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Conservation of Energy and Faraday Tensor in
Transformation of Electromagnetic Fields, Maxwell’s
Equations, and Symmetric Electromagnetic Field
Energy-Momentum Tensor in Theory of Lorentz
Invariant Relativistic Electrodynamics
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Abstract We propose a new way of using law of energy conservation and Faraday tensor for transformation of
electromagnetic fields between inertial frames in a four-dimensional Minkowski spacetime wherein space and time are
linearly inter-related. We prove that the electromagnetic fields are Lorentz invariant for circular boost along the direction of
boost and in perpendicular directions and for a spatial rotation of planes relative to a fixed coordinate axis between two
inertial frames. We further demonstrate that the product of covariant and contravariant Faraday tensors and of their duals lead
to non-zero electromagnetic field Lagrange density in free space. We also derived Lorentz invariant analytical expressions for
Maxwell’s equations, current continuity equation and symmetric electromagnetic field energy-momentum tensor with and
without charge and current source. We further demonstrate that using symmetric electromagnetic field energy-momentum
tensor one can reliably derive expressions for Lorentz invariant of electromagnetic fields between two inertial frames in case
of circular Lorentz boost and spatial (planar) rotation about a fixed coordinate axis. We believe that the proposed theory may
have profound effect on the study of contemporary issues in theory of the relativistic electrodynamics and general relativity.

Keywords Faraday tensor, Conservation of energy, Lorentz invariance, Electromagnetic fields, Maxwell equations,
Electromagnetic field energy-momentum tensor, Gravitational field equation

1. Introduction A p/g°: Gauss law of electrostatics;
Maxwell’s equations are the foundation of electrodynamics, V-B=0: Gauss law of magnetism @)
and they relate electric and magnetic fields to each other [1]. . . OB
Historically, Lorentz used Maxwell’s equations to derive his VxE= T : Faraday’s law;
space-time coordinate transformation rule [2]. Einstein in
1905 used Lorentz coordinate transformation rule to prove - - 1 0E .
the validity of Maxwell’s equations in all inertial frames by VxB=p,Jd+ C_ZE : Ampere-Maxwell equation  (2)
using two postulates [3]; (i) The physics laws are invariant
between two inertial frames. (ii) The speed of light is F =qE +qu x B : Lorentz force 3)

constant and independent of the direction of the motion of
the emitting body in all inertial frames in free space. In
electrodynamics, Maxwell’s equations and Lorentz force
describe how the charge and current sources with densities

Maxwell’s equations lead to several conservation laws
[4], such as current continuity equation, conservation of
electromagnetic energy, and momentum for which the

p and J generate electric and magnetic fields ( E and B ) [1]:
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electric and magnetic fields are Lorentz invariant between
two inertial frames. Proof of Lorentz invariance of
electromagnetic fields are interest over almost a century
[5]-[8]. Einstein used the rates of momentum (dp/dt) and
of energy (dE/dt) to transform electric and magnetic
fields between two inertial frames [4]
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Ey=Ex. Ey=r(E,+SB,). E;=r(E,—BBy) )
a

By =By, By=r(By-(B/0E,) B;=y(B,+(BI0)Ey),

Ex=Ex. Ey=r(Ey-8B;), E,=r(E;+8By), )

By=By, By=y(By+(B/0)E;), B, =7r(B;-(B/O)Ey),

where y =1(1—,82)_1/2 is Lorentz factor with velocity normalized to speed of light (#=v/c).

The electromagnetic field transformation between two inertial frames is also studied by using the electromagnetic field
tensor, which is also called Faraday tensor [4]. In this formalism, one uses covariant and contravariant Faraday tensors

F.s =F(E,B)and F% =F(-E,B), and their duals G, =G(E,B) and G% =G(-E, B). To obtain the components of
F% one uses E—-E in Faﬂ. Likewise, components of dual tensors Gaﬂ and G* are obtained by using

E/ce2B and Be2-E/cin F,; and F*, respectively. For boost along the x-axis, Faraday tensor F, in frame &

is obtained from the classical transformation F,z, = A,F,gA, , explicitly written as

0 Ex/c Ejlc E;lc y B 0 0 0 Ec/c Eylc Ejle\r 3 0 0
-Ey/c 0 -B, By _ -8 y 0 0| -Ex/c O -B, By ||[-8 » 0 0 )
-Ejlc B, 0 -B, 0 0 1 0|-E/c B o -B || 0o o 1 o0f
-E,/c -B, By 0 0 0 0 1)l-E,/c -B, By 0 0 0 01

Matching both sides of Eq. (5) one finds Eq. (4a) for Cartesian components of electric and magnetic fields in the inertial
frame I'. Likewise, inverse transformation F,,, =A,F,zA, gives the Cartesian components of covariant tensor F,; in

af.z a,
frame X, which then yields Eq. (4b).
The transformed field equations (4a) and (4b) state that: (i) the electric (magnetic) field are Lorentz invariant along the
x-boost direction but not in the y and z directions. (ii) The scalar product of electric and magnetic fields is Lorentz invariant

(E'-B'=E-B) and (iii) the vector product of electric and magnetic fields is not Lorentz invariant (E'xB’=ExB),

contradicting Lorentz transformation of vector quantity which must be invariant between two frames ¥’ and X .
In the classical Faraday tensor transformation, we observe that (i) Trace of the products of Faraday tensors and their duals

is Tr(Fys F“ﬁ) =B2-E?/c? :Tr(G,X,;G“ﬁ), which has no physical meaning since it yields zero electromagnetic field

Lagrange density ( Loy =—Fas F 44, =0) in free space, which is not realistic because electromagnetic waves transfer
energy and momentum [4]. (ii) Furthermore, the trace of covariant and contravariant Faraday tensor and its dual is equal to

Tr(FaﬁG“ﬁ) =Tr(F“ G.s) =4E-B/c, which suggests that Faraday tensor and its dual are orthogonal when scalar product

of electric and magnetic fields is zero.

Following the work of Mignani and Recami [9], we recently proposed a 6-dimensional spacetime (3+3) frame [10,11] in
which the transformed relativistic velocity is combined with energy conservation to successfully demonstrate the Lorentz
invariance of electric and magnetic fields and Maxwell’s equations between two frames under rotation. In this work, we
extend our recent study [10], [11] to study Lorentz invariance of relativistic quantities (e.g.position, velocity, momentum,
force, electromagnetic fields, Poynting vector, Maxwell’s equations, and energy-momentum tensor in a four-dimensional
spacetime in which both space and time coordinates are linearly inter-related. The outline of our presentation is as follows: In
sections 2 and 3 we derive the metric equation and transform 4-velocity, 4-momentum and 4-force vector components
between two frames. In sections 4 and 5 we use 4-vector velocity with the law of conservation of energy to prove the
invariance of electric and magnetic fields under spatial rotation. In sections 6, 7, 8, and 9, we then combine the law of
conservation of energy with Faraday tensor and its dual to study Lorentz invariance of electromagnetic fields, Maxwell
equations, current continuity equation, and electromagnetic field energy-momentum tensor between two reference frames
under a boost and spatial rotation. In section 10, we discuss the details and applications of the proposed theory in invariant
relativistic electrodynamics and gravitational field theory.
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2. Generalized Four-Dimensional Spacetime

We introduce a generalized four-dimensional spacetime wherein two “massive inertial frames” X' :i'(x', y',z',ic't’)
and Z=ZX(x,Y,z,ict), which coincide with a stationary inertial frame =y = (X, Y.2p.tg) attime t'=t=t, =0, and
move relative to each other with an arbitrary velocity V = (vx,vy,vz). The space and time coordinates are inter-related:
X'=x'(x1), y=y(t), z'=7'(zt), t'=t'(txyz)in frame ¥ and x=x(X,t"), y=y(y.t), z=z(z,t), and
t=t(t',x,y’,z") in frame X . We require that Einstein’s two postulates are also valid in generalized 4-dimensional

spacetime. We consider an event sending a light signal from the origin and second event of arrival at some points
P(x,y,z,ict) and P'(x,y’,z’,ic't")inframes £ and X'.The square of the displacements are described by

ds'”? = dx2 +dy'? +dz”® —c’%dt'?, (6a)
ds? = dx? +dy? +dz? —c2dt?, (6b)
where the differential space-time displacements are defined as

i
d' = dx+icfdt, dy'=dy+icBydt  dZ’ =dz+icB,dt, dt’ =dt+—(pdx+p,dy+B,0z), (72)
C

dx = dx’ +ic'Bdt’, dy=dy’+ic'pydt’, dz=dz'+ic'B dt’, dt= dt’+il(ﬂxdx’+ﬂydy’+ ﬂzdz') (7b)
c

where fy = Bcosgsingd, B, = psingsing, B, = fcosé in spherical coordinates with g=v/c.
A pair of events with zero (null) separation connected by a signal at constant speed is described by

ds® = ;/f”,ds’2 = ;/f,,,dx"’dx"’ = yz‘”dx;,dx{,, 8
where y,,, =y*" is generalized Minkowski metric tensor. Equation (8) can be written as
dx? +dy? +dz% —c?dt? = 7/2”, (dx'2 +dy’? +dz'?) —;/f”,c’zdt’2

, 2i €)
= ra A= BRI + 5 (L B3)dy? + 2, (1 B2)d2 — ¢y (1 %) dt 2%

where &y = (yfyvxvyxy+ ;/)Z,ZvyvZ yz+ ;/fzvxvZ xz) and c'=c . Matching both sides of Eq. (9) gives

yee 0 0 0) (@B 0 0 0
om0y 00 0 @-p5) 2 0 0

Twr =7 =0 0 0| 2\-1/2 ’ (10)
Va 0 0 @A) 0

0 0 0 0 0 0 (1—,82)_1/2

as generalized Lorentz scaling factor, with ﬁz = ,Bf +,B§ +ﬂ22 =v?/c? and. Yxy =Vyz =7x2 =0
Figure 1 shows that y,,, 7,y areanisotropicand y is uniform atany azimuthal angle ¢ .
The differential space and time coordinate displacements are then written in matrix form

dt’ Tt 0 0 0 dt
dx’ 0 7 0 0 | dx
= X T, (11a)
dy 0 0 7y O |dy
dz' 0 0 0 y,)\dZ
dt Tt 0 0 0 dt’
dx 0 7 0 0 ||dx
=lo o - (11b)
dy| [0 0 7y O dy

z 0 0 0 p,)dT
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Cartesian components of Lorentz factor as a function of azimuthal angle ¢ in spherical coordinates for polar angle & =7/2 and

