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Abstract  We propose a new way of using law of energy conservation and Faraday tensor for transformation of 

electromagnetic fields between inertial frames in a four-dimensional Minkowski spacetime wherein space and time are 

linearly inter-related. We prove that the electromagnetic fields are Lorentz invariant for circular boost along the direction of 

boost and in perpendicular directions and for a spatial rotation of planes relative to a fixed coordinate axis between two 

inertial frames. We further demonstrate that the product of covariant and contravariant Faraday tensors and of their duals lead 

to non-zero electromagnetic field Lagrange density in free space. We also derived Lorentz invariant analytical expressions for 

Maxwell’s equations, current continuity equation and symmetric electromagnetic field energy-momentum tensor with and 

without charge and current source. We further demonstrate that using symmetric electromagnetic field energy-momentum 

tensor one can reliably derive expressions for Lorentz invariant of electromagnetic fields between two inertial frames in case 

of circular Lorentz boost and spatial (planar) rotation about a fixed coordinate axis. We believe that the proposed theory may 

have profound effect on the study of contemporary issues in theory of the relativistic electrodynamics and general relativity.  
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1. Introduction 

Maxwell’s equations are the foundation of electrodynamics, 

and they relate electric and magnetic fields to each other [1]. 

Historically, Lorentz used Maxwell’s equations to derive his 

space-time coordinate transformation rule [2]. Einstein in 

1905 used Lorentz coordinate transformation rule to prove 

the validity of Maxwell’s equations in all inertial frames by 

using two postulates [3]; (i) The physics laws are invariant 

between two inertial frames. (ii) The speed of light is 

constant and independent of the direction of the motion of 

the emitting body in all inertial frames in free space. In 

electrodynamics, Maxwell’s equations and Lorentz force 

describe how the charge and current sources with densities 

  and J  generate electric and magnetic fields ( E and B ) [1]:  
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/ E  
: Gauss law of electrostatics; 

0 B : Gauss law of magnetism              (1) 


  



B
E

t
: Faraday’s law; 

2

1 
  



E
B J

tc
 : Ampere-Maxwell equation  (2) 

  F qE qv B : Lorentz force                 (3) 

Maxwell’s equations lead to several conservation laws  

[4], such as current continuity equation, conservation of 

electromagnetic energy, and momentum for which the 

electric and magnetic fields are Lorentz invariant between 

two inertial frames. Proof of Lorentz invariance of 

electromagnetic fields are interest over almost a century 

[5]-[8]. Einstein used the rates of momentum ( / )dp dt  and 

of energy ( / )dE dt  to transform electric and magnetic 

fields between two inertial frames [4] 
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where 
2 1/21(1 )    is Lorentz factor with velocity normalized to speed of light ( / ) v c .  

The electromagnetic field transformation between two inertial frames is also studied by using the electromagnetic field 

tensor, which is also called Faraday tensor [4]. In this formalism, one uses covariant and contravariant Faraday tensors 

( , )F F E B and ( , ) F F E B
, and their duals ( , )G G E B  and ( , ) G G E B

. To obtain the components of

F  one uses E E  in F . Likewise, components of dual tensors G  and G
 are obtained by using 

/E c B  and /B E c in F  and F  , respectively. For boost along the x-axis, Faraday tensor F  in frame   

is obtained from the classical transformation ,
   z zF Fz  , explicitly written as 

0 / / / 0 / / /0 0 0 0

/ 0 / 00 0 0 0

/ 0 0 0 1 0 / 0 0 0 1 0

0 0 0 1 0 0 0 1/ 0 / 0

,

  
 

      


     

     

      
      
      
      
      
         

x y z x y z

x z y x z y

y z x y z x

z y x z y x

E c E c E c E c E c E c

E c B B E c B B

E c B B E c B B

E c B B E c B B

   

   
 (5) 

Matching both sides of Eq. (5) one finds Eq. (4a) for Cartesian components of electric and magnetic fields in the inertial 

frame  . Likewise, inverse transformation ,
 z z zF F   gives the Cartesian components of covariant tensor F  in 

frame  , which then yields Eq. (4b). 

The transformed field equations (4a) and (4b) state that: (i) the electric (magnetic) field are Lorentz invariant along the 

x-boost direction but not in the y and z directions. (ii) The scalar product of electric and magnetic fields is Lorentz invariant 

( )   E B E B  and (iii) the vector product of electric and magnetic fields is not Lorentz invariant ( )   E B E B , 

contradicting Lorentz transformation of vector quantity which must be invariant between two frames   and  . 

In the classical Faraday tensor transformation, we observe that (i) Trace of the products of Faraday tensors and their duals 

is 
2 2 2( ) / ( )  Tr F F B E c Tr G G 

 
, which has no physical meaning since it yields zero electromagnetic field 

Lagrange density ( / 4 0  emL F F
  ) in free space, which is not realistic because electromagnetic waves transfer 

energy and momentum [4]. (ii) Furthermore, the trace of covariant and contravariant Faraday tensor and its dual is equal to 

( ) ( ) 4 /  Tr F G Tr F G E B c


 


, which suggests that Faraday tensor and its dual are orthogonal when scalar product 

of electric and magnetic fields is zero.  

Following the work of Mignani and Recami [9], we recently proposed a 6-dimensional spacetime (3+3) frame [10,11] in 

which the transformed relativistic velocity is combined with energy conservation to successfully demonstrate the Lorentz 

invariance of electric and magnetic fields and Maxwell’s equations between two frames under rotation. In this work, we 

extend our recent study [10], [11] to study Lorentz invariance of relativistic quantities (e.g.position, velocity, momentum, 

force, electromagnetic fields, Poynting vector, Maxwell’s equations, and energy-momentum tensor in a four-dimensional 

spacetime in which both space and time coordinates are linearly inter-related. The outline of our presentation is as follows: In 

sections 2 and 3 we derive the metric equation and transform 4-velocity, 4-momentum and 4-force vector components 

between two frames. In sections 4 and 5 we use 4-vector velocity with the law of conservation of energy to prove the 

invariance of electric and magnetic fields under spatial rotation. In sections 6, 7, 8, and 9, we then combine the law of 

conservation of energy with Faraday tensor and its dual to study Lorentz invariance of electromagnetic fields, Maxwell 

equations, current continuity equation, and electromagnetic field energy-momentum tensor between two reference frames 

under a boost and spatial rotation. In section 10, we discuss the details and applications of the proposed theory in invariant 

relativistic electrodynamics and gravitational field theory. 
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2. Generalized Four-Dimensional Spacetime 

We introduce a generalized four-dimensional spacetime wherein two “massive inertial frames”  , , ,         x y z ic t
 

and  , , ,   x y z ict , which coincide with a stationary inertial frame  0 0 0 0 0 0, , ,   x y z t  at time 0   t t t , and 

move relative to each other with an arbitrary velocity ( , , ) x y zv v v v . The space and time coordinates are inter-related:

( , ), x x x t  ( , ), y y y t  ( , ), z z z t  ( , , , ) t t t x y z in frame   and ( , ), x x x t  ( , ), y y y t ( , ), z z z t  and 

( , , , )   t t t x y z  in frame  . We require that Einstein’s two postulates are also valid in generalized 4-dimensional 

spacetime. We consider an event sending a light signal from the origin and second event of arrival at some points 

( , , , )P x y z ict  and ( , , , )     P x y z ic t in frames   and  . The square of the displacements are described by 

2 2 2 2 2 2 ,        ds dx dy dz c dt     (6a) 

2 2 2 2 2 2 ,   ds dx dy dz c dt     (6b) 

where the differential space-time displacements are defined as  

 , , ,            x y z x y zdx dx ic dt dy dy ic dt dz dz ic dt dt dt dx dy dz
i

c
         (7a) 

 ,, ,                   


x y x y zydx dx ic dt dz dz ic dt dt dt dx dy dz
i

dy dy ic dt
c

       (7b) 

where cos sinx    , sin siny    , cosz    in spherical coordinates with / v c . 

A pair of events with zero (null) separation connected by a signal at constant speed is described by  

2 2 2 2 2 ,      ds ds dx dx dx dx  
                (8) 

where  
   is generalized Minkowski metric tensor. Equation (8) can be written as 

2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2

2

( )

2
(1 ) (1 ) (1 ) (1 ) ,

          

        
 i ixx x yy y zz z tt x v

dx dy dz c dt dx dy dz c dt

i
dx dy dz c dt

c

  

        
   (9) 

where  2 2 2  
i ix v xy x y yz y z xz x zv v xy v v yz v v xz     and  c c . Matching both sides of Eq. (9) gives 

2 1/2

2 1/2

2 1/2

2 1/2

(1 ) 0 0 00 0 0

0 0 0 0 (1 ) 0 0
,

0 0 0 0 0 (1 ) 0

0 0 0
0 0 0 (1 )









    
        
       

    

xxx

yy y

zz z

tt






 
 

 




  (10) 

as generalized Lorentz scaling factor, with 
2 2 2 2 2 2/   x y z v c     and. 0  xy yz xz    

Figure 1 shows that ,xx  yy  are anisotropic and tt  is uniform at any azimuthal angle  . 

