively the 

population quantiles corresponding to the 33rd, 50th and 66th 

percentiles. 

 That is, 𝐺~𝑁(𝜇(𝐺), 𝜎𝐺
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Here, 𝜉𝑟 = 𝐹−1(𝑟)  and 𝑓(𝜉𝑟)  is value of density 

function at the specified population quantile 𝜉𝑟 . 

Therefore,  

𝜎𝐺
2 =

9

100
 

2

9𝑛𝑓2 𝜉1
3
 

  + 
16

100
 

1

4𝑛𝑓2 𝜉1
2
 

   

+ 
9

100
 

2

9𝑛𝑓2 𝜉2
3
 

 +
24

100
 

1

6𝑛𝑓 𝜉1
3
 𝑓 𝜉1

2
 

   

+
18

100
 

1

9𝑛𝑓 𝜉1
3
 𝑓 𝜉2

3
 

  + 
24

100
 

1

6𝑛𝑓 𝜉1
2
 𝑓 𝜉2

3
 

 . 

=
1

50𝑛
 

1

𝑓2 𝜉1
3
 

 +  
2

𝑓2 𝜉1
2
 

 +
1

𝑓2 𝜉2
3
 

   

+
1

25𝑛
 

1

𝑓 𝜉1
3
 𝑓 𝜉1

2
 

+ 
1

2𝑓 𝜉1
3
 𝑓 𝜉2

3
 

 +  
1

𝑓 𝜉1
2
 𝑓 𝜉2

3
 

 . (5) 

The variance expression captures the estimator's 

variability as a function of the sample size 𝑛 and the values 

of the density function f (. ) at the specified population 

quantiles 𝜉1

3
, 𝜉1

2
 and 𝜉2

3

. 

Under the assumption that, a random sample of size 𝑛 is 

taken from a symmetric or skewed distribution with location 

parameter (𝑙) and scale parameter (𝑏), following Shewhart 

(1931), we propose G control chart  

 𝑈𝐶𝐿𝐺 = 𝜇(𝐺) +  3𝜎𝐺 ,             (6) 

  𝐶𝐿𝐺  =  𝜇(𝐺)                     (7) 

  and 𝐿𝐶𝐿𝐺 = 𝜇(𝐺) −  3𝜎𝐺   (8) 

where 𝑈𝐶𝐿𝐺 , 𝐶𝐿𝐺  and 𝐿𝐶𝐿𝐺  are respectively upper 

control limit, centre line and lower control limit of G 

control chart. And 𝜎𝐺  is standard deviation (𝑠𝑑) of G. 

3. Performance of G Control Chart 

In this section, we evaluate the performance of the G 

control chart for various distributions under consideration. 

To assess the performance of the proposed G control chart, 

we compute mean and 𝑠𝑑 of G control chart under uniform 

(U), exponential (E), normal (N), logistic (LG), Laplace (L) 

and Cauchy (C) distributions. The distributions are modified 

in terms of 𝑙  and 𝑏  such that they have mean 𝜇  and 

variance 𝜆2. As G approximately follows normal distribution 
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3
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Substituting (11) in (9), we get  
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On similar lines, other values of 𝑓(. )  in (5) are 

evaluated and 𝜎𝐺  is obtained. The 𝑠𝑑 and width (𝑤𝐺) of 

G control chart for the distributions under consideration is 

furnished in Table 1. 

The 𝑠𝑑 of the G estimator varies across distributions 

based on their differences in spread and tail behavior. The 

G statistic under Cauchy distribution has highest 𝑠𝑑 and 

under Laplace distribution has lowest 𝑠𝑑. The width of G 

control chart is highest for Cauchy distribution followed by 

uniform distribution and is lowest for Laplace distribution 

followed by exponential distribution.  

To evaluate the performance of G control chart, we 

consider various performance measures such as power (𝑃𝐺), 

average run length (𝐴𝑅𝐿𝐺), median run length (𝑀𝑅𝐿𝐺) and 

standard deviation of run length (𝑆𝐷𝑅𝐿𝐺). These measures 

provide a comprehensive view of the control chart’s ability 

to detect shifts in the process location. The 𝑃𝐺  refers to  

the probability, 𝐴𝑅𝐿𝐺  represents the expected number of 

samples required and 𝑀𝑅𝐿𝐺  gives the median number of 

samples needed to detect a shift in process location. A smaller 

𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  value indicates quicker detection of shifts. 