Figure 1.
normalized speed S =0.8 (leftyand £ =0.9 (right)

where dt =dt—i(Bcdx+ B dy+B,dz)/c
dt’ =dt'—i(f,dx' + Bydy’+ g,dz') ¢, dx' =dx +ic'Bdt’

Equations (11a) and (11b) is rewritten in a familiar matrix form as
dt’ Vi ireBx By ireBy [ dt dt Ve o B —ineBy —iraBy [ dt
dx" | | =iy By Y 0 0 d | x| irgB 0 0 dx’
dy'| | 0 iy B 7y o |[dy| |dy| | o ir,B 7y 0 dy’ |
dz' 0 0 -y, B vm z dz 0 0 iy, /3, - dz’

The space and time differential displacement equations (7a) and (7b) are then replaced with
dX' =y (dx—icBydt),  dy'=yy, (dy—icpydt), dz’'=y,,(dz—icp,dt),

dt' = yedt+ipy ( Bedx+ Bydy + B,dz) I c,
dX = yy (dX' —icBydt’),  dy =y, (dy'—icpydt), dz=y,(dz'-icBdt’),

dt = it iy ( Bedx+ By dy + B,dz) I c,

Using Egs. (13a) and (13b) one then writes Cartesian components of velocity in frames ' and X
,_dx (o ! 7) (Ux = V) _dx o ! 7 ) (Uy +Vy)
©odt (1 (ugvy +uyvy +u,2, )/ ) ot (l+(uxvx+u +u,2, )/ ¢ )
ug/:((jj_)t/:: (7yy/7tt)( y) ’ y=d—y= (7yy/7tt)( )
(l (uxVx"'uyVy"'u ZZ)/CZ) dt (1+( xVx TUyVy +U;2Z ) )

:E: (7zzl7tt)(u£+vz)
dt (1+(uXvX +UyVy +uzzz)/02)

dZ (722/7tt)(uz _Vz)
dt’ (1—(uxvx+uyvy+uzzz)/cz),

Combining Egs. (13a) and (13b) reduces the four unknowns in Egs. (14a), (14b) and (14c) to one

’

uz; =

o’ _dx dx; eV dt . ax  7xix v 7xx XZ dx;
X Ty D DN e T N e
dx ! ! Z ’
W:7xxux+7xwi dt,:7yyuy+7’yyvy1 E:hzuz"‘?’zzvz'

73

dx =dx+icB,dt , dy =dy+ics,dt , dZ=dz+icg,dt , in frame X and
dy =dy’+ic'g,dt’ , and dz’'=dz'+ic'g,dt’ in frame X' .

(12)

(13a)

(13b)

(14a)

(14b)

(14c)

(15a)

(15b)
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U

The Cartesian components of the velocity vector G’ in frame X’ are then written as

2 2
(7xx/7tt)_7xx(1_ﬁx) yXX(VX/CZ)
- v, +
2 2 X 2 2
1-7xx (1_ﬂx) 1- 7 (1_,Bx

uj = )[yyyvy(u;, +vy)+yzzvz(u; +V, )] (16a)

Uy = y

_(7yy/m)—y§y(l—ﬁ§)v . Yy (vy 1¢?)
1- 7y (155

[7/xxvx (U;( +Vx)+7/zzvz (Ué +V; )]! (16b)
-7y (1-57)

(722/7tt)_7z22 (1—ﬁ22) 7zz(Vz/02) ' |
_ 17z (1_ﬁzz) " +m[wx UV )+ 7y Yy (“y +Vy )J (16¢)

uy =
Since yy <ty Yy <. and y,, <y inFig. 1, Eqgs. (16a), (16b), and 16c¢) reduce to

Uy =—Vy =-VCosgsing, uy =-vy =-vsingsind, u; =-v, =-vcoso, (17a)

Uy =Vy =VCosgsing, uy =vy =vsingsing, u, =v, =vcosd, (17b)

which are identical to those in the 6-dimensional spacetime theory [10,11] and their use in finding relativistic mass, energy
and Doppler effects is discussed at the end of the manuscript as appendix.

3. Vector transformation and Four Vectors

In this section we lay down the groundwork to study the invariance of relativistic vector quantities between two inertial
frames. We momentarily set aside the relativity and focus on the three-dimensional vector transformation [12]. Since
coordinate systems are used for convenience; we are free to use the following Figure 2 to define stationary 3-dimensional

vectors A’ and A inframes ¥’ and X, both of which are initially coincide with a stationary universal inertial frame X,
at t'=t=t =0.

My I
Yo A(4)

(® (b)

Figure 2. The schematic diagrams of two stationary vectors A’ and A interms of unit vectors in a counterclockwise rotation in frame > through
angle @ into frame 3 plane (a) and in clockwise rotation in frame by through angle @ in clockwise direction into frame 5 (byfor 0<O<x/2

The stationary vectors A’ and A have same length from origin of two frames ¥’ and I, written as
A= AT+ AT+ AK = Ad+A J+AK=A, (18)

which means that an ordinary vector transformation is identical as if a rotation causes no change of the magnitude of the
vector quantity with respect to origin of any massive inertial frame. The unit vectors (i’, J', IZ’) and (1, ], 12) in the massive
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inertial frames X' and X are defined by using the classical vector transformation [12] and are related to each other
according to following equations

I cos@® sind O)[1

J'|=|-sin@ coso@ O} ]|, (19a)
K’ 0 0 1)k

1) (cos@ —sing O)(T

jl=|sin@ cos® O] j| (19b)
K 0 0 1)k

Consequently, Cartesian components of A’ and A are then written in linear matrix form as [11]

A, cosd singd 0 A,

Ay |=|—sin@ cos® O A |, (20a)
A 0 0 1) A

A, cosd -—singd 0\ A,

Ay |=|sin@ cos® 0| A (20b)
A, 0 0 1 A

It is noted that three-dimensional rotations can be around any of the three coordinate axes. The 4-dimensional analogue of
3-vector transformation equations given by equations (20a) and (20b) for rotation in counterclockwise and clockwise

directions about the z-axis are written as

Ay
A
Ay
A

1 0 0
0 cos@ sind
0 -sin@ cosd
0 0 0
1 0 0
0 cosfd -sing
0 sing cosé
0 o0 0

: (21a)

R O O O
N>'~<>><>3>

R

0
0 21b
X (210)

P

1

P

Here it is noted that, just like 3-dimensional rotations, 4-dimensional rotations can also be around any of 3-coordinate axes.
The scalar product of vector A’ ( A) with itself leadsto A’-A’=A-A, or | A'|5 A, which states that the magnitude of a

vector is Lorentz scalar between frames ¥’ and .
The 4-vector velocities A’=U" = (uf,uy,uy,u;) and A=U = (U, Uy, Uy,U,) are then defined as

'
uX

1 0 0
0 cos@ sind
0 -sin@ cosé
0 0 0
1 0 0
0 cos@ -sing
0 singd cosd
0 o0 0

0

0 22
0 ! ( a)
1

_ O O O

uy
14
Uy
’
uZ

: (22b)

where u{ =c"and u; =c, The scalar product of the 4-velocity vector U’(U) with itself in frame Z'(Z) is equal to the scalar

product of UU") inframe Z(X): U'-U’=U-U , which allows us to write |G’ | ¢’ ||

speed of light is Lorentz invariant (¢’ =c¢ ).

2 _¢? since |d’ |2:|U|2, the
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The scalar product of momentum 4-vectors P’ = (pt, Py, Py, ;) and P= (Pt, Px, Py, p;) with themselves give the same

length (| P’ |<| P |) from the origins of two frames. The momentum 4-vector transformation is then identified as a rotation if it
causes no change in their magnitudes.

4. Conservation of Energy Law and Invariance of Electromagnetic Fields

We will extend our recently proposed 6-dimensional space-time theory [10,11] to write the following linear matrix
equations to describe the 4-force vectors F' and F in terms of each other in frames £’ and =

Fo 1 0 0 0\ Fk
Fe| |0 cos® sing 0| Fx
Fy| |0 —sing cosé O Fy | (232)
FF)lo o o 1)lF
Fo 1 0 0 0\ Fg
Fe| [0 cos@ —sing 0| Fx
Fy| |0 sind cos¢ OfFy| (23b)
F) o o 0 1R

where Fg=d(m.c’)/dt'=0 and Fy=d(mc)/dt=0. (F,Fy,F) and (F,,Fy,F,)are the Cartesian components of

the 3-electromagnetic force vectors (Lorentz force) in the massive inertial frames X' and X which, according to
3-dimensional vector transformation equations (21a) and (21b), are

Fr=Fi'+F)j +FK = (FX cos 0+ Fy sin 9)?’+(—FX sing+F, cos&) j+Fk (24a)

F = Ryl +Fy j+ F,k = (F{ cos0— Fy sin0)i +(Fysin 0+ Fy cos0) j+ Frk (24b)

Since Fy =Ry =0 in Egs. (23a) and (23b), unlike the 4-velocity and 4-momentums, force vector is 3-dimensional as
defined by Egs. (24a) and (24b) in terms of unit vectors (1", j',k’) and (i, j,k) inframes ¥’ and ¥ . The scalar product of

F' (F) withitself leadsto F'-F'=F-F,or |F'|< F|. The rates at which work is done on a particle by Lorentz force in

frames > and Y’ are

w Fi= Feuy + Fyuy +Fuy, (259)
dE, =1 = ot It 1ot
o F'U" = Fuy + Fyuy + Fug, (25b)

where , , an , ) are Cartesian components of Lorentz torce In trames i' an i

here (Fy,Fy.F;) and (Fy,Fy,F,) are Cartesi ts of Lorentz force in f d
Fe=q(Ex+uyBy —uBy),  Fy=q(Ey+uiBy—uiBy),  F/ =q(Ej; +uyBy —uyBy), (26a)
FX:q(EX+uyBZ—uZBy), Fy:q(Ey+uZBX—uXBZ), FZ:q(EZ+uXBy—uyBX), (26b)

where u’j (ug)and uj (uy)and are Cartesian components of u’and u in Eqgs. (22a) and (22b).
Considering the massive inertial frames X' and X form a closed system in the stationary spacetime frame Yy, the law
of conservation of power (or energy) between them is written as
dE'_dE
dt’ dt
Using the transformation matrix equations (22a) and (22b) for G’and G, Eq. (27) is written as