The differential space and time coordinate displacements are then written in matrix form  

0 0 0

0 0 0

0 0 0

0 0 0

,










   
   
   
   
     

    

tt

xx

yy
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dt

dx
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dz

dt

dx
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dz









    (11a) 

0 0 0
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0 0 0

0 0 0

    
    
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dt dt

dx dx

dy dy

z dz









    (11b) 
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Figure 1.  Cartesian components of Lorentz factor as a function of azimuthal angle   in spherical coordinates for polar angle / 2   and 

normalized speed 0.8  (left) and 0.9  (right) 

where ( ) /   x y zdt dt i dx dy dz c    ,   xdx dx ic td ,   ydy dy ic td ,   zdz dz ic td , in frame   and

( ) /        x y zdt dt i dx dy dz c   ,      xdx dx ic td ,      ydy dy ic td , and      zdz dz ic td in frame  . 

Equations (11a) and (11b) is rewritten in a familiar matrix form as  

0 0 0 0

0 0 0 0

0 0 0 0

;

  










 





       
       
       
       
        

       

tt tt tt tt tt tt tt tt

xx xx xx xx

yy yy yy yy

zz zz zz zz

x y z x y z

x x

y y

z z

i i i i i i

i i

i i

i i

dt dt dt

dx dx dx

dy dy dy

dz z dz

       

   

   

   

     

 

 

 

,









 
 
 
 
  
 

dt

dx

dy

dz

 (12) 

The space and time differential displacement equations (7a) and (7b) are then replaced with  

 

( ) , ( ) , ( ),

/ ,

       

    

xx x yy y zz z

tt tt x y z

dx dx ic dt dy dy ic dt dz dz ic dt

dt dt i dx dy dz c

     

    
     (13a) 

 

( ) , ( ) , ( ),

/ ,

          

   

xx x yy y zz y

tt tt x y z

dx dx ic dt dy dy ic dt dz dz ic dt

dt dt i dx dy dz c

     

    
    (13b) 

Using Eqs. (13a) and (13b) one then writes Cartesian components of velocity in frames   and   

 

  
 

  2 2

( / ) ( / )
, ,

1 / 1 /

 
    

      

xx tt x x xx tt x x
x x

x x y y z z x x y y z z

u v u vdx dx
u u

dt dtu v u v u z c u v u v u z c

   
   (14a) 

 

  
 

  2 2

( / ) ( / )
, ,

1 / 1 /

 
    

      

yy tt y y yy tt y y

y y

x x y y z z x x y y z z

u v u vdy dy
u u

dt dtu v u v u z c u v u v u z c

   
  (14b) 

 

  
 

  2 2

( / ) ( / )
, ,

1 / 1 /

 
    

      

zz tt z z zz tt z z
z z

x x y y z z x x y y z z

u v u vdz dz
u u

dt dtu v u v u z c u v u v u z c

   
  (14c) 

Combining Eqs. (13a) and (13b) reduces the four unknowns in Eqs. (14a), (14b) and (14c) to one 

2
,


      

    
i i i i

i i i i i i i i i i

i

x x x x xi i i
x x x x x x x x x x

tt x

vdx dx dxdt dx
u v v v

dt dt dt dt dtc

 
  


     (15a) 

, , ,       
  

xx x xx x yy y yy y zz z zz z
dx dy dz

u v u v u v
dt dt dt

            (15b) 
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The Cartesian components of the velocity vector u  in frame   are then written as  

 
   

   

2 2
2

2 2 2 2

( / ) 1 ( / )
,

1 1 1 1

 
        
 

   

xx tt xx x
xx x

x x yy y y y zz z z z

xx x xx x

v c
u v v u v v u v

    
 

   
   (16a) 

 
   

   

2 2 2

2 2 2 2

( / ) 1 ( / )
,

1 1 1 1

 
         

   

yy tt yy y yy y
y y xx x x x zz z z z

yy y yy y

v c
u v v u v v u v

    
 

   
   (16b) 

 
   

   
2 2

2

2 2 2 2

( / ) 1 ( / )
,

1 1 1 1

 
        
 

   

zz tt zz z
zz z

z z xx x x x yy y y y

zz z zz z

v c
u v v u v v u v

    
 

   
   (16c) 

 

Since xx tt  , yy tt  , and zz tt   in Fig. 1, Eqs. (16a), (16b), and 16c) reduce to  

cos sin , sin sin , cos ,             x x y y z zu v v u v v u v v         (17a) 

cos sin , sin sin , cos ,     x x y y z zu v v u v v u v v          (17b) 

which are identical to those in the 6-dimensional spacetime theory [10,11] and their use in finding relativistic mass, energy 

and Doppler effects is discussed at the end of the manuscript as appendix. 

3. Vector transformation and Four Vectors 

In this section we lay down the groundwork to study the invariance of relativistic vector quantities between two inertial 

frames. We momentarily set aside the relativity and focus on the three-dimensional vector transformation [12]. Since 

coordinate systems are used for convenience; we are free to use the following Figure 2 to define stationary 3-dimensional 

vectors A  and A  in frames   and  , both of which are initially coincide with a stationary universal inertial frame   

at 0   t t t .  

  

(a)                                                          (b) 

Figure 2.  The schematic diagrams of two stationary vectors A  and A  in terms of unit vectors in a counterclockwise rotation in frame   through 

angle   into frame   plane (a) and in clockwise rotation in frame   through angle   in clockwise direction into frame   (b) for 0 / 2    

The stationary vectors A  and A  have same length from origin of two frames   and  , written as  

ˆ ˆˆ ˆ ˆ ˆ ,x y z x y zA A i A j A k A i A j A k A                    (18) 

which means that an ordinary vector transformation is identical as if a rotation causes no change of the magnitude of the 

vector quantity with respect to origin of any massive inertial frame. The unit vectors ˆˆ ˆ( , , )  i j k  and ˆˆ ˆ( , , )i j k  in the massive 
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inertial frames   and   are defined by using the classical vector transformation [12] and are related to each other 

according to following equations 

ˆ ˆcos sin 0

ˆ ˆsin cos 0 ,

ˆ ˆ0 0 1

i i

j j

k k

 

 

     
    
      

    
     

    (19a) 

ˆ ˆcos sin 0

ˆ ˆsin cos 0 ,

ˆ ˆ0 0 1

i i

j j

k k

 

 

    
    

    
    

    

    (19b) 

Consequently, Cartesian components of A  and A  are then written in linear matrix form as [11] 

cos sin 0

sin cos 0 ,

0 0 1

x x

y y

z z

A A

A A

A A

 

 

     
    

      
    

     

    (20a) 

cos sin 0

sin cos 0

0 0 1

x x

y y

z z

A A

A A

A A

 

 

    
    

    
    

    

    (20b) 

It is noted that three-dimensional rotations can be around any of the three coordinate axes. The 4-dimensional analogue of 

3-vector transformation equations given by equations (20a) and (20b) for rotation in counterclockwise and clockwise 

directions about the z-axis are written as 

0 01 0 0 0

0 cos sin 0
,

0 sin cos 0

0 0 0 1

x x

y y

z z

A A

A A

A A

A A

 

 

    
    
    
     
            

    (21a) 

0 01 0 0 0

0 cos sin 0

0 sin cos 0

0 0 0 1

x x

y y

z z

A A

A A

A A

A A

 

 

    
         
    
           

    (21b) 

Here it is noted that, just like 3-dimensional rotations, 4-dimensional rotations can also be around any of 3-coordinate axes. 

The scalar product of vector A  ( A ) with itself leads to    A A A A , or | | | | A A , which states that the magnitude of a 

vector is Lorentz scalar between frames   and  . 

The 4-vector velocities ( , , , )       t x y zA U u u u u and ( , , , )  t x y zA U u u u u  are then defined as  

1 0 0 0

0 cos sin 0
,

0 sin cos 0

0 0 0 1

x x

y y

z z

c c

u u

u u

u u

 

 

    
    
    
     
            

    (22a) 

1 0 0 0

0 cos sin 0
,

0 sin cos 0

0 0 0 1

x x

y y

z z

c c

u u

u u

u u

 

 

    
         
    
           

    (22b) 

where  tu c and tu c , The scalar product of the 4-velocity vector ( )U U with itself in frame ( )   is equal to the scalar 

product of ( )U U  in frame ( )  :    U U U U , which allows us to write 
2 2 2 2| | | |   u c u c . Since 

2 2| | | | u u , the 

speed of light is Lorentz invariant (  c c ).  



76 Hilmi Ü nlü:  Conservation of Energy and Faraday Tensor in Transformation of Electromagnetic Fields, Maxwell’s Equations,  

and Symmetric Electromagnetic Field Energy-Momentum Tensor in Theory of Lorentz Invariant Relativistic Electrodynamics 

 

The scalar product of momentum 4-vectors ( , , , )     t x y zP p p p p  and ( , , , ) t x y zP p p p p with themselves give the same 

length ( | | | | P P ) from the origins of two frames. The momentum 4-vector transformation is then identified as a rotation if it 

causes no change in their magnitudes. 