Additionally, the 𝑆𝐷𝑅𝐿𝐺  evaluates the consistency of shift 

detection, where a lower value indicates better consistency. 

Various measures are given by 

 𝑃𝐺 = 1 −  𝛽𝐺 ,                       (13) 

 where 𝛽𝐺 = 𝑃(𝐿𝐶𝐿𝐺 < 𝐺 < 𝑈𝐶𝐿𝐺|𝜇′ = 𝜇 + 𝑎),  (14) 

 𝐴𝑅𝐿𝐺  =  
1

𝑃𝐺
,                         (15) 

 𝑀𝑅𝐿𝐺 =
log  0.5 

log  1−𝑃𝐺  
                     (16) 

 and 𝑆𝐷𝑅𝐿𝐺 =  𝐴𝑅𝐿𝐺 1 − 𝐴𝑅𝐿𝐺 .           (17) 

The values of 𝑃𝐺 , 𝐴𝑅𝐿𝐺 , 𝑀𝑅𝐿𝐺  and 𝑆𝐷𝑅𝐿𝐺  for uniform, 

exponential, normal, logistic and Laplace distributions are 

determined by setting 𝜆2 = 1 and for Cauchy distribution 

by setting λ = 0.2605 due to Arnold (1965). For sample 

sizes 𝑛 = 5, 10, 15, 20  and various positive shifts, the 

computed values of 𝑃𝐺 , 𝐴𝑅𝐿𝐺  are provided in Table 2 and 

𝑀𝑅𝐿𝐺 , 𝑆𝐷𝑅𝐿𝐺  are provided in Table 3. 𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  

of G control chart are plotted in Figure 1 for 𝑛 = 10. 

Table 1.  𝝈𝑮 and 𝒘𝑮 of G control chart for various distribtions 

Distribution Uniform Exponential Normal Logistic Laplace Cauchy 
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Figure 1.  𝑨𝑹𝑳𝑮 and 𝑴𝑹𝑳𝑮 of G Control Chart 
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Table 2.  𝑷𝑮 and 𝑨𝑹𝑳𝑮 for various distributions 