Feuy + F);u;, +Fu; = Fuy + Fyuy +Fu,, (27)

Feuy + Fyuy + Fu; = Foc+(FX cos@+ Fy sin H)U;( +(—FX sind+F, cose)ug, +F,uy, (28a)
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Fyuy + Fyuy + Fou, = Fo'c’+(F)g cos¢—Fy sin H)ux +(F){ sing+Fy cos@)uy +Fu,, (28b)

where Fy =Fy =0. Using Egs. (26a) and (26b) in Eq. (28a), we can write following equations

Ex +uyB; —u;By :(EX +UyB, —uZBy)c059+(Ey +u,B, —uXBZ)sin o, (29a)
Ej +us By —uyB} =—(Ex +uyB, —u,B, )sin 0+(E, +u,B, —u,B, )coso, (29b)
E; +uyBy —uyBy = E, +u,B, —uyB,, (29¢)

Using Eq. (22a) for uj,uy,u; in Egs. (29a), (29b), and (29c), we write following matrix equations

Eyx cos@ singd 0} Ey,

Ey [=|-sin@ cosd O| E, | (30a)

E, 0 0 1)E

By cosd singd 0} By

By |=| —sin@ cos¢ 0| By |, (30b)

B; 0 0 1)iB,

Using Eq. (22b) for uy,uy,u, in Egs. (29a), (29b), and (29c) for inverse transformation, we write

Ey cosd -—sin@ 0)( Ey

Ey [=|sin@ cos¢ Of Ey | (30c)
) 0 0 1 E,

By cosd —sin@ 0} By

By |=|sing cos¢ O] By |, (30d)
B, 0 0 1){ B,

which state that electric (or magnetic) field in frame X'(Z) is composed of electric (or magnetic) field in frame Z(Z') for
spatial rotation of (X, y) plane about z-axis.

The scalar and vector products of electric and magnetic fields is essential in proving Lorentz invariance of electromagnetic
energy, Poynting vector, current continuity equation, and densities of electromagnetic field energy and momentum. Using
Egs. (30a) -(30d) one writes

E'-B'=E}B} +E}B} +E}B) = (E, cos0+E, sin0)(B, cos 6+ By sin0)
S (31a)
+(~Exsin@+E, cos0)(-Bysin0+ By cosd)+(E,B, ) = E,B, +EyBy +E,B, =E -,

E-B=E,By +EyB, +E,B, =(E} cosd—Ej sin)(Bj cos0— By sin9)
Lo (31b)
+(Exsin@+Ey cosd)(Bysin0+ By cosd)+(E;B} ) = E;B} + EyB} +E}B; =E'-B,

which suggests that E'-E'=E-E and B'-B'=B-B,sothat E'=E and B’=B (Lorentz scalar invariants). The vector
products of E’ and B’ inframe ¥’ andof Eand B framesx'and X are
E'xB'=(EyBj; —ByE} )"+ (BYE} - E4By} ) J'+(ExBy — BLE} )k’
~((EyB, ~E.By )cos0 +(E;B, ~E,B, )sin )i’ (32a)

2

+((E;By—EyB; )cos 0+ (E;B, ~EyB, )sin0) | +(ExBy —EyBy )k'= ExE,
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ExB=(EyB, —E,By )i +(E,Bx —ExB,) j+(ExBy —EyBy )k

((EyB; ~ E;By )cos 0+ (ExB; — E;BY )sin )i (32b)
+((E4By ~ E4B} )cos0 - (E;By — B} )sin ) j +(EyBy —EyBy )k =E'x B,

which states that E’'xB’'=Ex B is Lorentz invariant vector between the frames 3’ and X .

5. Conservation of Energy and Faraday Tensor in Field Transformation

We will extend 3-dimensional Lorentz force F =Q,(E+iixB) to 4-dimensions as covariant and contravariant Lorentz
tensors F, =QeFaﬂUﬁ and F* =Q,F“’U, , respectively. Here Q. is the static electric charge, Faﬂ(F“ﬁ) is the
covariant contravariant antisymmetric second rank tensor, also known as Faraday tensor. U 3 =Tr(ug, Uy, —Uy,-U,) and
u’ =Tr(u;, Uy, Uy,u;) are covariant and contravariant 4-vector velocities. Considering the frames X' and ¥ form a
closed system in the stationary frame 2y, the law of conservation of power (energy) equation (27) can be written as

dE' dE

W B E FaU = FU “ = Qe Fo'zﬂU Py = Qe Faﬂu fue ' (33)

where U, =Uj and U“ =U” . Using U'® =R(OU% and UZ =R(OU'? in Eq. (33) we write the following rule to
transform F,z in £ into ¥’ for a counter-clockwise rotation about z-axis.
Fap = R(O)F,5R(0), (34)

where R(0) = R_1(¢9) is the transpose (inverse) of rotation matrix R(6) .
In tensor analysis, the covariant (contravariant) tensor Faﬂ (F"‘ﬁ ) is defined as vector product of any two vectors &and

b is another vector ¢ =axb =(aibj —ajb )ﬁk and considered as second rank antisymmetric tensor [4], with i, j =K.

Covariant and contravariant 4-Lorentz forces as 4-tensors are defined as F, =QgF,5U P and F% = QeF“ﬂU p in frame

>, written as
o Foo For Foz Fos )W
X Fo F1 R Fa || U
-Q, , (35a)
y Foo Fo1 Foo Fog || Yy
F, Fso Fa1 Fs2 Fa3)lu,
= 0 F 00 F 01 = 01 = 03 Ut
FX FlO Fll F12 F13 _uX
=Q 20 21 2 23 || -u, |’ (35b)
FY F F~ F* F= || Yy
£ O g3 g2 38 (-,

where F,5 =04 As —0p As is second rank antisymmetric covariant field tensor, also called Faraday tensors, with A, (A)
being any arbitrary 4-vector in frames ¥ and X'. Faﬂ are defined as

Foo =F1=Fp =F3=0,Fo =—Fn, Foo=-Fo2, Fs0=-Fo3, For =—F2, Fs1=-Fi3, F3p =—Fp3.

Similarly, one can define the contravariant Faraday tensor FP =% AP —oP p*

Dual Faraday tensor transformation between frames = and X' is defined like Faraday tensor transformation equation
(33). To do that we first introduce a “fictitious” magnetic charge Q,, [13] and define “fictitious” dual Lorentz force

Fr =Qn(cB—UxE/c) by using electromagnetic duality E/cz=2B and Bz -E/cin conventional Lorentz force
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Ife = Qe(E +Ux I§) . Here u is the velocity of moving electrical charge. We then define 4- dual covariant and contravariant

Lorentz tensors in frame X as F, =QmGaﬁUﬂ, F* =Qu,G%”U,. Using U'* =R(OU“ and us = R(OU '# we can

write the following rule to transform G5 in ¥ into ' for a counter-clockwise rotation about z-axis.

Giyp = R(O)GugR(O)

(36)

where R() = R_l(e) is the transpose (inverse) of rotation matrix R(&) . Covariant and contravariant fictitious 4-vector

dual Lorentz forces F, and F“ inframe X are then written as

Fo Goo Gor Gpz2 Gosz | Ut
g | G0 Cu Gz Cas |t
Fy | “™[Gx Go1 Gy Goz|lUy |
F, Ggp Gs1 Gz Gg3)ly,
; G0 % % 6%y,
F, G0 gt g2 B | -,
Fy =Cm G0 g2 g2 B | -y |
F, G g3l g3 g8 |\Y;

(373)

(37b)

where G,z =04 As —0p A, is antisymmetric second rank covariant field tensor. Similarly, one can define contravariant

dual tensor G% =% AP — P A% . Components of the covariant (contravariant) dual tensors G,z (G “# are then obtained

by using E/c2B and B2 -E/c in Fz(F?).

To eliminate the unnoticed error made in the classical use of Faraday tensor in field transformation [4] we use the
generalized 4-dimensional Minkowski spacetime wherein 4-vector space coordinates are X, = X, (ict,—x,—y,—z) and

X, =X, (ic't,—x',—y',—=z') inframes ¥ and ¥'.

Using the covariant 4-vector potentials A, ={V /c,~A/c}, A, ={V'/c',~A'/c'} and multiplying E and E’ with

(i/c) and (i/c’) the electric and magnetic fields in frames ¥ and X' are written as

T Iy 1A g vea ‘e togy 1A g _yui,
c c c ot c’ c’ c ot’

We introduce covariant Faraday tensor Faﬂ with the following Cartesian components in frame =

E,  ifoV oA Lo oA, A
i =L IX R =Ry, B =(VxA) =22 Y _Fp = —Fy,
c C(aX &j 01 10 X ( )X P oz 32 23
E, i oA L oA
.y i{ oV y aAX y
iYL= Y o Ry = —Fyp, B, =(VxA) =2X_"Y _F =R,
c c(ay at] 02 =720 y=(V2A), =5 =P =R
E, ifovV oA Lo A, oA
i—2 = | L | R = —Fap, B, =(VxA) =—L-ZX_F, =—Fp,
c c(az atj 03— 730 :=(V<A), x oy AR

Covariant and contravariant Faraday tensors F,s and F% | and their duals Gus and G* inframe T are

0 iE,/c iE,/c iE,/c

y
. —iE,/c 0 -B, By
| -iEylc B, o -B, |

-iE,/c -B, By 0

(38)

(39a)

(39b)

(39¢c)

(40a)
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0 —-iE,/c —iE,/c -iE,/c
cap _ iE,/c 0 -B, By | (o)
iEy/c B, 0 -By
iE,/c -By By 0
0 iBy iBy iB,
—iBy 0 E,/c -Eylc
Gup = ,
“ B, -E,/lc 0  Eglc (40c)
-iB, Ey,/c -Ey/c 0
0 -iBy -iBy -iB,
ce - iBy 0 E,/c -Eylc | (400)
iBy -E,/c 0 E,/c
iB, Ey/c -Elc 0

where the components of the dual Faraday tensors Gaﬂ and G* are constructed by using the so called the

electromagnetic duality E/cz=2B and Bz -E/c in Faraday tensors F,; and F% . Using equations (40a), (40b),