4. Conservation of Energy Law and Invariance of Electromagnetic Fields 

We will extend our recently proposed 6-dimensional space-time theory [10,11] to write the following linear matrix 

equations to describe the 4-force vectors F  and F  in terms of each other in frames   and   

0 01 0 0 0

0 cos sin 0
,

0 sin cos 0

0 0 0 1

x x

y y

z z

F F

F F

F F

F F

 

 

    
    
    
     
            

    (23a) 

0 01 0 0 0

0 cos sin 0
,

0 sin cos 0

0 0 0 1

x x

y y

z z

F F

F F

F F

F F

 

 

    
         
    
           

    (23b) 

where 0 ( ) / 0   F d m c dt  and 0 ( ) / 0 F d m c dt . ( , , )  x y zF F F  and ( , , )x y zF F F are the Cartesian components of 

the 3-electromagnetic force vectors (Lorentz force) in the massive inertial frames   and   which, according to 

3-dimensional vector transformation equations (21a) and (21b), are  

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zF F i F j F k F F i F F j F k                        (24a) 

   ˆ ˆˆ ˆ ˆ ˆcos sin sin cosx y z x y x y zF F i F j F k F F i F F j F k                   (24b) 

Since 0 0 0 F F  in Eqs. (23a) and (23b), unlike the 4-velocity and 4-momentums, force vector is 3-dimensional as 

defined by Eqs. (24a) and (24b) in terms of unit vectors ˆˆ ˆ( , , )  i j k  and ˆˆ ˆ( , , )i j k  in frames   and  . The scalar product of 

F ( )F  with itself leads to    F F F F , or | | | | F F . The rates at which work is done on a particle by Lorentz force in 

frames   and   are  

. ,x x y y z z
dE

F u F u F u F u
dt

        (25a) 

. ,x x y y z z
dE

F u F u F u F u
dt


          


    (25b) 

where ( , , )  x y zF F F  and ( , , )x y zF F F  are Cartesian components of Lorentz force in frames   and  . 

     , , ,x x y z z y y y z x x z z z x y y xF q E u B u B F q E u B u B F q E u B u B                            (26a) 

     , , ,x x y z z y y y z x x z z z x y y xF q E u B u B F q E u B u B F q E u B u B           (26b) 

where ju  ( ku ) and ju  ( ku ) and are Cartesian components of u and u in Eqs. (22a) and (22b). 

Considering the massive inertial frames   and   form a closed system in the stationary spacetime frame 0 , the law 

of conservation of power (or energy) between them is written as  

,x x y y z z x x y y z z
dE dE

F u F u F u F u F u F u
dt dt


           


     (27) 

Using the transformation matrix equations (22a) and (22b) for u and u , Eq. (27) is written as  

   0 cos sin sin cos ,x x y y z z x y x x y y z zF u F u F u F c F F u F F u F u                        (28a) 
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   0 cos sin sin cos ,x x y y z z x y x x y y z zF u F u F u F c F F u F F u F u                    (28b) 

where 0 0 0  F F . Using Eqs. (26a) and (26b) in Eq. (28a), we can write following equations 

   cos sin ,x y z z y x y z z y y z x x zE u B u B E u B u B E u B u B                  (29a) 

   sin cos ,y z x x z x y z z y y z x x zE u B u B E u B u B E u B u B                   (29b) 

,z x y y x z x y y xE u B u B E u B u B                  (29c) 

Using Eq. (22a) for , ,  x y zu u u  in Eqs. (29a), (29b), and (29c), we write following matrix equations 

cos sin 0

sin cos 0 ,

0 0 1

x x

y y

z z

E E

E E

E E

 

 

     
    

      
    

     

    (30a) 

cos sin 0

sin cos 0 ,

0 0 1

x x

y y

z z

B B

B B

B B

 

 

     
    

      
    

     

    (30b) 

Using Eq. (22b) for , ,x y zu u u  in Eqs. (29a), (29b), and (29c) for inverse transformation, we write  

cos sin 0

sin cos 0 ,

0 0 1

x x

y y

z z

E E

E E

E E

 

 

    
    

    
    

    

    (30c) 

cos sin 0

sin cos 0 ,

0 0 1

x x

y y

z z

B B

B B

B B

 

 

    
    

    
    

    

    (30d) 

which state that electric (or magnetic) field in frame ( )   is composed of electric (or magnetic) field in frame ( )   for 

spatial rotation of (x, y) plane about z-axis.  

The scalar and vector products of electric and magnetic fields is essential in proving Lorentz invariance of electromagnetic 

energy, Poynting vector, current continuity equation, and densities of electromagnetic field energy and momentum. Using 

Eqs. (30a) -(30d) one writes  

  

    

cos sin cos sin

sin cos sin cos ,

x x y y z z x y x y

x y x y z z x x y y z z

E B E B E B E B E E B B

E E B B E B E B E B E B E B

   

   

             

          
   (31a) 

  

    

cos sin cos sin

sin cos sin cos ,

x x y y z z x y x y

x y x y z z x x y y z z

E B E B E B E B E E B B

E E B B E B E B E B E B E B

   

   

         

                     
   (31b) 

which suggests that    E E E E  and    B B B B , so that  E E  and  B B  (Lorentz scalar invariants). The vector 

products of E  and B  in frame   and of E and B  frames  and  are  

     

    
      

ˆˆ ˆ

ˆcos sin

ˆˆcos sin ,

y z y z x z x z x y x y

y z z y z x x z

z x x z z y y z x y y x

E B E B B E i B E E B j E B B E k

E B E B E B E B i

E B E B E B E B j E B E B k E B

 

 

                      

   

        

   (32a) 
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     

    
      

ˆˆ ˆ

ˆcos sin

ˆcos sin ,

y z z y z x x z x y y x

y z z y x z z x

z x x z z y y z x y y x

E B E B E B i E B E B j E B E B k

E B E B E B E B i

E B E B E B E B j E B E B k E B

 

 

      

          

                

    (32b) 

which states that    E B E B  is Lorentz invariant vector between the frames   and  . 

5. Conservation of Energy and Faraday Tensor in Field Transformation 

We will extend 3-dimensional Lorentz force ( )  eF Q E u B  to 4-dimensions as covariant and contravariant Lorentz 

tensors  eF Q F U 
  and  eF Q F U


 , respectively. Here eQ  is the static electric charge, ( )F F

 is the 

covariant contravariant antisymmetric second rank tensor, also known as Faraday tensor. ( , , , )   t x y zU Tr u u u u  and 

( , , , ) t x y zU Tr u u u u
 are covariant and contravariant 4-vector velocities. Considering the frames   and   form a 

closed system in the stationary frame 0 , the law of conservation of power (energy) equation (27) can be written as  

,e e
dE dE

F U F U Q F U U Q F U U
dt dt

     
   


        


(33) 

where U U   and U U 
. Using ( ) U R U   and ( ) U R U   in Eq. (33) we write the following rule to 

transform F  in   into   for a counter-clockwise rotation about z-axis. 

( ) ( ),F R F R         (34) 

where 
1( ) ( )R R   is the transpose (inverse) of rotation matrix ( )R  .  

In tensor analysis, the covariant (contravariant) tensor ( )F F
  is defined as vector product of any two vectors a and 

b  is another vector   ˆ   i j j i kc a b a b a b n  and considered as second rank antisymmetric tensor [4], with , i j k . 

Covariant and contravariant 4-Lorentz forces as 4-tensors are defined as  eF Q F U 
   and  eF Q F U 

  in frame 

 , written as 

0 00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33

,

t

x x

e
y y

z z

F u

F u
Q

F u

F u

F F F F

F F F F

F F F F

F F F F



    
    
    
    
       

    

     (35a) 
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     (35b) 

where   F A A    is second rank antisymmetric covariant field tensor, also called Faraday tensors, with ( )A A 

being any arbitrary 4-vector in frames   and  . F  are defined as 

00 11 22 33 0   F F F F , 10 01 F F , 20 02 F F , 30 03 F F , 21 12 F F , 31 13 F F , 32 23 F F . 

Similarly, one can define the contravariant Faraday tensor   F A A    
.  

Dual Faraday tensor transformation between frames   and   is defined like Faraday tensor transformation equation 

(33). To do that we first introduce a “fictitious” magnetic charge mQ  [13] and define “fictitious” dual Lorentz force 

( / )  m mF Q cB u E c  by using electromagnetic duality /E c B  and /B E c in conventional Lorentz force
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( )  e eF Q E u B . Here u is the velocity of moving electrical charge. We then define 4- dual covariant and contravariant 

Lorentz tensors in frame   as  mF Q G U 
  ,  mF Q G U


 . Using ( ) U R U   and ( ) U R U   we can 

write the following rule to transform G  in   into   for a counter-clockwise rotation about z-axis. 