Distribution 

𝑃𝐺  𝐴𝑅𝐿𝐺  

𝑛 

𝑎 
5 10 15 20 5 10 15 20 

Uniform 

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983 

0.25 0.0048 0.0071 0.0097 0.0127 209.9464 140.6819 102.6923 79.0280 

0.50 0.0127 0.0272 0.0463 0.0696 79.0280 36.7789 21.6193 14.3609 

0.75 0.0315 0.0828 0.1530 0.2364 31.7086 12.0720 6.5352 4.2295 

1.00 0.0696 0.1981 0.3576 0.5171 14.3609 5.0474 2.7961 1.9338 

1.50 0.2364 0.5900 0.8297 0.9411 4.2295 1.6950 1.2053 1.0625 

2.00 0.5171 0.9038 0.9884 0.9990 1.9338 1.1065 1.0117 1.0010 

Exponential 

0.00 0.0099 0.0197 0.0322 0.0473 101.2281 50.7160 31.0340 21.1245 

0.25 0.0424 0.1160 0.2148 0.3272 23.5998 8.6219 4.6545 3.0567 

0.50 0.1330 0.3706 0.6064 0.7810 7.5164 2.6980 1.6491 1.2803 

0.75 0.3084 0.7037 0.9082 0.9772 3.2425 1.4211 1.1011 1.0233 

1.00 0.5443 0.9193 0.9916 0.9994 1.8371 1.0878 1.0085 1.0006 

1.50 0.9090 0.9991 1.0000 1.0000 1.1001 1.0009 1.0000 1.0000 

2.00 0.9947 1.0000 1.0000 1.0000 1.0053 1.0000 1.0000 1.0000 

Normal 

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983 

0.25 0.0064 0.0110 0.0164 0.0226 155.7527 91.0809 61.0304 44.1685 

0.50 0.0226 0.0560 0.1016 0.1574 44.1685 17.8641 9.8427 6.3538 

0.75 0.0663 0.1883 0.3414 0.4969 15.0827 5.3113 2.9295 2.0127 

1.00 0.1574 0.4290 0.6754 0.8388 6.3538 2.3312 1.4805 1.1922 

1.50 0.4969 0.8909 0.9855 0.9986 2.0127 1.1224 1.0148 1.0014 

2.00 0.8388 0.9959 1.0000 1.0000 1.1922 1.0041 1.0000 1.0000 

Logistic 

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983 

0.25 0.0075 0.0136 0.0211 0.0299 133.3107 73.3875 47.4216 33.4667 

0.50 0.0299 0.0778 0.1434 0.2219 33.4667 12.8547 6.9718 4.5058 

0.75 0.0927 0.2643 0.4612 0.6374 10.7863 3.7836 2.1685 1.5689 

1.00 0.2219 0.5635 0.8078 0.9290 4.5058 1.7747 1.2379 1.0764 

1.50 0.6374 0.9590 0.9975 0.9999 1.5689 1.0427 1.0025 1.0001 

2.00 0.9290 0.9995 1.0000 1.0000 1.0764 1.0005 1.0000 1.0000 

Laplace 

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983 

0.25 0.0116 0.0244 0.0410 0.0612 85.9613 40.9781 24.3974 16.3280 

0.50 0.0612 0.1732 0.3160 0.4646 16.3280 5.7731 3.1645 2.1525 

0.75 0.2071 0.5349 0.7828 0.9141 4.8295 1.8694 1.2775 1.0939 

1.00 0.4646 0.8680 0.9794 0.9976 2.1525 1.1521 1.0210 1.0024 

1.50 0.9141 0.9993 1.0000 1.0000 1.0939 1.0007 1.0000 1.0000 

2.00 0.9976 1.0000 1.0000 1.0000 1.0024 1.0000 1.0000 1.0000 

Cauchy 

0.00 0.0027 0.0027 0.0027 0.0027 370.3983 370.3983 370.3983 370.3983 

0.25 0.0502 0.1399 0.2580 0.3875 19.9158 7.1475 3.8753 2.5804 

0.50 0.3875 0.7991 0.9556 0.9924 2.5804 1.2514 1.0465 1.0076 

0.75 0.8580 0.9971 1.0000 1.0000 1.1655 1.0029 1.0000 1.0000 

1.00 0.9924 1.0000 1.0000 1.0000 1.0076 1.0000 1.0000 1.0000 

1.50 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

2.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
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Table 3.  𝑴𝑹𝑳𝑮 and 𝑺𝑫𝑹𝑳𝑮 for various distributions 