(40c), and (40d) for the covariant and contravariant Faraday tensors ( F,s and Faﬂ)and theirduals(Gaﬁ and G%), one

can write the following matrix expressions for the products FaﬁF“ﬁ and of their duals GaﬂG“ﬂ in frame X

i E? b s L s b s
02 Cluo X C/uo y C,Llo Z
i i 5 o o) [i? i
—= 1S, C—ZEX—By—BZ C—ZEXEy+BXBy C—ZEXEZ+BXBZ
aff _
L i2 2, L, ) [ ’ 4
— Sy | SEE+BB | | SEy-BI-BY| | SE/E +ByB;
C C C
[ i i i 5 .
K4S C—ZEZEX+BZBX — E,E, +B,B, C—ZEZ—BX—By
i’B° ZuS, lﬂoSy Lus,
C c
i _ 1 1 1 . 1 .
—ouSy (|ZBf —255——2522] [—ZEXEyHZBXByj (—ZEXEZHZBXBZJ
C C C C
GG = (42)

c

1 o
__ZEZ_

i 1 P 1 2 2.2 1
—— 44,5, _zEzEx‘“ B, By _ZEzEy‘“ B,B, i"B, __2EX_
c c c c c

1
C2 c

|
)

1 .
Ef] (—2 E,E, +i°B,B,

1

&

where S, =(EyB, —E,By)/ u,,Sy =(E,By —ExB;)/ 1., and S, = (E,By —EBy)/ u, are the x, y, and z components of

the Poynting vector. Traces of FaﬂF“ﬂ and of GaﬁG“ﬂ are nonzero:

Tr(FupF ) = ~4ptUem # 0 (43a)

Tr(Gaﬁ'Gaﬁ) =—41,Ugm #0, (43b)

which is physically realistic because the electromagnetic waves transfer energy and momentum in free space. Traces of
product of covariant and contravariant Faraday tensors with their duals are
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Tr(FaﬂGaﬁ)zTr(F“ﬂG“ﬁ)zg(ﬁ-é), (44a)
Tr(FaﬂG“ﬂ)zTr(F“ﬁGaﬂ)=%2(Eol§)+%(ﬁol§)=0, (44b)

Equation (44a) suggests that Faﬁ(F“ﬂ) and Gaﬂ(G“ﬂ) are orthogonal only when E-B is zero.

Equation. (44b) suggests that Faﬁ(F“ﬁ) and G¥ (G,p) are always orthogonal in frames > and ¥'.

6. Faraday Tensor in Electromagnetic Field Transformation

The incremental displacement of a coordinate system relative to its initial position is known to be composed of a translation
as well as a rotation. While the components of 4-vector quantities transform according to Eq. (21a) and (21b), the spatial
translation has no effect on them. One can use Faraday tensors and their duals determine the components of electric and
magnetic fields in frames £ and I’ by using:

(i) Lorentz boost along the direction of motion, which is appropriate transformation for relative motion of two observers,

and

(if) Spatial rotation, which relates spacetime coordinates of two observers in two frames which are subject to planar

rotation with respect to each other about a fixed axis.

6.1. Faraday Tensor and Field Transformation with Lorentz Boost

We use Fpp, =L,F,L, Fupy=LyFuL,, and Fipy =LyF 4L, transformation rules to transform electromagnetic

fields between frames = and X' for Lorentz boost along X, y, and z-axes, which are written as
y iy 0 0 y 0 iy 0 y 0 0 iy
-y ¥y 0 0 0 1 0 0 0 1.0 0
L, = oo by= v k= J (45)
0 0 10 -8 0 0 0 01 0
0 0 01 0 0 0 1 -8 0 y

where y=cosh&, yp=sinhé with 0<p<1 and 0<y <. Here &= tanh_l(ﬂ) is called the boost parameter [4]. For a
Lorentz boost along x-axis, the transformation F,g, =L,F,4L, allows us to obtain the Cartesian components of Faraday

tensor in frame I’ in terms of those in frame =

0 Ex/c Eylc Ejlc y iy 0 0 0 Ex/c Eylc E,lc y —iy8 0 0
~Ex/c 0 By By | |-iyp y 0 0| Ex/c O -B, By [liyg » 00 46
~Ej/c B, 0o -B,| | 0 0 1O0||l-Ej/c B 0 -B,|lo o0 10 (46)
Ej/c -B, B, 0 0 0 0 1)|-g/c B, B 0 O 0 01

which yields the covariant Faraday tensor in frame X’ in terms of those in frame X . Transformation Fop,z = L,F,sL, and

Fap,z = L,F.sL, yield electric and magnetic field components in frames £ and X'

E.) (1 0 0 E,

Ey [=|0 1 0f (E +pB,)| (47a)
e;) (00 1y(e, s,

B,) (1L 0O By

' 2

B, [=|0 1 y(By—(v/c )EZ) (47b)
B! 00

z

y(BZ+(vlc2)Ey)
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,) (1 00 Ey

y =10 1 0 y(E)+vBy) |, (47¢)
E,) \0 0 L)ly(E;-v8y)

B,) (1 00 By

By |=|0 1 o (B +(IcHE) (47d)
B,) \0 01 r(8; -/ cH)E))

which are the same as Egs. (4a) and (4b) and yield invariant scalar product (E’- B'=E- I§) and non-invariant vector product
(E'x B’ E x B) between two frames under Lorentz transformation.

In the next step, we introduce a circular boost, rather than hyperbolic one defined in Eq. (45), for motion along x, y, and z-
axesin frame £, Fjz,(0) = Ly (O)F, 4L (0) to find F,,(F*“’), which are

cosd singd 0 O cosd 0 sing O cosd 0 0 sin@
-sind cos® 0 O 0 1 0 0 0 10 0
L 9 = l L 0 = . [} L 0 = y 4
2(9) 0 0 10 V() —sin@ 0 cos@ O x(©) 0 01 o0 (48)
0 0 01 0 0 0 1 -sin@ 0 cos @

For a circular boost along x-axis, the components of covariant tensor F,, in frame T’ are obtained by using the
transformation rule Fz,(6) = L, (0)F,,4L, (€) , which is explicitly written as

0 i /c i/ iEy/C
e 0 B, By |
-Ey/C B, 0 -Bj
-iEj/c B, B, 0

. _ _ (49)
. 0 |EX/c iE, /c |EZ/c )

cos@ sind 0 0 y cos® —sind 0 0
—sing coso 0 0f 1Ex/c 0O B, By |lsine cos# 0 0

0 0 10 —iEy/C BZ 0 —BX 0 0 10

0 0 01 ; 0 0 01

—IEZ/C —By BX 0

E,) (1 00 E,
Ey[=|0 1 0| Ejcos0—-B,sind |, (50a)
E,;) \0 1){ E, cos6+Bysing
B,) (1 0 0 B,
By [=|0 1 0| Bycos¢—E,sin@ |, (50b)
B,) \0 0 1){B,cos6+E,sing

with inverse transformation rule Fz ,(6) = L, (O)F,4L,(0) onewrites F,, inframe X and obtain

Ex) (1 00 =
Ey[=|0 1 0| Ejcos@+B;sind |, (50c)
E,) \0 0 1JlE;cos6-Bysing
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yCos@+E;sing |, (50d)

00 B,
1 0| B
0 1){B;coso—Eysing

Bx
By |=
B,

o O

which yield Lorentz invariant scalar product of electric and magnetic fields (E’-B’ = E - B) between frames ¥ and ¥'.The
vector products of electric and magnetic in frames >~ and X' fields are

E'x B’ :[(EyBZ ~E,B, )cos” 0+ (E,B, —E,B, )sin 0+ (E] +EZ +B) + B} sin Hcosle'

(51a)
+[(E,By —E,B, )cos0+(B,B, —E(E, )sin6 | |’ +[ (ExB, —E,B, )cos0+(B,B, —E,E, )sind |k,
Exé:[(E’yB;—E;B;)coszm(E;B’y—E’yB;)sinzm(—Ef—E;2+B;2+B;2)sin9cow}f’ -
+[ (E; By —E;B; )cos 0+ (E4E} B}y, )sin@ | |’ +[ (E;By — E; By )cos 0+ (E4E; —B;B; )sin 0 |k, 1)

When 6=0" unit vectors are equivalent in both frames (i'=1, j'=], and k'=k ). Egs. (51a) and (51b) yield

E'xB'=ExB and ExB=E'xB’, contrary to the hyperbolic boosts in Eq. (45).

6.2. Faraday Tensor and Field Transformation with Spatial Rotations

It is possible to combine boosts with rotations to relate the electromagnetic fields to each other between the frames = and
¥, by using counterclockwise rotations of (x, y), (z, X), and (y, z) planes about z, y and x-axes, which are given by the
following expressions

10 0 0 1 0 0 0 1 0 0 0
R.(0) = 01 0 0 R.(0) = 0 cos¢ 0 sing R_(6) = 0 cos@ sing 0 (52)
X 0 0 cosd sing| Y o 0 1 o | *? 0 -sin@ coséd O

0 0 -sin@d cosd 0 -siné 0 cos@ 0 0 0 1

Replacing @ with —@ one writes expressions for the clockwise rotation about x, y, and z-axes. As an example, the
transformation F&ﬁ,z =R, (19)FaﬁliZ (0) allows us to determine the components of covariant Faraday tensor F,; in frame

' in terms of the components of covariant F,, inframe =

0 iEy /¢’ iE&/ /¢ iE; /¢!
—Ey /¢ 0 -B; B;, B
—iEg,/c’ B; 0 -B}
—iE; /¢’ —B;, By 0 -
0 iE,/c iE, /c IiE,/c
1 0 0 0 X y z 1 0 0
0 cos@ sing of Ex/c 0 B, By 110 cos6# -sing 0
0 -sin@ cos@ O —iEy/c BZ 0 —BX 0 sin@ <cos@ O
0 0 0 1 ; 0 0 0 1
-iE; /e -By By 0

with inverse transformation F,5, =R, (9)F,;R,(6) one writes similar equation for F,, inframe X .Matching both sides
of Eq. (53) and of its inverse, one writes following matrix equations

Eyx cosgé singd 0)[ E,
v |=|-sin@ cosé 0O Ey |\ (54a)
E; 0 0 1 E,

<
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By cosd singd 0} By

By |=| —sin@ cos¢ 0| By |, (54b)

B, 0 0 1)(B,

Ey cosd —sin@ 0)( Ey

y |=|sin@ coso 0| Ey |, (54c)
0 0 1)\ E!