( ) ( ),G R G R          (36) 

where 
1( ) ( )R R   is the transpose (inverse) of rotation matrix ( )R  . Covariant and contravariant fictitious 4-vector 

dual Lorentz forces F  and F  in frame   are then written as 
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     (37a) 
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     (37b) 

where   G A A     is antisymmetric second rank covariant field tensor. Similarly, one can define contravariant 

dual tensor   G A A    
. Components of the covariant (contravariant) dual tensors ( )G G

  are then obtained 

by using /E c B  and /B E c  in ( )F F
 .  

To eliminate the unnoticed error made in the classical use of Faraday tensor in field transformation [4] we use the 

generalized 4-dimensional Minkowski spacetime wherein 4-vector space coordinates are ( , , , )   x x ict x y z   and 

( , , , )         x x ic t x y z   in frames   and  .  

Using the covariant 4-vector potentials  / , / A V c A c ,  / , /     A V c A c  and multiplying E  and E  with 

( / )i c  and ( / )i c  the electric and magnetic fields in frames   and   are written as 

, ; , ,
i i i A i i i A

E V B A E V B A
c c c t c c c t

 
                 

   
    (38) 

We introduce covariant Faraday tensor F  with the following Cartesian components in frame   

 01 10 32 23, ,
yx x z

x x
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i F F B A F F

c c x t y z
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  (39b) 
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  (39c) 

Covariant and contravariant Faraday tensors F  and F , and their duals G  and G
 in frame   are  
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     (40a) 
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where the components of the dual Faraday tensors G  and G  are constructed by using the so called the 

electromagnetic duality /E c B  and /B E c  in Faraday tensors F  and F . Using equations (40a), (40b), 

(40c), and (40d) for the covariant and contravariant Faraday tensors ( F  and F ) and their duals ( G  and G ), one 

can write the following matrix expressions for the products F F


  and of their duals G G
  in frame   
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  (42) 

where ( ) / x y z z yS E B E B  , ( ) / y z x x zS E B E B  , and ( ) / z x y y xS E B E B   are the x, y, and z components of 

the Poynting vector. Traces of F F
  and of G G


are nonzero: 

  4 0emTr F F u
        (43a) 

( ) 4 0,emTr G G u
        (43b) 

which is physically realistic because the electromagnetic waves transfer energy and momentum in free space. Traces of 

product of covariant and contravariant Faraday tensors with their duals are  
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Equation (44a) suggests that ( )F F


 and ( )G G
  are orthogonal only when E B  is zero.  

Equation. (44b) suggests that ( )F F


 and ( )GG
 are always orthogonal in frames   and  . 

6. Faraday Tensor in Electromagnetic Field Transformation 

The incremental displacement of a coordinate system relative to its initial position is known to be composed of a translation 

as well as a rotation. While the components of 4-vector quantities transform according to Eq. (21a) and (21b), the spatial 

translation has no effect on them. One can use Faraday tensors and their duals determine the components of electric and 

magnetic fields in frames   and   by using:  

(i)  Lorentz boost along the direction of motion, which is appropriate transformation for relative motion of two observers, 

and 

(ii)  Spatial rotation, which relates spacetime coordinates of two observers in two frames which are subject to planar 

rotation with respect to each other about a fixed axis.  

6.1. Faraday Tensor and Field Transformation with Lorentz Boost 

We use ,
  z zF L F Lz   ,

  y yF F Ly L  , and ,
  xLx xF L F  transformation rules to transform electromagnetic 

fields between frames   and   for Lorentz boost along x, y, and z-axes, which are written as 
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where cosh  , sinh   with 0 1   and 0    . Here 
1

tanh ( )


   is called the boost parameter [4]. For a 

Lorentz boost along x-axis, the transformation ,
  z zF L F Lz   allows us to obtain the Cartesian components of Faraday 

tensor in frame   in terms of those in frame    
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which yields the covariant Faraday tensor in frame   in terms of those in frame  . Transformation ,
  z zF L F Lz   and 

,
 z zF L F Lz  yield electric and magnetic field components in frames   and   

 
 

1 0 0

0 1 0

0 0 1

,

x x

y y z

z z y

E E

E E B

E E B

 

 



  

 

    
    
    
         

    (47a) 
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which are the same as Eqs. (4a) and (4b) and yield invariant scalar product ( )   E B E B  and non-invariant vector product 

( )   E B E B  between two frames under Lorentz transformation.  

In the next step, we introduce a circular boost, rather than hyperbolic one defined in Eq. (45), for motion along x, y, and z- 

axes in frame  , , ( ) ( ) ( )  xLx xF L F    to find ( ) F F
 , which are  
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 (48) 

For a circular boost along x-axis, the components of covariant tensor F  in frame   are obtained by using the 

transformation rule , ( ) ( ) ( )  z zF L F Lz     , which is explicitly written as  
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with inverse transformation rule , ( ) ( ) ( ) z zF L Fz L     one writes F  in frame   and obtain  
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         (50d) 

which yield Lorentz invariant scalar product of electric and magnetic fields ( )   E B E B between frames   and  . The 

vector products of electric and magnetic in frames   and   fields are  
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   (51b) 

When 0  unit vectors are equivalent in both frames ( ˆ ˆ, i i ˆ ˆ, j j and ˆ ˆ k k ). Eqs. (51a) and (51b) yield 

   E B E B  and    E B E B , contrary to the hyperbolic boosts in Eq. (45).  

6.2. Faraday Tensor and Field Transformation with Spatial Rotations 

It is possible to combine boosts with rotations to relate the electromagnetic fields to each other between the frames   and 
 , by using counterclockwise rotations of (x, y), (z, x), and (y, z) planes about z, y and x-axes, which are given by the 

following expressions 
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  (52) 

Replacing   with   one writes expressions for the clockwise rotation about x, y, and z-axes. As an example, the 

transformation , ( ) ( )  zF Fz zR R    allows us to determine the components of covariant Faraday tensor F  in frame 

  in terms of the components of covariant F  in frame   

0 / / /

/ 0

/ 0

/ 0

0 / / /
1 0 0 0 1 0 0 0

/ 00 cos sin 0

0 sin cos 0 / 0

0 0 0 1 / 0

iE c iE c iE cx y z

iE c B Bx z y

iE c B By z x

iE c B Bz y x

iE c iE c iE cx y z

iE c B Bx z y

iE c B By z x

iE c B Bz y x

 

 

      
 

     
  

     
 

     
 

 
  
    
  
    
  
    

 

0 cos sin 0

0 sin cos 0

0 0 0 1

 

 

 
 

 
 
 
 

  (53) 

with inverse transformation , ( ) ( ) zF Fz zR R    one writes similar equation for F  in frame  . Matching both sides 

of Eq. (53) and of its inverse, one writes following matrix equations 
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which are identical to Eqs. (30a), (30b) and (30c), and (30d) and yield invariant scalar and vector products of electric and 

magnetic fields in frames   and  ,  

, ,E B E B E B E B           (55a) 

, ,E B E B E B E B         (55b) 

which are both invariants between frames   and  . 

7. Faraday Tensor and Invariance of Maxwell’s Equations 

Using ( , ) J ic J   in 0  F J 
   and 0 G   with 0,1,2,3  for ( 0,1,2,3)  we write  
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Subtracting Faraday’s law of induction from Ampere-Maxwell’s equation and applying the divergence to the resultant 

equation we can write the following equation 

 ( ) ,H E J E H
t
 


           


     (58) 

Since ( ) 0  H E , /  eE    and 0 H , equation (58) results in the conventional current continuity 

equation written as 
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0,J
t


   


    (59) 

where J  and   are the total current and charge densities, respectively. In the following subsections we will prove that 

inhomogeneous and homogeneous Maxwell equations (56) and (57) are Lorentz invariant between two massive inertial 

frames. Recall the following expressions for the flux of a vector field through a spherical closed surface in frames   and 

  

0 0

1 1
( ). ( ) , ( ). ,
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        (60) 

Since any function (e.g., magnitude of electric and magnetic fields) is continuous at any point in space [16] in both frames

  and  ( )   , we write the following chain rules of differentiation 
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   (62) 

7.1. Gauss Law of Electrostatics 

Since electric field wave function is continuous at any point in space, taking   E  and    E , and applying chain rule 

in Eq. (61) we write the charge density 
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where , ,ix x y z . Since 2 2(1 ) 1 
i i ix x x
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2 1/2(1 )  e    are the charge densities in frames   and  , defined with 

respect to charge density   in frame  . We can write  
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       (64) 

which is Lorentz invariant Gauss law of electrostatics between the inertial frames   and  . 

7.2. Gauss Law of Magnetostatics 

Since magnetic field wave function is continuous at any point in space, taking   B  and    B , and using chain rule 

in Eq. (61), we write  
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Matching both sides of Eq. (74), one finds 2 1/21/ (1 ) 
i i i

x x x
   for the space component of Lorentz scaling factor in Eq. 

(10), and covariant Eq. (65) is transformed into the invariant form 

0 0. . ,B B G G 
                  (66) 

which is Lorentz invariant Gauss law of magnetostatics between the inertial frames   and  . 