Distribution 

𝑀𝑅𝐿𝐺  𝑆𝐷𝑅𝐿𝐺  

𝑛 

𝑎 
5 10 15 20 5 10 15 20 

Uniform 

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980 

0.25 145.1769 97.1663 70.8337 54.4307 209.4458 140.1810 102.1910 78.5264 

0.50 54.4307 25.1450 14.6360 9.6035 78.5264 36.2755 21.1133 13.8519 

0.75 21.6303 8.0161 4.1737 2.5695 31.2046 11.5612 6.0144 3.6959 

1.00 9.6035 3.1392 1.5660 0.9522 13.8519 4.5198 2.2410 1.3438 

1.50 2.5695 0.7775 0.3916 0.2447 3.6959 1.0853 0.4974 0.2578 

2.00 0.9522 0.2961 0.1555 0.1006 1.3438 0.3432 0.1089 0.0319 

Exponential 

0.00 69.8188 34.8060 21.1627 14.2930 100.7269 50.2135 30.5299 20.6185 

0.25 16.0091 5.6225 2.8657 1.7493 23.0944 8.1065 4.1243 2.5073 

0.50 4.8552 1.4969 0.7434 0.4563 6.9986 2.1404 1.0347 0.5991 

0.75 1.8797 0.5699 0.2903 0.1833 2.6965 0.7736 0.3337 0.1545 

1.00 0.8818 0.2754 0.1452 0.0941 1.2401 0.3091 0.0927 0.0252 

1.50 0.2891 0.0984 0.0549 0.0370 0.3318 0.0296 0.0018 0.0001 

2.00 0.1321 0.0483 0.0280 0.0193 0.0729 0.0008 0.0000 0.0000 

Normal 

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980 

0.25 107.6126 62.7853 41.9555 30.2674 155.2519 90.5796 60.5283 43.6657 

0.50 30.2674 12.0325 6.4697 4.0477 43.6657 17.3569 9.3293 5.8324 

0.75 10.1040 3.3229 1.6599 1.0091 14.5741 4.7852 2.3775 1.4276 

1.00 4.0477 1.2371 0.6160 0.3798 5.8324 1.7616 0.8434 0.4787 

1.50 1.0091 0.3128 0.1638 0.1057 1.4276 0.3707 0.1223 0.0378 

2.00 0.3798 0.1262 0.0694 0.0463 0.4787 0.0645 0.0068 0.0006 

Logistic 

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980 

0.25 92.0569 50.5209 32.5224 22.8491 132.8097 72.8858 46.9190 32.9630 

0.50 22.8491 8.5589 4.4770 2.7621 32.9630 12.3446 6.4525 3.9745 

0.75 7.1243 2.2583 1.1210 0.6833 10.2741 3.2453 1.5918 0.9447 

1.00 2.7621 0.8362 0.4202 0.2620 3.9745 1.1725 0.5426 0.2867 

1.50 0.6833 0.2169 0.1158 0.0758 0.9447 0.2110 0.0503 0.0103 

2.00 0.2620 0.0900 0.0504 0.0341 0.2867 0.0212 0.0010 0.0000 

Laplace 

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980 

0.25 59.2366 28.0558 16.5620 10.9675 85.4598 40.4750 23.8922 15.8201 

0.50 10.9675 3.6441 1.8250 1.1095 15.8201 5.2494 2.6172 1.5750 

0.75 2.9876 0.9054 0.4540 0.2823 4.3006 1.2748 0.5954 0.3206 

1.00 1.1095 0.3423 0.1785 0.1148 1.5750 0.4186 0.1464 0.0489 

1.50 0.2823 0.0963 0.0538 0.0362 0.3206 0.0274 0.0016 0.0001 

2.00 0.1148 0.0425 0.0248 0.0171 0.0489 0.0003 0.0000 0.0000 

Cauchy 

0.00 256.3938 256.3938 256.3938 256.3938 369.8980 369.8980 369.8980 369.8980 

0.25 13.4550 4.5990 2.3224 1.4138 19.4093 6.6287 3.3380 2.0194 

0.50 1.4138 0.4318 0.2226 0.1420 2.0194 0.5608 0.2206 0.0877 

0.75 0.3551 0.1187 0.0655 0.0438 0.4392 0.0541 0.0050 0.0004 

1.00 0.1420 0.0516 0.0298 0.0205 0.0877 0.0012 0.0000 0.0000 

1.50 0.0438 0.0176 0.0107 0.0076 0.0004 0.0000 0.0000 0.0000 

2.00 0.0205 0.0087 0.0054 0.0039 0.0000 0.0000 0.0000 0.0000 

 

From Table 2 and 3, for all values of 𝑛, we observe that, 

𝑃𝐺  is 0.0027 for symmetric distributions under consideration 

at zero shift. However, since 𝐸 𝐺 = 𝜇 − 0.2714𝜆  for 

exponential distribution, 𝑃𝐺  is 0.0027 at 𝑎 = −0.27. The 
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𝑃𝐺  increases as 𝑎 and 𝑛 increase. For fixed 𝑛 and small 

𝑎, 𝑃𝐺  is highest for Cauchy distribution and lowest for 

uniform distribution. We notice that, under symmetric 

distributions, 𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  are approximately 370 

and 256 respectively for zero shift. Under exponential 

distribution, these values are achieved at 𝑎 = −0.27. Also, 

𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  being smaller, vary for different 𝑛 for 

zero shift. For fixed 𝑛, as 𝑎 increases, 𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  

decrease, exhibiting effective shift detecting capability of 

the control chart. The same nature in 𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  is 

observed for fixed 𝑎  and increasing 𝑛 . Also, 𝑆𝐷𝑅𝐿𝐺  

decreases for increasing 𝑎 and 𝑛, indicating stability of 

the control chart in detecting the shifts. 