By cos@ —sing 0)[ By
sin@ cosé
B, 0 0 1)\ B,

o
Il
o
us)
<=

(54d)

which are identical to Egs. (30a), (30b) and (30c), and (30d) and yield invariant scalar and vector products of electric and
magnetic fields in frames =’ and X,

E.6=E B, 2

m

.B=E'-B, (55a)
E'xB' =ExB, = ExB=E'xB, (55b)

which are both invariants between frames ¥’ and X .

7. Faraday Tensor and Invariance of Maxwell’s Equations

Using J, =(icp,~J) in 0“Fop— 1,9 =0 and 0“G,p =0 with p=0,1,2,3 for a(=0,1,2,3) we write

Fpp — o == (aaEx +% aaEz j—%(,uoczp)zo - ?-Ezf, (56a)
alFlﬂ—yOh:—%aa(iEcxt)wo(?xH”)X—yOJX=o

O°Fyp — 11,3 (':;(it) M,Wxﬁ)y_yeJy: = 6xﬁ=j+gof;t—é, (56b)
O*Fap — 1. dg = laﬁ(it) (VxH), -3, =0

aOGoﬂ=iy{6;(X+agyy+aaHZZj=o = V.H=0, (57a)
6lGlﬁ I,uoaa:i[()+(1:(§x|§))(:0

azew=iyo(j('?c‘t’)+%(ﬁxé)y=o N WE:-;IO%, (57b)
PGsp = ﬂ°66(|::t) i(ﬁ E),=0

Subtracting Faraday’s law of induction from Ampere-Maxwell’s equation and applying the divergence to the resultant
equation we can write the following equation

V-Vx(H-E)=V-J+_(&V-E+uV-H), (58)

Since V-Vx(H-E)=0, V-E=p,/¢, and V-H =0, equation (58) results in the conventional current continuity
equation written as
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V.54 0, (59)
ot
where J and p are the total current and charge densities, respectively. In the following subsections we will prove that
inhomogeneous and homogeneous Maxwell equations (56) and (57) are Lorentz invariant between two massive inertial
frames. Recall the following expressions for the flux of a vector field through a spherical closed surface in frames X and
iv

@ =gS\7(F).dA=<j'>V\7(F =—95pdv O = 9Sv (F).dA = gﬁv E'dv’ =—<_[>p dv’, (60)

=) '

S Y v Vv

Since any function (e.g., magnitude of electric and magnetic fields) is continuous at any point in space [16] in both frames
¥ and X' (@ =d'), we write the following chain rules of differentiation

0000 00 o 2000 o R OG0y )0 o
5Xi 6x, aXi 6x,' aXi ot’ 8x 8X| aXi ot’ aXi axi' aXi’ , ( )
20_oU 0000 00X KX 20X YA SXRX ) gz .
ot ot o' ot ot' oxot'ot ot oyot' ot ot oz ot ot o'’ (62)

7.1. Gauss Law of Electrostatics

Since electric field wave function is continuous at any point in space, taking ® =E and @®’=E’, and applying chain rule
in Eqg. (61) we write the charge density

p=cVE=zyh(1-5; )—+ a7y (1-5 )§+ 75 (15 ) OF' N (1—ﬂ;i2)6'.|§', (63)

where X =X,Y,z.Since yf_x_ (1—ﬂ)’(_2) =1 and V'E'=p'/&, matching both sides of Eq. (63) yields &p, = £op% . where

=60, Pe :po(l—ﬂz)’ﬂ2 and pp :po(l—ﬂ’z)’ﬂ2 are the charge densities in frames = and X', defined with
respect to charge density p, in frame %, . We can write

VE-L=VE-L o  PR,y-ud=0PR,- 1, (64)
&, &,

which is Lorentz invariant Gauss law of electrostatics between the inertial frames = and ¥'.

7.2. Gauss Law of Magnetostatics

Since magnetic field wave function is continuous at any point in space, taking ® =B and ®'=B’, and using chain rule
in Eq. (61), we write

V.B = i (1- ’2)2_3:+7§y (2-5 )ngzuo(l ’2)68'23, Xx(l ﬂ’z)V’B’ (65)

Matching both sides of Eq. (74), one finds ., =1/(1- ﬂ)’(z )1’ 2 for the space component of Lorentz scaling factor in Eq.
(10), and covariant Eq. (65) is transformed into the invariant form
VB=V'E = PGy =0"Gyy, (66)
which is Lorentz invariant Gauss law of magnetostatics between the inertial frames ¥ and 3'.

7.3. Faraday’s Law of Induction

Let us re-write the differential form of Faraday’s law of induction in Eq. (57b) in x, y, and z-directions of the Cartesian

coordinates in frame =
o OE H . E oH L oE E

(VxE) :ai__yzﬂoa X (VXE) =8_X_£=ﬂo_y’ (VXE) =_y_5_xzﬂ06Hz

X oy oz ot Yy o0z @ OX ot z X oy ot

Applying the chain rule in Egs. (61) and (62) to Faraday’s law of induction allows us to write

(67)
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OEy, OBy OBy ox aE' ' OBy, O} ox! ox: OE},
' SR e = e L N (682)
X X ax’ ax, at’ ax 8x’ Xoox ox ot %) ox
OB, OB, 0B, s OB, oxx Bl ox at'(Vy ot OBy OBy,
X — X — ):I e )tl s B )fl th Bl i_' )fl =(1_ﬂ,2) )fl , (68b)
ot ot ot ot ox ot ot ot ot| g2 ox ) et ot
Side by side addition of Egs. (68a) and (68b) allows us to write the covariant Faraday’s law
oH, oH;
. — 2 AV = 2 X
(VXE) ot —)/XX(l B )(VXE)X R (152 o (69)

Matching both sides of Eq. (69) yield y, , =1/(1—/3’)’(2)”2 and yy =1/ (1—ﬁ'2)1/2 for components of Lorentz scaling
i i
factor in Eq. (10). Covariant Eq. (69) is then transformed into invariant form
L oHy oHy
(VXE) e (V><E)X tu—t 2 6, =07G, (70)
which is Lorentz invariant in the x, y, and z-directions between the inertial frames £ and I'.

7.4. Ampere-Maxwell Equation
Ampere-Maxwell’s equation (57b) are written as

.o oB, 0B oE OE
(Vx B)X ZEZ_a_ZyzluOJX +yogO?X=yoJEx +,uo€OEX, (71a)
- oB, 0B, oE OE
VxB) =X =y +ue — = poky + e, —>, 71b
(V2B), =5~ ~#dyHiues o = oBy s (1D
. oB, 0B OE oE
(Vx B)Z :Ey_EX:%JZ + 1.8, ?Z=/IOO'EZ +y080#, (71c)

where 0:00(1—,32)_1/2 and ¢'=0, (1—ﬂ’2)_1/2 are the conductivities in frames X~ and X', defined relative to o, in
the steady inertial frame X_. Applying the chain rule in Eqg. (61) and (62) to differential form of Ampere-Faraday’s law in x,
y, and z-directions and write

agxi _ aB;(i _ 6§Xi % OB)'(i i_ Og)’q _Viﬁg)'(i a_xi’%_(l_ﬂe)agg(i (72&)
o o5 ox o ot o  ox  ¢2 ox ox ot %) oxi
OE, OEy OBy ot OBy ox OBy o o[V OE; OE;
T . T s W, W S WL s -(1-p7) 2, (72b)
ot ot ot ot ox ot ot ot ot| g2 ax | at at
Combining Egs. (72a), and (72b) side by side and adding .0E, and uo'E} , we write
2V =} — aEXi 2 2 o'. R’ "I 2 12 aé),(I
(Vx B)Xi —u.0Ey +&, e Yxex (l—ﬂXi )(V xB >Xi —uo'Ey + el (1—,6’ )W’ (73)

Matching both sides of Eq. (73), one finds y,., :1/(1—,8)’(_2)1/2 and 7 :l/(l—,B’z)]j2 for space-time components of

Lorentz scaling factor in Eq. (10). Then covariant Eq. (73) becomes invariant

’

ﬁxé—yoaé+goyo%:V’xé'—yga’ﬁ#gg/j;—, = aﬁFﬂ J75 a—é'gF'ﬂ w3, (74)
which is Lorentz invariant Ampere-Maxwell equation between frames = and ¥'.

7.5. Current Continuity Equation

Since Maxwell’s equations must satisfy the charge (current) continuity equation, using chain rules in Egs. (61) and (62) we
can write
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- 6" vy 0J' ox' Ox o) vy, al' oy’ oy ol vy, 8l oz’ oz

V.J =7k T T A A 7)2/y e |+ % | (759)
ox" ¢4 ox ox ot oy’ ¢'c oy oy ot oz' ¢4 ot oz ot

op _ 20" of Vop' Vydp' v, 00| _ > 2\p’

L e S e A/ GO A S (R V.3 P L oy 7

at Tt o 7tt( 2ox 2oy oot 7’tt( B )6t’ (75b)

where J and p are the total current and charge densities, respectively. Side by side additions of Egs. (75a) and (75b)
allows us to write the following covariant equation

v 1 ap 2 2\ r T 2 2 ap,
VI+ L (15 )93 (15 )% (76)

Matching both sides of Eq. (76) we find yx =1/(1-5.2)"2 and y, =1/(1-4"%)"?in Eq. (10), and

’

1 ap 2 1 ’ ’
v.J +E:V.J +¥, ﬁ ana:ana (77)

which is the Lorentz invariant current continuity equation between frames £ and X'.