7.3. Faraday’s Law of Induction 

Let us re-write the differential form of Faraday’s law of induction in Eq. (57b) in x, y, and z-directions of the Cartesian 

coordinates in frame   

     , ,
y yxz

x

yx xz z

y z

E HHE
E

y z t t

EE EE H
E E

z x x y t
  

 
   

   

  
       

    
(67) 

Applying the chain rule in Eqs. (61) and (62) to Faraday’s law of induction allows us to write 
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   (68a) 
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   (68b) 

Side by side addition of Eqs. (68a) and (68b) allows us to write the covariant Faraday’s law 

      2 2 2 21 1 ,i i

i i ii i

x x
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     (69) 

Matching both sides of Eq. (69) yield 2 1/21/ (1 ) 
i i i

x x x
   and 

2 1/21/ (1 ) tt   for components of Lorentz scaling 

factor in Eq. (10). Covariant Eq. (69) is then transformed into invariant form 
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 
     (70) 

which is Lorentz invariant in the x, y, and z-directions between the inertial frames   and  . 

7.4. Ampere-Maxwell Equation 

Ampere-Maxwell’s equation (57b) are written as 
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x xx
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B J E

y z t t
      

  
      

   
      (71a) 

  ,
y yx z

y yy

E EB B
B J E

z x t t
      

  
      

   
      (71b) 
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      (71c) 

where 
2 1/2(1 )     and 

2 1/2(1 )     are the conductivities in frames   and  , defined relative to   in 

the steady inertial frame  . Applying the chain rule in Eq. (61) and (62) to differential form of Ampere-Faraday’s law in x, 

y, and z-directions and write  
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  (72b) 

Combining Eqs. (72a), and (72b) side by side and adding 
ixE   and   

ixE  , we write  
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Matching both sides of Eq. (73), one finds 2 1/21/ (1 ) 
i i i

x x x
   and 

2 1/21/ (1 ) tt   for space-time components of 

Lorentz scaling factor in Eq. (10). Then covariant Eq. (73) becomes invariant 

,
E E

B E B E F J F J
t t
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            
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                      

 
(74) 

which is Lorentz invariant Ampere-Maxwell equation between frames   and  . 

7.5. Current Continuity Equation 

Since Maxwell’s equations must satisfy the charge (current) continuity equation, using chain rules in Eqs. (61) and (62) we 

can write 
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where J  and   are the total current and charge densities, respectively. Side by side additions of Eqs. (75a) and (75b) 

allows us to write the following covariant equation 

   2 2 2 2. 1 . 1 ,
i i i
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t t

 
   

 
         

 
       (76) 

Matching both sides of Eq. (76) we find 2 1/21/ (1 ) 
i i i

x x x
   and 

2 1/21/ (1 ) tt  in Eq. (10), and  
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t t

 
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      (77) 

which is the Lorentz invariant current continuity equation between frames   and  . 

8. Symmetric Electromagnetic Energy-Momentum Tensor and Conservation Laws 

The classical symmetric energy-momentum tensor is described by a second rank tensor [4] 

/ / /
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,
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   (78) 

where F is the contravariant field tensor and F g F





 ( )F g F




 is mixed tensor, with

( 1,1,1,1)  g g diag
 . 

00  emu  is energy density, 
0 0   S 

  is Cartesian components of Poynting 

vector, and   T  , with Maxwell’s stress tensor T  defined as [4] 

     1 2 1 2 11
,

2

         emT E E B B E B E E B B u                    (79) 

where   is the Kronecker delta which is unity if  xx yy zz    and zero otherwise [4]. Mixed tensor F g F





 

( )F g F



 in Eq. (78) has no explicit symmetry characteristics [4].  

Consequently, we pursued a search for an alternative way to derive Lorentz invariant expression for a symmetric 

electromagnetic energy-momentum tensor. We discovered that the average sum of the product of covariant-contravariant 

Faraday tensor and transpose of the contravariant covariant dual Faraday tensors ( ) / 2 T F F G G 
  

 fits our 

requirement of the electromagnetic energy-momentum tensor. In the massive inertial frame   they are written as 
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which have symmetric characteristics and consequently, algebraic sum of their traces is zero 
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Average sum of the product of covariant (contravariant) and transpose of contravariant covariant) Faraday tensors and of 

their duals, ( ) / 2 T F F G G 
  

 in frame   is then written as 
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Cartesian components of the symmetric energy-momentum tensor T  in Eq. (82) are  
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where T  is given by Eq. (79). Since T
  is symmetric ( )T T
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 its trace must be zero: 
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9. Poynting Theorem and Conservation Laws 

Using ( ) ( ) ( )       a b b a a b  and Maxwell’s equations (56) and (57), divergence of Poynting vector can be 

written as  
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   (86) 

where, /   E J W t  is the rate of work done by Lorentz force on moving charged particles and 

1( ) / 2   emu E E B B   is the electromagnetic energy density. Divergence theorem yields  
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em
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t
     (87) 

which is the well-known classical Poynting theorem [17]. The first and second terms on the left are the power flowing out of 

the volume and rate of stored energy density and the term on right is the power dissipated (or generated) in a closed electrical 

circuit.  

We now demonstrate the use of symmetric energy-momentum tensor T  allows us to derive differential form of 

Poynting theorem and conservation of linear momentum with charge and current sources. Using the 4-vector current density

( , ) J ic J   in  T F J 
   we write 
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Sum of the first-row elements on both sides of Eq. (88) yields the energy conservation law  

  ,
  

           
  

em em
x x y y z z

u u
S E J E J E J S E J

t t
  (89) 

which is the differential form of the Poynting theorem in free space given by Eq. (87). Further, adding the second, third and 

fourth row elements of Eq. (88) and combining them we write  

     
3 3

2
0 0

0 0

,
( )

 

 
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  
 

ijT
e m

jj

gi g
c F J G J T E J B

c ict x t

  
 



     (90) 

which is the differential form of conservation of linear momentum with total current source.  

Since for planar rotation about a fixed axis, Poynting vector is Lorentz invariant ( ) S S , letting   S  (or emu ) and 

   S  (or emu ), Eq. (89) can be decomposed as  

     2 2 2 2 2 2. 1 1 1 ,
    

        
    

xx x yy y zz y
S S S

S
x y z

              (91a) 

 2 2 2 2

2 2 2
1 ,

        
                   

yem em x em emz
tt tt tt

vu u v u uvt t t

t t x y z t tc c c
         (91b) 

,   E J E J           (91c) 

Side by side adding Eqs. (91a), (91b), and (91c) yields the following covariant energy continuity equation 
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   2 2 2 2. 1 . 1 ,
 

               
 i i i

em em
ttx x x

u u
S E J S E J

t t
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which yield 2 1/21/ (1 ) 
i i i

x x x
   and 

2 1/2 1/21/ (1 ) ) tt   in Eq. (10), which transforms covariant equation Eq. (92) 

into the following invariant form  

. . ,
 

    
 

em emu u
S S

t t
          (93) 

Similarly, employing the differentiation chain rule to differential form of conservation of linear momentum equation with 

current source in Eq. (90) allows one to write the following equations 
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  ,           f E J B E E B f            (94c) 

Adding Eqs. (94a), (94b), and (94c) yields the covariant momentum continuity equation 

 
2

2 2 2

2
. 1 1 ,

            
     
 

i

i i

x
tt x x

i

v Tg g
T f f

t t xc


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Matching both sides of Eq. (95), one finds 2 2 1/21/ (1 / ) 
i i i

x x x
v c  and 

2 2 1/21/ (1 / ) tt v c in Eq. (10) for 

components of Lorentz factor and covariant Eq. (95) is transformed invariant form 

    ,
 

              
 

g g
T E J B T E J B

t t
           (96) 

which is Lorentz invariant linear momentum conservation equation between frames   and  .  

10. Results and Discussions  

In this work, we introduced so called generalized 4-dimensional massive inertial frames  , , ,         x y z ic t and 

 , , ,   x y z ict , both coincide with stationary inertial frame  0 0 0 0 0 0, , ,   x y z t  at time 0   t t t , and move 

relative to each other with arbitrary velocity ( , , ) x y zv v v v . The space and time coordinates are interrelated: ( , ) i i ix x x t , 

( , , , ) t t t x y z in   and ( , ) i i ix x x t , ( , , , )   t t t x y z  in frame  , where , ,i x y z . We derived the generalized 

4-dimensional spacetime metric equation (8), with Lorentz scaling factor in Eq. (10), which has anisotropic space and 

uniform time components. The role of this factor on the invariance of relativistic quantities such as energy, momentum, mass, 

time dilation and Doppler shift is discussed in appendix. In the following, we discuss Lorentz invariance of electromagnetic 

fields, Maxwell’s equations, and symmetric electromagnetic field energy-momentum tensor. 