From Figure 1, it is observed that, among symmetric 

distributions, for specified value of 𝑎 , both 𝐴𝑅𝐿𝐺  and 

𝑀𝑅𝐿𝐺  decrease across uniform distribution to Cauchy 

distribution. Hence, if the process variables are from uniform 

distribution, G control chart is less sensitive in detecting 

smaller shifts, whereas, it reflects strong sensitivity to detect 

shifts under heavier tailed distributions like Laplace and 

Cauchy distributions. Under exponential distribution, though 

𝐴𝑅𝐿𝐺  and 𝑀𝑅𝐿𝐺  are decreasing for smaller shifts, the 

detection of shift could be illusive since these values are 

smaller at zero shift itself.  

On comparing the G control chart with median (M) 

control chart due to Bhat and Patil (2024a), in terms of ARL, 

we observe that, 𝐴𝑅𝐿𝐺  is lower than 𝐴𝑅𝐿𝑀 under uniform, 

normal and logistic distributions, whereas, 𝐴𝑅𝐿𝐺  is higher 

than 𝐴𝑅𝐿𝑀  for Laplace distribution. These values are 

almost same under Cauchy distribution. This indicates that, 

G control chart detects shifts in the process location quickly 

than the M control chart when process has uniform, normal, 

logistic distributions and has almost equal efficiency when 

process has Cauchy distribution. As G curtails 29% outliers 

and M curtails 50% outliers, G control chart is less resilient 

than M control chart to outliers. Here, G control chart is 

better than M control chart when process variables are   

from light and medium tailed distributions. However, it is 

equally competitive when process variables have heavy 

tailed distributions.  

4. Illustration  

In this section, we illustrate G control chart with two examples 

given in Duncan (1955) and Ghute and Shirke (2008). 

Example 1: The example due to Duncan (1955) deals 

with the height (inches) of fragmentation of bomb base that 

consists of 5 samples taken 29 times and is given in Table 4. 

The 𝑠𝑑, control limits and width of G control chart is given 

in Table 5. Figure 2 is plotted using Table 4 and Table 5. 

Since 𝜇(𝐺)  and 𝜎𝐺
  are unknown, they are estimated 

from the samples. Suppose 𝑛 samples are taken 𝑚 times, 

𝜇(𝐺)  is estimated by taking the weighted average of     

33rd, 50th and 66th percentiles of the samples, with    

weights respectively given by 0.3, 0.4 and 0.3. That is, 

𝜇 (𝐺) =
1

𝑚
  0.3𝑄1

3

 𝑥𝑖 +  0.4𝑄1

2

 𝑥𝑖 +  0.3𝑄2

3

 𝑥𝑖  
𝑚
𝑖=1   

where 𝑄1

3
(𝑥𝑖),  𝑄1

2
(𝑥𝑖) and 𝑄2

3

(𝑥𝑖)  is 33rd, 50th and 66th 

percentiles of the of 𝑖𝑡ℎ  sample. And 𝜎𝐺
  is estimated by 

obtaining 𝜎 𝐺
  under various distributions by substituting 𝛿𝜆  

where 𝛿 =  
𝑛−1

2
 
Γ 
𝑛−1

2
 

Γ 
𝑛

2
 
  for λ. Here 𝜆 =

1

𝑚
 𝑠𝑖
𝑚
𝑖=1 , where 

𝑠𝑖
2 =

1

(𝑛−1)
 (𝑥𝑖 − 𝑥 )

2𝑛
𝑖=1 . For 𝑛 = 5, 𝛿 = 1.0638.  