8. Symmetric Electromagnetic Energy-Momentum Tensor and Conservation Laws

The classical symmetric energy-momentum tensor is described by a second rank tensor [4]
Uem Sy/c Sylc Sylc
@aﬂ:i[FaO_Fﬁ—lgaﬂFO_ﬂF j: SX/C ®XX ®xy ®XZ |
He o 4 PB)7lsgle Oy O, Oy
Sx/C; On Oy 0y

(78)

where F%° is the contravariant field tensor and Fﬂ“zngaﬁ (Ff:g/"’F,w) is mixed tensor, with

9 =g,, =diag(-1111) . % =Uyy is energy density, % =/ =Sy is Cartesian components of Poynting

vector, and ©,5 =Tz, with Maxwell’s stress tensor T,z defined as [4]
- 1 - -
T :(goEaEﬁ 1L 1BaBﬂ)—§ » (gOE2 1 182): (gOEaEﬁ 1L 1BaBﬁ)—6aﬁuem, (79)
where 6,5 is the Kronecker delta which is unity if 8y, =9y, =J,, and zero otherwise [4]. Mixed tensor F;‘ =g% Fq

(Ff =g/ F, ) inEq. (78) has no explicit symmetry characteristics [4].

Consequently, we pursued a search for an alternative way to derive Lorentz invariant expression for a symmetric
electromagnetic energy-momentum tensor. We discovered that the average sum of the product of covariant-contravariant

Faraday tensor and transpose of the contravariant covariant dual Faraday tensors T (Fop = +Gaﬂéaﬁ )/2 fits our

requirement of the electromagnetic energy-momentum tensor. In the massive inertial frame X they are written as



88 Hilmi Unlii: Conservation of Energy and Faraday Tensor in Transformation of Electromagnetic Fields, Maxwell’s Equations,
and Symmetric Electromagnetic Field Energy-Momentum Tensor in Theory of Lorentz Invariant Relativistic Electrodynamics

_ﬁﬁz i S i S i S
C2 Cluo X C/Uo y C,Uo z
i i’ 5 . 5 i2 i
< HeS —C—ZEX -By - B; —C—ZEXEy+BXBy —C—ZEXEZ +B,B,
FpF? = | 2 2 2 : (80)
2 p2 p2
cHSy | —5EE+BB | |- Ej-B-B, | | -—E,E +BB,
c c c
lyS —ﬁEE +B,B —ﬁEE +B,B —EEZ—BZ—BZ
¢Vt 2 25X 72X 2 -y Py 2 z X y
252 i i i
-i"B Etuosx E/uosy E,uosz
i 22 1 2 1 1 2 1 2
Eﬂosx (—l BX __ZEy ——ZEZJ (_ZEXEY_I BXB)’) [_ZEXEZ =1 BXBZJ
G, G - c c c c (81)
’ LS L e E, -i%8,8 i2g2 - Lgz_Lg2 leE, —i%BB |
ey C_gyx_' y Px - yT 2t 2 C_gzy_' y Px
i 1 .2 1 2 2.2 1 2 1 o
E,UDSZ (C_ZEZEX_I BZBXJ (C—ZEZEy—l BZByj [—l BZ _C_ZEX —C—ZEyJ
which have symmetric characteristics and consequently, algebraic sum of their traces is zero
= a8 zaff E? 2 E? 2
Tr(FaﬂF )+Tr(GaﬁG )= 2C—2—ZB - 20—2—25 =0 (82)

Average sum of the product of covariant (contravariant) and transpose of contravariant covariant) Faraday tensors and of
their duals, T - (Fys F% +G,,G%) /2 inframe T is then written as

Tah _
i i i
u — 1,5 — 1S — 1,5

Holem Cﬂo X C/uo y C/Jo z

LS Bz—ﬁEZ—l BZ—EEZ —ﬁE E, +B,B —ﬁE E, +B,B

Cﬂox X" 27 2 o2 Xy T ExBy o2 X-Z75xbz

. P 2 2 2 (83)
i i 2 19 o 1|52 19 =2 i

—1,S -—EE, +B,B By ——Ey—=|B°——E -—EyE, +ByB

c ey o2 Xty T ExPy yczyz[ Cz] o2 yr T RyR

i i i 2 19 o 152 1° =2

— 1S -—EE, +ByB -—EyE, +B,B B -——E;—=|B°—-—E

Cﬂ z ;2 x-z T Exbr 2 Ytz RyRe 272t 2( 2 ]
—Tha,

Cartesian components of the symmetric energy-momentum tensor T in Eq. (82) are

T = 4 Ugy, = %,uo (gOEZ + #0—132) (Electromagnetic energy density), (84a)

TO8 :é'”"gﬁ :é(Ex é)ﬂ (x, y, and z-components of Poynting vector) (84b)

T = (i /c)yo§ﬂ =(i /c),uoczgﬁ (x, y, and z-components of momentum density) (84c)

where T,z is given by Eq. (79). Since T is symmetric (T =T7*) its trace must be zero:

-2
TrFe) =TO L TH 42 1 F0 =y, {éz _ggZJ_L_Z[EZ _§E2]= g — e =0 (85)
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9. Poynting Theorem and Conservation Laws

Using V-(dxb)=b-(Vxa)—a-(Vxb) and Maxwell’s equations (56) and (57), divergence of Poynting vector can be

written as
V5= LV (ExB)= L E (VxB) LB (vxE)=E|Tre B A N
Ho Ho Mo ot ot
5 (86)
€3~ LEE+BB|--E.J,-Tem,
ot\ 2 24, ot
where, E-J=0dW /ot is the rate of work done by Lorentz force on moving charged particles and
Uem =(¢,E-E+ +u -1B. B)/2 is the electromagnetic energy density. Divergence theorem yields

gS(EXB)~dé+J‘ali%dV=— (87)
S v

.\[(E.j)dv,

which is the well-known classical Poynting theorem [17]. The first and second terms on the left are the power flowing out of
the volume and rate of stored energy density and the term on right is the power dissipated (or generated) in a closed electrical
circuit.

We now demonstrate the use of symmetric energy-momentum tensor T2 allows us to derive differential form of
Poynting theorem and conservation of linear momentum with charge and current sources. Using the 4-vector current density

J, =(-cp,J) in a7 = u FJ 5 we write

oS

Y N S P S (Y P R T i

olict) o v ° il E,J,+E,J,+E,J

—(1/c)u, + +

i/c)c? 09 Ty Ty My (/o ( cre Ty z)
(i/c)e”p, — S Mo A

6(|Ct) OX 8y 0z —ﬂoPEx + U (Bsz - Bz‘]y) (88)
(i /C)CZ,u Ay yx U 8T_yy My —HePEy + 1, (Bz‘]x - Bx‘]z)

a(ict) X oy oz o pEy (Bny B Bny)
: 2 a9 z asz 6sz aTzz
(i/c)cp, —= A M A

o(ict) OX oy oz

Sum of the first-row elements on both sides of Eq. (88) yields the energy conservation law
0 Lo L
yo[a‘;m s Sj:—,uo(EXJX+Eny+EZJZ) = l:;[m+V-S:—E-J, (89)

which is the differential form of the Poynting theorem in free space given by Eq. (87). Further, adding the second, third and
fourth row elements of Eq. (88) and combining them we write

%(,uocz) 69[? + 1o > T :—,uoi(FaﬁJ2+GaﬂJ2) = @+§~f:—(p|§+jx§),

o(ict) i=0 oXj 570 ot
which is the differential form of conservation of linear momentum with total current source.

Since for planar rotation about a fixed axis, Poynting vector is Lorentz invariant (§' = §) , letting ® =S (or ugy, ) and
@' =S’ (or ugy), Eq. (89) can be decomposed as

(90)

S&_ .2 (1. 2 (1_ 22\05 | 2 2 55'
VS =12 ) S v (187 o (- ) o (912)
OUgm 20Ugm  2[Vx &t Vy ot v, ot |OUgn 2 12 Olem

=V | =ttt = |1- , 91b
ot it at; 7t 2 8x' 2 ay, Cz 62' at, tt( ﬂ ) at, ( )
E-J=E'J, (91c)

Side by side adding Egs. (91a), (91b), and (91c) yields the following covariant energy continuity equation
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ou - 7 2 2 2 '
S g J=y Xx(l B )v5+ R(1-p ) ST (92)

V.S +
: : 1241/2 _ 12\U2\12 - : : .
which yield y,, =1/(1-4,")" and py =1/(1-4“)"“)"“ in Eq. (10), which transforms covariant equation Eq. (92)
into the following invariant form
V.54 Mem _ g5y Mem
ot ot’

Similarly, employing the differentiation chain rule to differential form of conservation of linear momentum equation with
current source in Eq. (90) allows one to write the following equations

(93)

ag 6@' og'ot’ og ox _ogl oxot'[ Vx ot |ag’ _

=== — =t = 1 =71 , 94a
ot ot ot ot ox ot ot ot ot 2ax'at’ (ﬂ)at’ (942)
e o 2T (. Ve aTL, 20T,

VT =y 1—C7 pv +7y 1—07 Y, +7/ZZ 1- ,2 vl (94Db)
f:pE+jxl§:p’E'+o—’(E’xl§’):l?’, (94c)

Adding Eqgs. (94a), (94b), and (94c) yields the covariant momentum continuity equation
2
G g, r_2(_52\99, 2 | % |Tap =
E+V.T+f:yn(1_ﬁ )waixi il (95)

Matching both sides of Eq. (95), one finds y,, :1/(1—v§_ /c’2)ﬂ2 and yy :1/(1—v2/c'2)lj2 in Eq. (10) for

components of Lorentz factor and covariant Eq. (95) is transformed invariant form
ag o T — TopR _ag” ! T/ e ToR!
E+V-T+(pE+JxB)—E+V-T +(pE'+IxB), (96)

which is Lorentz invariant linear momentum conservation equation between frames > and X'.