10.1. Comparison of Classical and New Way of Using Faraday Tensor in Field Transformation 

By using the 4- velocity and 4-force vectors in the energy conservation law we demonstrated the Lorentz invariance of the 

scalar and vector products of electric and magnetic fields between two so called massive inertial frames for a spatial rotation 

about a fixed axis. As an example, consider point charge Q in frame  . The produced electric and magnetic fields in frames 

  and   are  

 2 3/2

ˆ ˆ ˆˆ ˆ ˆ ˆ ,
4 4

      x y z
q r Q

E xi yj zk E i E j E k
r r 

       (97a) 
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 
   2 3/2

ˆ
ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ,

4 4


         x y z x y z

q u r q
B u i u j u k xi yj zk B i B j B k

r r

 

 
   (97c) 

 
     

   

2 3/2

ˆ
ˆˆ ˆ

4 4

ˆ ˆˆ ˆ ˆ ˆcos sin sin cos ,

 
                       
 

            

y z x z x y

x y x y z x y z

q u r q
B u z u y i u z u x j u y u x k

r r

B B i B B j B k B i B j B k B

 

 

   

   (97d) 

where 2 2 r r . One can show that the scalar and vector products of electric and magnetic fields are Lorentz invariant 

( )   E B E B  and ( )   E B E B  between two massive inertial frames.  

To confirm the findings in section 4, we focused on the use of electromagnetic field strength tensor, also called Faraday 

tensor in sections 5 and 6 to derive expressions for the invariant electromagnetic fields. We demonstrated that the hyperbolic 

boost along x-axis classical use of Faraday tensor in field transformation ,
   z zF Fz   given Eq. (6) and 

,
  z zF L F Lz   (45) for Lorentz boosts along the x, y and z-axes, lead to a non-invariant vector product of electric and 

magnetic fields, and in turn non-invariant Poynting vector, between two inertial frames. For a Lorentz boost along x-axis, one 

can use the transformation ,
  z zF L F Lz   to find components of Faraday tensor in frame   in terms of those in frame  . 

Transformation ,
  z zF L F Lz   and its inverse ,

 z zF L F Lz   yield Cartesian components of the electric and magnetic 

fields in frames   and   in terms of each other, given by Eqs. (47a), (47b), (47c), and (47d), respectively. They are the 

same as Eqs. (4a) and (4b), with    E B E B and    E B E B . In zero velocity case, Eqs. (47a), (47b), (47c), and (47d) 

results in invariant vector product. However, this has no relativistic meaning since zero velocity case means that two frames 

coincide with each other at rest.  

In the case of circular Lorentz boosts about the x, y, and z-axes given by Eq. (48), the result of Faraday tensor 

transformations surprisingly turns out to be quite different. For example, the circular Lorentz boost along x-axis with fixed 

z-axis, transformation , ( ) ( ) ( )  z zF L F Lz      yields components of covariant Faraday tensor , ( )F z   in frame  , 

which leads to Cartesian components of electromagnetic fields in frame   as mixture of those in frame   at any angle, 

according to Eqs. (50). However, as easily seen from Eqs. (51) and (52) for 0 , contrary to the hyperbolic Lorentz boost 

in Eq. (47), the vector products of electric and magnetic fields is Lorentz invariant (    E B E B ) between frames   and 

 . This may be due to the difference between hyperbolic boosts in Eq. (45) and circular boost Eq. (48), which are derived 

from translational and rotational points of views for which 
2 2 1 x y  and 

2 2 1 x y , respectively, in two dimensions. 

In section 6.2 we demonstrated that if two frames   and  are related by spatial rotation of (x, y) plane with fixed z-axis, 

of (y, z) plane about x axis, and (z, x) plane about y axis, respectively, Cartesian components of covariant (contravariant) 

Faraday tensor ( ) F F
  in frame   can be found according to the spatial rotation transformations given by Eq. (52). 

For a spatial rotation of (x,y) plane about the z-axis, covariant Faraday tensor in frame  is obtained from 

, ( ) ( ) ( )  zF Fz zR R    , which yields Lorentz invariant electric and magnetic fields in frame ( )   in terms of those in 

frame ( )   according to Eqs. (54a) - (54d). Similar results are found under the spatial rotation of (y, z) plane about x-axis, 

and (z, x) plane about the y-axis, respectively.  

10.2. Faraday Tensor and Lagrange Density of Electromagnetic Field 

In section 6 we also proved that the new way of using Faraday transformation under the spatial rotations about fixed 

coordinate axes lead to Lorentz invariant properties (e.g., Poynting vector, inhomogeneous and homogeneous Maxwell’s 

equations, and equations of continuity) between two frames   and  , respectively. Considering a charged particles 

moving under the influence of an external electromagnetic field we use so called the action principle 
4 3  S Ldx Ldx dt  

to derive its equation of motion [18]. Here L is the total Lagrange density of the charged particle which is equal to sum of the 

free space ( )emL  and external source ( )extL contributions and is written as  

1
, ( , 0,1,2,3)

4


    em extL L L F F J A 

   


    (98) 
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According to Eqs. (43a) and (43b), the trace of the product of F F
  and of their duals G G


 are non-zero and yield 

a nonzero electromagnetic energy density in free space. Consequently, we write 

1 1 1 1
,

4 4 4 4

      
       

   
em emL F F G G Tr F F Tr G G u   

   
   

 (99) 

which proves that contrary to the classical point of view [4], the electromagnetic Lagrange density emL  is not zero in free 

space. This is physically realistic because electromagnetic waves transfer energy and momentum, which are the intrinsic 

properties of free space. Trace of product of covariant and contravariant Faraday tensors and of their duals in frames   and 

  are 

   
2

2 2 2 20

2

1
2 4 4 ,

2 2

   
           

  
em

i
Tr F F Tr G G E B E B u

c


 



 


   (100a) 

   
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2 4 4 ,

2 2
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em
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Tr F F Tr G G E B E B u
c


 




 


  (100b) 

which show that the product of F F
 and of their duals G G


 are Lorentz invariant between frames   and  . 

Meanwhile the trace of product of covariant (contravariant) Faraday tensors and of dual Faraday tensors are also invariant 

between the massive inertial frames   and  , written as 

       
4 4

, ,
                

   
Tr F G Tr F G E B Tr F G Tr F G E B

c c

 
  

 
  (101) 

which is zero when 0    E B E B , and  F G F G  ,  F G F G
    are invariant. 

10.3. Symmetric Electromagnetic Energy-Momentum Tensor and Conservation Laws 

In section 9 we used the symmetric electromagnetic field energy-momentum tensor to prove the invariance of the 

conservation of electromagnetic energy and linear momentum. We now extend this idea to cases under spatial rotations of 

planes about a fixed axis. For example, applying the 4-vector differentiation operator / ( / ( ), )       x ict
 , we can 

extend Eq. (93) to  

/ / /1 0 0 0

/ / /0 cos sin 0
( )

/ / /0 sin cos 0

0 0 0 1/ / /
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                     
            
                       

em em em

x x x
z

y y y

z z z

i u c t i u c t i u c t

S x S x S x
R

S y S y S y

S z S z S z

 


 
    (102) 

and using the chain rule in Eqs. (61) and (62 for the space and time differential operators, Eq. (102) can be written as 

covariant differential form of Poynting theorem with no current source 

   2 2 2 2. 1 ( ) 1 ( ) . ,
 

         
  i i i

em em
tt z zx x x

u u
S R R S

t t
           (103) 

Matching both sides of Eq. (103) one finds 2 1/2( ) / (1 ) 
i i i

x x z x
R    and 

2 1/2( ) / (1 ) tt zR   for the spatial 

rotation dependent space and time components of Lorentz scaling factor, which reduce to those in Eq. (10) without rotation, 

and transforms covariant Eq. (103) into invariant form 

. . ,
 
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 

em emu u
S S

t t
        (104) 

which is the Lorentz invariant classical differential form of Poynting theorem in free space. 

Using the 4-vector operator / ( / ( ), )       x ict
  and chain rule in Eqs. (61) and (62) we can extend Eq. (95) to 

the following equation for conservation of linear momentum  
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Matching both sides of Eq. (105) one finds 2 1/2( ) / (1 ) 
i i i

x x z x
R    and 

2 1/2( ) / (1 ) tt zR    for space and time 

components of Lorentz scaling factor, which reduce to those in Eq. (10) without spatial rotation and transforms covariant Eq. 

(105) into invariant form. Following the similar steps to produce Eq. (104), we can write the conservation equations along the 

y- and z-components of linear momentum. Adding x, y and z components we write the following differential equation for 

4-vector linear momentum conservation in the generalized 4-dimensional spacetime frame 

. ,
 

    
 

g g
T T

t t
    (106) 

which is the Lorentz invariant differential form of linear momentum conservation in free space.  

10.4. Symmetric Electromagnetic Energy-Momentum Tensor for Field Transformation 

It is also instructive to see if the use of the symmetric electromagnetic field energy-momentum tensor can be used to 

transform electromagnetic fields between two massive inertial frames   and  . We try this by using the counterclockwise 

rotation of (x, y) plane about the z-axis in Eq. (52) and the transformation ( ) ( )  z zT R T R    yields the following 

symmetric tensor T   in frame   
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(107) 

, cos sin , cos sin , ,        em em x x y y y x z zu u S S S S S S S S        (108a) 
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   (108c) 

where T  are the components of 3-D Maxwell stress tensor in frame   related to those in frame  . Equations (108a) 

and (108b) explicitly demonstrate that the electromagnetic field energy density, Poynting vector and momentum density are 

Lorentz invariant between frames   and  .  