Table 4.  Height (inches) of fragmentation of bomb base and computed 

values of G, 𝒔𝒊 

𝑚 
𝑛 

G 𝑠𝑖  
1 2 3 4 5 

1 0.831 0.829 0.836 0.840 0.826 0.8316 0.0056 

2 0.834 0.826 0.831 0.831 0.831 0.8310 0.0029 

3 0.836 0.826 0.831 0.822 0.816 0.8261 0.0078 

4 0.833 0.831 0.835 0.831 0.833 0.8326 0.0017 

5 0.830 0.831 0.831 0.833 0.820 0.8308 0.0051 

6 0.829 0.828 0.828 0.832 0.841 0.8294 0.0055 

7 0.835 0.833 0.829 0.830 0.841 0.8328 0.0048 

8 0.818 0.838 0.835 0.834 0.830 0.8334 0.0078 

9 0.841 0.831 0.831 0.833 0.832 0.8320 0.0042 

10 0.832 0.828 0.836 0.832 0.825 0.8312 0.0042 

11 0.831 0.838 0.844 0.827 0.826 0.8315 0.0077 

12 0.831 0.826 0.828 0.832 0.827 0.8284 0.0026 

13 0.838 0.822 0.835 0.830 0.830 0.8310 0.0061 

14 0.815 0.832 0.831 0.831 0.838 0.8312 0.0086 

15 0.831 0.833 0.831 0.834 0.832 0.8320 0.0013 

16 0.830 0.819 0.819 0.844 0.832 0.8281 0.0104 

17 0.826 0.839 0.842 0.835 0.830 0.8347 0.0065 

18 0.813 0.833 0.819 0.834 0.836 0.8303 0.0103 

19 0.832 0.831 0.825 0.831 0.850 0.8312 0.0095 

20 0.831 0.838 0.833 0.831 0.833 0.8326 0.0029 

21 0.823 0.830 0.832 0.835 0.835 0.8322 0.0049 

22 0.835 0.829 0.834 0.826 0.828 0.8298 0.0039 

23 0.833 0.836 0.831 0.832 0.832 0.8322 0.0019 

24 0.826 0.835 0.842 0.832 0.831 0.8324 0.0059 

25 0.833 0.823 0.816 0.831 0.838 0.8298 0.0087 

26 0.829 0.830 0.830 0.833 0.831 0.8302 0.0015 

27 0.850 0.834 0.827 0.831 0.835 0.8336 0.0087 

28 0.835 0.846 0.829 0.833 0.822 0.8326 0.0088 

29 0.831 0.832 0.834 0.826 0.833 0.8320 0.0031 

Table 5.  𝝈𝑮, 𝑼𝑪𝑳𝑮, 𝑳𝑪𝑳𝑮 and 𝒘𝑮 under various distributions 

Distribution 𝜎𝐺  𝑈𝐶𝐿𝐺  𝐶𝐿𝐺  𝐿𝐶𝐿𝐺  𝑤𝐺  

Uniform 0.0039 0.8430 0.8313 0.8196 0.0235 

Exponential 0.0024 0.8370 0.8297 0.8224 0.0146 

Normal 0.0030 0.8403 0.8313 0.8223 0.0179 

Logistic 0.0027 0.8393 0.8313 0.8233 0.0160 

Laplace 0.0020 0.8374 0.8313 0.8252 0.0123 

Cauchy 0.0011 0.8346 0.8313 0.8280 0.0066 
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From Table 5 and Figure 2, we observe that, 𝑤𝐺  is narrower 

for Cauchy distribution, whereas, it is wider for uniform 

distribution. The centre line of exponential distribution 

differs from that of symmetric distribution. From Figure 2, 

we see that, the process is out of control for Cauchy 

distribution, whereas, it exhibits in control status under other 

symmetric distributions. 

Example 2: The partial data is taken from Ghute and 

Shirke (2008) which is due to Chen et al. (2005). The data 

consists of 5 samples taken 18 times from a spring 

manufacture process. The measurements of the inner 

diameter of the springs are given in Table 6 and 𝑠𝑑, control 

limits, 𝑤𝐺  are given in Table 7. Figure 3 is plotted using 

Table 6 and Table 7. The computations are carried out on 

similar lines of example 1. 