10. Results and Discussions

In this work, we introduced so called generalized 4-dimensional massive inertial frames i’zi’(x’, y',z',ic't") and
= =2(x,y,z,ict), both coincide with stationary inertial frame =y =2q(Xo,Yo.Zo.tg) at time t'=t=t, =0, and move
relative to each other with arbitrary velocity V = (vy,Vy,V;). The space and time coordinates are interrelated: X = X (x;,t) ,

t'=t'(t,x,y,z) in £ and x =x(x,t), t=tt’,x,y,z) in frame X, where i=x,y,z. We derived the generalized
4-dimensional spacetime metric equation (8), with Lorentz scaling factor in Eq. (10), which has anisotropic space and
uniform time components. The role of this factor on the invariance of relativistic quantities such as energy, momentum, mass,
time dilation and Doppler shift is discussed in appendix. In the following, we discuss Lorentz invariance of electromagnetic
fields, Maxwell’s equations, and symmetric electromagnetic field energy-momentum tensor.

10.1. Comparison of Classical and New Way of Using Faraday Tensor in Field Transformation

By using the 4- velocity and 4-force vectors in the energy conservation law we demonstrated the Lorentz invariance of the
scalar and vector products of electric and magnetic fields between two so called massive inertial frames for a spatial rotation
about a fixed axis. As an example, consider point charge Q in frame X . The produced electric and magnetic fields in frames
T and X' are

__ q i_ Q o~ 2 ~ _ S 2 ~
E= P PR (XI +Vj +zk) =E,+EyJ+Ek, (97a)
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=il q f' Q IR} " "N Q a 2 ~ —
E'= —= X1 +y]) +2K |=———=|xi +yj+zk | = E,
Are, 2 4iz'gorr3/2 |: yl ] 471'«90!’3/2 [ Yl :| (97b)
5 _ Mo q(GXf)_luO q a 2 ~ ~ N ~\ ~ R n
B_E T 4 32 (UXI+uyj+uzk)><(XI+yj+Zk)—BXI+Byj+BZk, (97¢)

B — Zlﬁ q(l]r": F) _ Z’;r%[(u'yz’—u;y’)f'+(—u§<z'+u;x')J°’+(u§(y’—U'yx')|2'J

:(B)’( cos,;zﬁ—B'ysin¢)f+(8;sin¢+|3'y cos$) j+Bjk =Byl +By j+B,k =B,

(97d)

where r'? =r?. One can show that the scalar and vector products of electric and magnetic fields are Lorentz invariant

(E'-B'=E-B) and (E'xB'=ExB) between two massive inertial frames.
To confirm the findings in section 4, we focused on the use of electromagnetic field strength tensor, also called Faraday
tensor in sections 5 and 6 to derive expressions for the invariant electromagnetic fields. We demonstrated that the hyperbolic

boost along x-axis classical use of Faraday tensor in field transformation F,, ,=A,F,A, given Eq. (6) and

Fapz = L, F.pl, (45) for Lorentz boosts along the X, y and z-axes, lead to a non-invariant vector product of electric and

magnetic fields, and in turn non-invariant Poynting vector, between two inertial frames. For a Lorentz boost along x-axis, one

can use the transformation F,z3, =L,F,,L, tofind components of Faraday tensor in frame ¥’ interms of those in frame X .

Transformation F,g, =L,F,,L, and itsinverse F,g, =L,F,L, yield Cartesian components of the electric and magnetic

fields in frames ' and T in terms of each other, given by Egs. (47a), (47b), (47c), and (47d), respectively. They are the
same as Eqgs. (4a) and (4b), with E’-B'=E-Band E’'xB’=ExB . In zero velocity case, Eqgs. (47a), (47b), (47c), and (47d)
results in invariant vector product. However, this has no relativistic meaning since zero velocity case means that two frames
coincide with each other at rest.

In the case of circular Lorentz boosts about the X, y, and z-axes given by Eq. (48), the result of Faraday tensor
transformations surprisingly turns out to be quite different. For example, the circular Lorentz boost along x-axis with fixed
z-axis, transformation Fz,(0) =L, (0)F,,L,(0) yields components of covariant Faraday tensor F.z ,(6) in frame T,

which leads to Cartesian components of electromagnetic fields in frame X' as mixture of those in frame X at any angle,

according to Eqs. (50). However, as easily seen from Eqgs. (51) and (52) for @ =0", contrary to the hyperbolic Lorentz boost
in Eq. (47), the vector products of electric and magnetic fields is Lorentz invariant (E’'x B’ = E x B ) between frames ¥ and
¥'. This may be due to the difference between hyperbolic boosts in Eq. (45) and circular boost Eq. (48), which are derived

from translational and rotational points of views for which X% — y2 =1 and X°+ y2 =1, respectively, in two dimensions.

In section 6.2 we demonstrated that if two frames £ and X'are related by spatial rotation of (x, y) plane with fixed z-axis,
of (y, z) plane about x axis, and (z, x) plane about y axis, respectively, Cartesian components of covariant (contravariant)

Faraday tensor Fa'ﬁ(F""ﬁ ) in frame 3’ can be found according to the spatial rotation transformations given by Eq. (52).
For a spatial rotation of (x,y) plane about the z-axis, covariant Faraday tensor in frame X' is obtained from
Fop.2(0) =R, (6) Faﬂf{z (0) , which yields Lorentz invariant electric and magnetic fields in frame Z'(Z) in terms of those in

frame Z(¥') according to Eqgs. (54a) - (54d). Similar results are found under the spatial rotation of (y, z) plane about x-axis,
and (z, x) plane about the y-axis, respectively.

10.2. Faraday Tensor and Lagrange Density of Electromagnetic Field

In section 6 we also proved that the new way of using Faraday transformation under the spatial rotations about fixed
coordinate axes lead to Lorentz invariant properties (e.g., Poynting vector, inhomogeneous and homogeneous Maxwell’s

equations, and equations of continuity) between two frames X and X', respectively. Considering a charged particles
moving under the influence of an external electromagnetic field we use so called the action principle S = _[ Ldx* = J Ldxdt

to derive its equation of motion [18]. Here L is the total Lagrange density of the charged particle which is equal to sum of the
free space (Lgm) and external source (Lgy) contributions and is written as

I-:I-em‘H-ext:% aﬁFaﬁ+Ja'Ab¢! (@,=0123) (98)

]
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According to Egs. (43a) and (43b), the trace of the product of FaﬂF“ﬁ and of their duals G,,ﬂG“ﬂ are non-zero and yield
a nonzero electromagnetic energy density in free space. Consequently, we write

-1 -1 -1 -1
=~ FF%® = =G, G = Tr| —FF% |=Tr| —G,;G? | =gy, 99
Lem 4u, af 4u, af 4y, aff m af em ( )
which proves that contrary to the classical point of view [4], the electromagnetic Lagrange density Ly, is not zero in free
space. This is physically realistic because electromagnetic waves transfer energy and momentum, which are the intrinsic
properties of free space. Trace of product of covariant and contravariant Faraday tensors and of their duals in frames = and
T’ are

2
_ af af\_ ol L _E2_g2 |- fog2, 1 g2 |_
Tr(FaﬂF ) Tr(GusG ) Z(CZE BJ 4;40[2E +5 B2 = 4usen, (100a)
.2 ’
off = _ aff~r _ | =12 ~2 | _ /| €0 g2 1 ~2 | _ 1ot
—Tr(F Fa/,)_Tr(G Gaﬂ)_—z —2E%-8B ]_4%[7E +5,7B j_m,uem, (100b)

which show that the product of FaﬁFaﬁ and of their duals GaﬂG“ﬂ are Lorentz invariant between frames £ and X'.

Meanwhile the trace of product of covariant (contravariant) Faraday tensors and of dual Faraday tensors are also invariant
between the massive inertial frames ¥ and X', written as

Tr(FaﬁG“ﬁ )zTr(FaﬁGaﬂ): 4

—(E-B). Tr(F,;ﬂG'aﬁj:Tr(F'“ﬁG;ﬁ):g(E'.é'), (101)

which is zerowhen E-B=E"-B'=0,and F,3G.; =FisGly, F¥GY =F“PG'“ are invariant.

10.3. Symmetric Electromagnetic Energy-Momentum Tensor and Conservation Laws

In section 9 we used the symmetric electromagnetic field energy-momentum tensor to prove the invariance of the
conservation of electromagnetic energy and linear momentum. We now extend this idea to cases under spatial rotations of

planes about a fixed axis. For example, applying the 4-vector differentiation operator 8, =9/ 0ox% = (81 &(ict), V), we can
extend Eq. (93) to

—i0Ug, / COt 1 0 0 0))( —idugy / cot —i0Ug, / COt
0S,  Ox 0 cos@ -sind 0O 0Sy, 1 ox 0Sy 1 Ox
= ) , =R, (-0) , (102)
oSy oy 0 sind cos® O} ISy/dy Sy 1oy
os, oz 0 0 0 1) &syla osy | o

and using the chain rule in Egs. (61) and (62 for the space and time differential operators, Eq. (102) can be written as
covariant differential form of Poynting theorem with no current source

VUem , oo _ .2 2 OUg 2 2 = &
S VS = 1 (1- 82RO S 4 12, (187 R, (OO, (103)
Matching both sides of Eq. (103) one finds yy, =R, (0)/(1—/3)3 )1/2 and 7 =R, (9)/(1—,[3’2)1/2 for the spatial

rotation dependent space and time components of Lorentz scaling factor, which reduce to those in Eg. (10) without rotation,
and transforms covariant Eq. (103) into invariant form

v.§+Lem _g gy Qem

(104)

0

which is the Lorentz invariant classical differential form of Poynting theorem in free space.

Using the 4-vector operator 6, =d/ox* = (8/&(ict), V) and chain rule in Egs. (61) and (62) we can extend Eq. (95) to
the following equation for conservation of linear momentum



International Journal of Theoretical and Mathematical Physics 2024, 14(3): 70-101 93

—idgy / o(ct) —iogy / o(ct) ,
OTyy [ OX OTyy | OX 2 2\ 04, ) VXi X,Y,Z aT)Zﬁ
6Txy /o =R, (-0) aT)éy Ioy =R, (-09)| 7t (1—,3 )E_H/Xixi 1—07 % _axi’ , (105)
T, | 0% oty 1 éz

Matching both sides of Eq. (105) one finds yy, =R, (9)/(1—ﬂ§ Y2 and =R, («9)/(1—ﬂ’2)]j2 for space and time

components of Lorentz scaling factor, which reduce to those in Eq. (10) without spatial rotation and transforms covariant Eq.
(105) into invariant form. Following the similar steps to produce Eq. (104), we can write the conservation equations along the
y- and z-components of linear momentum. Adding x, y and z components we write the following differential equation for
4-vector linear momentum conservation in the generalized 4-dimensional spacetime frame

G 97-9 .1, (106)
ot ot’

which is the Lorentz invariant differential form of linear momentum conservation in free space.