Furthermore, as a symmetric tensor, trace of energy-momentum tensor T  must be zero:  
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2

3 3
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   
              

   
em em em
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c

     (109) 

Likewise, the spatial clockwise rotation ( ) ( ) z zT R T R    of (x, y) plane about fixed z-axis yields components of 

the inverse symmetric energy-momentum tensor in frame  .  

Since T  is derived from average sum of the tensor product of covariant and transpose of contravariant (vice versa) and 

of their duals, it is imperative to confirm that, and by back substitution we should be able to determine the Lorentz invariant 
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electric and magnetic fields between frames   and  . Matching both sides of Eq. (107) and of its inverse, which is not 

written here to save space, for 0  one obtains the following matrix equations for the Cartesian components of the electric 

and magnetic fields in frame ( )   those in frame ( )  ,  
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which are identical to Eqs. (54a), (54b), (54c), and (54d) for 0 . We can then conclude that T  can reliably be used to 

find Lorentz invariant electric and magnetic field according to ( ) ( )  z zT R T R    transformation for spatial rotation 

of (x, y) plane about the fixed z- axis, between two frames. This confirms the Lorentz invariance of symmetric 

electromagnetic field energy-momentum tensor between two massive inertial frames   and  . 

Since Eq. (78) is representing the classical symmetric energy- momentum tensor and is described by using the 

4-dimensional relativistic analogue of 3-dimensional Maxwell’s stress tensor [4], it is also imperative to see whether it also 

confirms the Lorentz invariance and trace characteristics described for the symmetric electromagnetic energy-momentum 

tensor in Eq. (107). This is expected since  
 is also a symmetric tensor just like T  . In the framework of the classical 

Faraday field transformation, Lorentz invariance of the symmetric electromagnetic energy-momentum tensor 

 g g   
in the massive inertial frame   is written as 
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, , , ,         em em x x y y z zu u S S S S S S         (112a) 
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1 1
, ,


           

y y yx
x y z z z

S S SS
g g g S S

c c c c c c
      (112b) 

( ) 0
, ( ) ( )

( ) 0
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Tr Tr
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
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              
   

        

  (112c) 

Equations (112a) and (112b) yield invariant electromagnetic energy density, but Poynting vector and linear momentum 

density turn out to be non-invariant between the frames   and  . This contradicts Lorentz transformation which requires 

all components of relativistic vector quantities must be invariant. Since 
 is a symmetric tensor, its trace is zero.  

However, in the case of trigonometric circular Lorentz boost along the x-axis given by Eq. (48), applying 

( ) ( )  z zL L
   in Eq. (78) one obtains symmetric tensor in frame   
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For 0 symmetric energy-momentum tensor (0) (0) (0)  z zL L
   in Eq. (113) yields  

, , , ,      em em x x y y z zu u S S S S S S       (114a) 
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11 2200 33( ) 0,em xx yy zz em emTr u T T T u u               (114c) 

Equations (114a) and (114b) yield invariant energy density, Poynting vector, and momentum density between frames 

and  . Furthermore, since  is a symmetric tensor, Eq. (114c) predicts that trace of   is zero in both frames, 

confirming that (0) (0) (0)z zL L
    and ( ) ( )z zL L

      are symmetric electromagnetic energy-momentum 

tensors. Component by component matching both sides of Eq. (113) and of its inverse for 0  , one obtains the matrix 

equations (110a), (110b), (110c), and (110d) for Cartesian components of the electric and magnetic fields in frame ( )   in 

terms of those in frame ( )  . We conclude that using symmetric energy-momentum tensor is the most reliable way of 

finding invariant electric and magnetic fields for (i) the spatial rotation of planes about a fixed axis, and (ii) the circular 

Lorentz boost along the direction of motion and between two reference frames.  

10.5. Symmetric Electromagnetic Energy-Momentum Tensor and Angular Momentum 

Symmetrical electromagnetic field energy-momentum tensor is needed when we consider the conservation of angular 

momentum of the electromagnetic field [4]. We can write the angular momentum density of electromagnetic field in the 

following integral and tensor form [4] 

 
1

,      L x E B dv M x x
c

    
     (115) 

As pointed out in section 8, classical construction of symmetric electromagnetic energy-momentum tensor 


in Eq. (78) 

is based on the mixed tensors F g F





 ( )F g F




 which has no explicit symmetry characteristics [4]: it is 

neither symmetric nor asymmetric. Consequently, the symmetric angular momentum tensor must be constructed from the 

symmetric electromagnetic field energy-momentum tensor ( )T T 
, which is defined according to equation (83), as the 

average sum of the product of covariant (contravariant) and transpose of contravariant covariant) Faraday tensors and of their 

duals, ( ) / 2 T F F G G 
  

. Therefore, symmetric angular momentum density of electromagnetic field must be 

defined as  

, M T x T x            (116) 

Conservation of total angular momentum of electromagnetic field is then defined as  

    0,       M T x T T x T      
         (117) 

Since T  is symmetric, then first and third terns n Eq. (117) can be eliminated and T T  , which proves that 

conservation of angular momentum of electromagnetic field is symmetric. 

10.6. Symmetric Electromagnetic Energy-Momentum Tensor and Einstein Field Equation 

The proposed use of Faraday tensor, its dual, and symmetric electromagnetic energy-momentum tensor and its dual can 

have profound effect in the solution of Einstein equation [19]-[21], written as 
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where R  is the Ricci curvature tensor with R being the scalar curvature, and 
48 /K G c  is the gravitational constant. In 

free space T  is the fundamental source of the electromagnetic and gravitational fields. Since T  is symmetric, then 

G
 must be symmetric, so that we can write  
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Component by component matching the symmetric tensors in Eq. (119), one can write  
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 (120) 

Applying the 4-vector differentiation operator / ( / ( ), )       x ict
  we can write  
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  (121) 

Using the chain rule in Eqs. (61) and (62) for space and time differential operators, Eq. (121) can be written as covariant 

differential form of Poynting theorem with no current source 

   2 2 2 2( ) ( )
.( ) 1 ( ) 1 ( ) .( )

 
             

  i i i

em em
tt z zx x x

u u
K K S R K R K S

t t
              (122) 

Matching both sides of Eq. (120) one finds 2 1/2( ) / (1 ) 
i i i

x x z x
R    and 

2 1/2( ) / (1 ) tt zR    for the spatial 
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rotation dependent space and time components of Lorentz scaling factor, which reduce to those in Eq. (10) without rotation, 

and transforms covariant Eq. (122) into invariant form in which is the Lorentz invariant classical differential form of 

Poynting theorem in free space. 

It is also important to point out that conservation of electromagnetic energy and linear momentum equations can also be 

written for the trigonometric circular Lorentz boost along the direction of motion following the steps to write Eq. (122). For a 

circular boost along the x-axis, we write the following matrix equation for the Poynting theorem under rotational boost 

( ) / ( ) /

cos sin 0 0( ) / ( ) /

sin cos 0 0
(

0 0 1 0( ) / ( ) /

0 0 0 1

( ) / ( ) /

        
   
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          
       
    
    

      
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em em
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z z
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i i
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i
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c

i
K S z

c









   (123) 

from which, similar to writing Eq. (123), one can write the covariant and then invariant form of Poynting theorem with no 

current source. Steps similar can be taken to write the equation for the conservation of linear momentum in free space. 

It is also instructive to demonstrate the Lorentz invariance of the symmetric energy-momentum tensor in the massive 

inertial frame  . Using Einstein’s gravitational field equation (118) we write 

( ) ( ) ( ) ( ),  T R T R G R G R            (124) 

Since T
 is Lorentz invariant, then G

 must also be invariant between frames   and  . In other words, Einstein 

field equation must also be Lorentz invariant between frames   and  , written as 

,    G KT G K T         (125) 

This demonstrates the ability of a simple and theoretically reliable derivation of the symmetric energy-momentum tensor 

and Lorentz invariance of relativistic quantities between two inertial frames in relativistic electrodynamics and in the 

classical field theory. Knowing the symmetric energy momentum tensor, one can solve Einstein’s field equation for the 

curvature of the universe. 