From Table 7 and Figure 3, we observe that, 𝑤𝐺  becomes 

narrower for heavier tailed distributions. The centre line of 

all symmetric distributions is the same, whereas, it is 

different for exponential distribution. From Figure 3, we 

notice that, process is out of control under Cauchy and 

Laplace distributions, while it remains in control under other 

symmetric distributions. 

Table 6.  Springs inner diameter and computed values of G, 𝒔𝒊 

𝑚 
𝑛 

G 𝑠𝑖  
1 2 3 4 5 

1 28.14 28.31 28.27 28.20 28.26 28.2497 0.0666 

2 28.50 28.35 28.30 28.32 28.20 28.3217 0.1085 

3 28.29 28.30 28.29 28.38 28.29 28.2919 0.0394 

4 28.22 28.26 28.27 28.27 28.28 28.2680 0.0235 

5 28.30 28.36 28.27 28.32 28.30 28.3038 0.0332 

6 28.34 28.29 28.32 28.27 28.19 28.2917 0.0581 

7 28.24 28.32 28.31 28.36 28.41 28.3256 0.0630 

8 28.23 28.36 28.34 28.31 28.33 28.3278 0.0503 

9 28.25 28.39 28.31 28.35 28.32 28.3237 0.0518 

10 28.31 28.28 28.31 28.36 28.32 28.3119 0.0288 

11 28.34 28.31 28.25 28.30 28.45 28.3137 0.0745 

12 28.27 28.23 28.35 28.37 28.36 28.3356 0.0623 

13 28.35 28.44 28.42 28.32 28.31 28.3573 0.0589 

14 28.32 28.30 28.32 28.33 28.40 28.3219 0.0385 

15 28.27 28.33 28.41 28.44 28.41 28.3937 0.0701 

16 28.35 28.29 28.38 28.35 28.31 28.3418 0.0358 

17 28.36 28.38 28.28 28.32 28.40 28.3557 0.0482 

18 28.36 28.31 28.38 28.34 28.34 28.3438 0.0261 

 

 

Figure 2.  G control chart for symmetric distributions 
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Figure 3.  G control chart for symmetric distributions 

 
Table 7.  𝜎𝐺 , 𝑈𝐶𝐿𝐺 , 𝐿𝐶𝐿𝐺  and 𝑤𝐺  under various distributions 

Distribution 𝜎𝐺  𝑈𝐶𝐿𝐺  𝐶𝐿𝐺  𝐿𝐶𝐿𝐺  𝑤𝐺  

Uniform 0.0364 28.4304 28.3211 28.2118 0.2186 

Exponential 0.0226 28.3740 28.3061 28.2381 0.1359 

Normal 0.0278 28.4045 28.3211 28.2377 0.1667 

Logistic 0.0248 28.3955 28.3211 28.2467 0.1488 

Laplace 0.0190 28.3782 28.3211 28.2640 0.1142 

Cauchy 0.0102 28.3517 28.3211 28.2905 0.0613 

5. Conclusions  

In this section, based on our findings, we record our 

conclusions on the proposed G control chart.  

  A control chart based on Gastwirth estimator (G) has 

been proposed for monitoring process location under 

the assumption that, the process variables have cumulative 

density function, 𝐹(𝑥). 

  The 𝑠𝑑  of G estimator is obtained and the control 

limits of the proposed control chart is developed under 

various symmetric and asymmetric distributions. 

  The proposed control chart is evaluated using various 

performance measures viz. power, ARL, MRL and SDRL 

for different shifts and sample sizes. 

  Power of the G control chart is high for Cauchy 

distribution as compared to other distributions. 

  ARL and MRL decrease for smaller shifts and sample 

sizes under heavy tailed distributions like Laplace and 

Cauchy distributions. 

  The proposed control chart has lucidity in detecting the 

shifts in the process location under Cauchy model. 

  The G control chart outperforms M control chart due  

to Bhat and Patil (2024a), when process variables  

have uniform, normal, logistic distributions and equally 

performs under Cauchy distribution. 

  The proposed control is deplorable under skewed 

distribution like exponential distribution as the detection 

of shifts by control chart could be misleading. 

  The G control chart is useful when the distributional 

assumption of normality is not valid. Also, it is highly 

desirable when process variables are from heavy tailed 

distributions. 
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