11. Conclusions 

We introduced a four-dimensional generalized Minkowski spacetime frame in which the space and time coordinates are 

linearly interrelated. After satisfying Lorentz invariance of metric equation between two massive inertial frames, we used 

classical vector transformation to derive general expressions for Cartesian components of the relativistic velocity, which is 

valid at any speed, including the speed of light. Considering two massive inertial frames form a closed and isolated system in 

four dimensional spacetime, we integrated the relativistic velocity components with conservation of energy and new way of 

using Faraday tensor and its dual in Minkowski space-time to prove that the electric and magnetic fields are Lorentz invariant 

under circular boost and spatial rotation of planes about a fixed axis. We demonstrate that the product of covariant and 

contravariant Faraday tensors and of their duals lead to non-zero electromagnetic field Lagrange density in free space, which 

is physically realistic since electromagnetic fields carry energy and momentum while they propagate free space. We derived 

analytical expressions for Lorentz invariant Maxwell’s equations, current continuity equation, and symmetric electromagnetic 

energy-momentum tensor between two inertial frames, with and without source. We further demonstrated that symmetric 

energy-momentum tensor can be used have a reliable derivation of Lorentz invariant electromagnetic fields between two 

inertial frames in the case of circular Lorentz boost and spatial rotation about a fixed coordinate axis. We believe that the 

proposed theory may have profound effect in creating new research areas in theoretical physics. 

Data Availability Statement  

This manuscript has no associated data, or the data will not be deposited. 

APPENDIX I. Time Dilation, Doppler Shift, and Energy Dispersion Relation 

Using Eq. (9) for the general form of four-covariant metric equation under Lorentz transformation, we write  
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2 2 2 2 2 2 2 2 2 2

2 2
1 1
    
           

     

x y zu u u u
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c c
     (A1a) 

 
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2 2 2 2 2 2 2 2 2
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1
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        

 
         
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ds dx dy dz c dt

c dt u u u
c

    

   


        (A1b) 

where 
2 2 c c , 

2 2 2 2  x y zu u u u , 
2 2 2 2     x y zu u u u . Matching of Eqs. (A1a) and (A1b) yields  

 
1/2

1/2
2

2 2 2 2 2 2

2 2 2

1
1 1 ,

xx yy zz

tt

tt x y z
u

t u u u t
c c

   


   
           

       

        (A2) 

For motion along x axis, 
2 2 2 2/ / xu c u c and 

2 1/21/ (1 )  xx tt   , Eq. (A2) reduces to  

 
1/2 1/2 1/2

2 2 21/2
2

2 2 2
1 1 1 1 ,tt tt

u u v
t t t t t

c c c
  

 
     

                    
     
     

    (A3) 

Using 2 / T  , Eq. (A3) allows us to write the following expression for the relativistic invariance of Doppler shift 

between two massive inertial frames under Lorentz transformation 

 
1/2

1/2
2

2 2 2 2 2 2

2 2 2

1
1 1 ,

xx yy zz

tt

tt x y z
u

u u u
c c

     


   
           

       

       (A4) 

For motion along the +x axis, 
2 2 2 2/ / xu c u c and 

2 1/21/ (1 )   xx tt    . Eq. (A4) reduces to       for 

the relativistic Doppler shift in the classical four-dimensional spacetime theory. 

Recall that Ives and Stilwell [22] who observed the wavelength of hydrogen atom emitted by canal rays with and against 

their motion by using a mirror and discovered the frequencies of displaced lines of incoming and outgoing light rays and their 

average are given by [23]  

   1 ; 1 ;
2

av

 
          
 

 
               (A5) 

Consider forward and inverse (incoming and outgoing) plane waves of frequencies  , ' and wave vectors ( )k k  in the 

massive inertial frames   and  , respectively, with wave functions  

. '. ' ' '; 't k r t k rAe A e              (A6) 

where / k c and '/ ' k c  in the massive inertial frames  and  , respectively. With Lorentz invariant phases of 

plane waves 0   ( 0)   between   and 0  ( and 0 ), we can write  

0 0 0 0 0 0' ' ';t k r t k r t k r t k r                     (A7) 

where   is the incremental shift in the angular frequencies of plane waves in stationary inertial frame 0 . ' and   

are the incremental shifts in  and   in frames   and  . Using the generalized time ( , , , ) t t x y z t  and velocity, 

equalities in Eq. (A7) lead to  

       2 2
0 1 1 , 1 1 ,tt ttt t t t                         (A8a) 

       2 2
0 01 1 , 1 1 ,tt ttt t t t                        (A8b) 

where 0 k r and ' ' 0 k r , which can be proven by using / k c and '/ ' k c , and spacetime coordinate equations. 

Doppler shifts in the angular frequencies of forward and inverse plane waves and their averages in the massive inertial frames
  and   are then written as 
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 
 (A9b) 

Expressions for angular frequencies in the massive inertial frames   and   are then written as 

0 0
0 0 0 0

2 2 2 2

1 1
;

2 22 1 / 2 1 /
av av

u c u c

 
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 
          

  
    (A10) 

where 0  and 0 are the background angular frequencies and 0 and 0 are the Doppler shifts with 0' / '   k u
  

and 0 /  k u . Multiplying  and   with / 2 h  and using 
2

0 0 0 0( )           k u p u m u  and 

2
0 0 0 0( )     k u p u m u , one can write 

2 2
2 2 2 20 0

0 0
2 2 2 2

;

2 1 / 2 1 /

m u m u
E m c m c E mc m c

u c u c

 
         

  
   (A11) 

where 
2

0 0 0   m c E  and 
2

0 0 0 m c E are the rest energies of a particle in   and  .  

APPENDIX II. Relativistic Mass and Energy Dispersion Relation  

Expressions for relativistic mass and energy are derived by considering the differential change in the energy of a particle 

moving under the influence of a force in frames   and   as [10], [11]  

21
( . ) ( ) ,dE F u dt u d m u u dp p dp c dm

m
                  


       (A12a) 

21
( . ) ( ) ,dE F u dt u d mu u dp p dp c dm

m
                (A12b) 

Using the change of variables, the integrals of expressions in Eq. (A12a) and (A12) are written as  

( ) ( )

2 2 2 2
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where 
2 2 2 2  x y zu u u u  with ( (0) 0)u and 

2 2 c u   in the massive inertial frame   and 
2 2 2 2     x y zu u u u  

with (0) 0 u  and 
2 2   c u   in the massive inertial frame  . The result integrals in Eq. (A13) give the relativistic 

masses in the massive inertial frames   and   

2 2 2 2
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m m
m u m u

u c u c


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 
         (A14) 

where 0(0) (0)  m m m  and (0) (0) 0  u u  are rest mass and initial velocities in both frames.  

Since 
2 2u u , the relativistic mass is Lorentz scalar ( ( ) ( )  m u m u ) in both frames.  

The relativistic energy dispersion relations for a particle moving under the influence of a force in the   and   frames 

are found from the integrals of Eqs. (A12a) and (A12b) that are written as  

( ) ( ) ( ) ( )
2 2

(0) (0) (0) (0)

1
p u m u p u m u
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              (A15b) 
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where 0(0) (0) 0  p m u , 0(0) (0) 0 p m u  and ( )   p u m u , and ( ) p u mu , respectively.  

Evaluating the first integrals in Eqs. (A15a) and A15b), then multiply both sides by 
2c and 

2c , and finally taking square 

root of the final results, one finds Einstein energy dispersion relation 

   
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2 2 2 2 4 2 2 2 2 4
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Furthermore, evaluating the second integrals in Eqs (A15a) and (A15b), one can also write  
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   (A17) 

Since by 
2 2 c c , 

2 2 p p , and 
2 2u u , relativistic energy is Lorentz scalar ( ( ) ( )  E u E u , which suggests that 

vector transformation does not affect the relativistic invariance of energy.  

Dividing both sides of Eqs. (A16) and (A17) with 
2c and 

2c ,we and write  
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     (A18b) 

which suggest that the rest mass is linear function of frequency at any  , and (i) 0 0m  at speed of light ( v c ) when 

nonstationary frame moves parallel to ±x axes ( 0,  and / 2  ) of stationary frame and (ii)
2

0 /m c  at v=0 as its 

limiting case at any angle ( 0 2    and 0    ). The first result (i) proves that a relativistic particle has zero mass as 

it moves with the speed of light, frame independent. The energy dispersion relation (A16) becomes equal to 

2 2 2 2 2 2; ,E m c c p E mc c p                    (A19) 

The dynamic torsion balance experiment of Liu et al [24] yields an upper bound 
0

541.2 10 ubm kg  at f=7.41x10-4Hz. 

Equations (A18a) and (A18b) predict 0m = 4.34x10-55kg suggesting that a particle at rest having a small magnitude but never 

zero. Comparison shows a good agreement with measurements [24] and astronomical observations [25]. 

The second result (ii) is compared with the prediction of Heisenberg uncertainty principle in rest frame, which yields an 

upper bound for the rest mass of photon 

0

2 2 2/ ( / 2 ) / / 2ubE t m c T h f c c                (A20) 

 

where 
0

2  ubE m c  is the photon rest energy and 

1/  t T f . Notice that that the prediction of Eqs. (A18a) 

and (A18b) is 2  times higher than that predicted by Eq. 

(A20] Equations (A18) and (A18n) give 
69

0 8.48 10 m  

kg, compared with 
0

691.35 10 ubm kg  due to Eq. (A20) 

at 
18

0 2.3 10 f Hz , where 0 01/ 13.80 T f G year is 

the estimated age of the universe [26]. 
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