10.4. Symmetric Electromagnetic Energy-Momentum Tensor for Field Transformation

It is also instructive to see if the use of the symmetric electromagnetic field energy-momentum tensor can be used to
transform electromagnetic fields between two massive inertial frames = and X'.We try this by using the counterclockwise

rotation of (x, y) plane about the z-axis in Eq. (52) and the transformation Tob = R, (Q)Taﬂ R,(6) yields the following

symmetric tensor T'% in frame ¥’

2.Ugm 'Eyo(sx c0s 6+ Sy sin 0) éyo(sy cos 0~ Sy sin0) éyOSZ
lluo (SX Cos 0 + Sy Sln 0) _/'IOTX,X _luoTX'y _/’loTX'Z
T!aﬂ — ci: I} (107)
SH (sy cos#— S, sin 9) — 1Ty —.Tyy A
[ , , '
c HoS; —Ho Ty _ﬂosz M T3
Ugm =Uegm, Sy =S,C€080+S;sind, Sy =S,cos0-S,sind, S;=5,, (108a)
L1 ) L1 . .1
Oy :C—Z(chos¢9+sysm9), gy :C—Z(Sycose—sxsme), g7 =C—ZSZ, (108b)

'

Tyx = Tyx cos? O+Tyy sin? 0+ 2Ty sindcosd, Ty, =T, =Ty, C0SO+Ty, sing,

Tyy =Ty cos? 0 +Tyy sin? 0-2T,ysindcosd, Ty, =T, =-T,,sin6+Ty, coso, (1089
c

'

Tey = Txy cos? 0 —Tyx sin? 0 —(Tyy —Tyy)sin 0cosd, T =Ty
Tox = Tyx cos? 0Ty sin? 0 —(Tyx —Tyy)sin&cosé,

where To’,ﬂ are the components of 3-D Maxwell stress tensor in frame X' related to those in frame T . Equations (108a)
and (108b) explicitly demonstrate that the electromagnetic field energy density, Poynting vector and momentum density are
Lorentz invariant between frames £ and 3'.
Furthermore, as a symmetric tensor, trace of energy-momentum tensor T must be zero:
i2
Tr@P)=TO LT T2 4T3 =y ug, +(E§2 —g EZJ—I—(EZ —g EZJ = f.Ugm — toUem =0, (109)

C2

Likewise, the spatial clockwise rotation TP = R, (Q)T’aﬂ R,(0) of (x, y) plane about fixed z-axis yields components of
the inverse symmetric energy-momentum tensor in frame X .

Since T is derived from average sum of the tensor product of covariant and transpose of contravariant (vice versa) and
of their duals, it is imperative to confirm that, and by back substitution we should be able to determine the Lorentz invariant
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electric and magnetic fields between frames = and X'. Matching both sides of Eq. (107) and of its inverse, which is not
written here to save space, for #=0" one obtains the following matrix equations for the Cartesian components of the electric
and magnetic fields in frame Z'(Z) those in frame Z(Z'),

E;) (1 0 0)(E,

Ey|=]0 1 0| Ey| (110a)
E, 0 01 s
By (1 0 0)By
By|=|0 1 0By (110b)
B, 0 01 .
Ex) (1 0 0)E
y|=|0 1 0|lEy |, (1100)
,) 00 1){g

By 1 0 0)fByg
=0 1 0| By| (110d)
B, 0 01 B,

which are identical to Egs. (54a), (54b), (54c), and (54d) for 6 =0° . We can then conclude that T’ can reliably be used to

find Lorentz invariant electric and magnetic field according to TP = R, (e)f“ﬂ Iiz (0) transformation for spatial rotation
of (x, y) plane about the fixed z- axis, between two frames. This confirms the Lorentz invariance of symmetric

electromagnetic field energy-momentum tensor between two massive inertial frames ¥ and X'.

Since Eq. (78) is representing the classical symmetric energy- momentum tensor and is described by using the
4-dimensional relativistic analogue of 3-dimensional Maxwell’s stress tensor [4], it is also imperative to see whether it also
confirms the Lorentz invariance and trace characteristics described for the symmetric electromagnetic energy-momentum

tensor in Eq. (107). This is expected since 0% isalso a symmetric tensor just like T'%P . In the framework of the classical
Faraday field transformation, Lorentz invariance of the symmetric electromagnetic energy-momentum tensor

0% = g?P@*P §° in the massive inertial frame I’ is written as

1 0 0 o) Ym Sxlc Sylc S;/cyr1 o o0 o
, 0 -1 0 0Sx/c -Tix Ty —Txl|[0O -1 0 O
o — , (111)
0 0 -1 0|S,/c T, T, -T,[0 0 -1 0
0 0 0 -1 S,/c Ty Ty Tz 0 0 0 -1
Uem =Uem: Sy =—Syx, Sy=-Sy, §;=-5;, (112a)
Sy __ Sy Sy _ Sy 1 1
g' ==, g’ === g, :—S, :——S , (112b)
X 02 C2 Y c C2 ’ C2 ’ 02 ’
Tr@ %) =uly —Tyy —Toy = T4, = Un —Usy =0
o wem T L o ) =Tre) (112c)

Tr(G)aﬁ) =Uem —Tyxx = Tyy =Tz =Ugm —Uem =0
Equations (112a) and (112b) yield invariant electromagnetic energy density, but Poynting vector and linear momentum
density turn out to be non-invariant between the frames ¥’ and X . This contradicts Lorentz transformation which requires

all components of relativistic vector quantities must be invariant. Since ©'* is a symmetric tensor, its trace is zero.
However, in the case of trigonometric circular Lorentz boost along the x-axis given by Eg. (48), applying

' =1,(0)e* L,(0) in Eg. (78) one obtains symmetric tensor in frame X'
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cosd sing 0 0 Yem Sx/c Sylc S;/C)rcosp —sing 0 0
gap _| ~Sin0 coso 0 0 Sxlc T ~Ty Ty |[sin@ cos@ 0 0 | 119
0 0 1 0fs,/c Ty, -T,, T, || O 0 10
0 0 01 S,/c Ty Ty Ty 0 0 01
For 6 =0° symmetric energy-momentum tensor @'’ (0) = L, (0)e*’ L, (0) in Eq. (113) yields
Uem =Uem:  Sx =Sy, Sy=Sy, $;=5;, (114a)
Sy S Sy S S, S,
Ox=—=" Gy=—%=—» U=F=7, (114b)
X722 Y22 272 2
Tr (O ) =0%+0" +0% +0% = Uy ~Tx ~Tyy ~ Ty = Uy —Ugm =0, (114c)

Equations (114a) and (114b) yield invariant energy density, Poynting vector, and momentum density between frames X’
and X . Furthermore, since ®'“ is a symmetric tensor, Eq. (114c) predicts that trace of ®'“ is zero in both frames,
confirming that ®'*# (0) = L, (0)®“’L,(0) and % =L, (0)®'“’L,(0) are symmetric electromagnetic energy-momentum
tensors. Component by component matching both sides of Eq. (113) and of its inverse for € =0", one obtains the matrix
equations (110a), (110b), (110c), and (110d) for Cartesian components of the electric and magnetic fields in frame X'(Z) in

terms of those in frame X(X'). We conclude that using symmetric energy-momentum tensor is the most reliable way of
finding invariant electric and magnetic fields for (i) the spatial rotation of planes about a fixed axis, and (ii) the circular

Lorentz boost along the direction of motion and between two reference frames.
10.5. Symmetric Electromagnetic Energy-Momentum Tensor and Angular Momentum

Symmetrical electromagnetic field energy-momentum tensor is needed when we consider the conservation of angular
momentum of the electromagnetic field [4]. We can write the angular momentum density of electromagnetic field in the
following integral and tensor form [4]

C=2[xx(ExB)av = M =6%x -8, (115)
c

As pointed out in section 8, classical construction of symmetric electromagnetic energy-momentum tensor 0 in Eq. (78)
is based on the mixed tensors F;" =g Fgps (Ff =g/ F,,) which has no explicit symmetry characteristics [4]: it is

neither symmetric nor asymmetric. Consequently, the symmetric angular momentum tensor must be constructed from the

symmetric electromagnetic field energy-momentum tensor Tob (T%), which is defined according to equation (83), as the
average sum of the product of covariant (contravariant) and transpose of contravariant covariant) Faraday tensors and of their

duals, TP _ (Fop Fob +Gaﬂ(§“ﬂ)/2. Therefore, symmetric angular momentum density of electromagnetic field must be
defined as
My —TByy _Taryh. (116)
Conservation of total angular momentum of electromagnetic field is then defined as

0, M/ = (aaf“f’)ﬂ LT —(aaT_”W)xf’ _TPr =, (117)

Since T is symmetric, then first and third terns n Eq. (117) can be eliminated and T7? =T#”, which proves that
conservation of angular momentum of electromagnetic field is symmetric.

10.6. Symmetric Electromagnetic Energy-Momentum Tensor and Einstein Field Equation

The proposed use of Faraday tensor, its dual, and symmetric electromagnetic energy-momentum tensor and its dual can
have profound effect in the solution of Einstein equation [19]-[21], written as
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Gas :Raﬂ_%gaﬂR:KT‘aﬂ, a,=012,3 (118)

where R% s the Ricci curvature tensor with R being the scalar curvature, and K =8G/ ¢t isthe gravitational constant. In
free space T s the fundamental source of the electromagnetic and gravitational fields. Since TP s symmetric, then
G% must be symmetric, so that we can write
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Component by component matching the symmetric tensors in Eq. (119), one can write
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Applying the 4-vector differentiation operator 8, =0/x* =(0/ a(ict), V) we can write
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G' =L KE,E, +KB,B,

(120)

-2
=23 _ |
G* =-— KE,E, +KB,B,

(121)

Using the chain rule in Egs. (61) and (62) for space and time differential operators, Eq. (121) can be written as covariant
differential form of Poynting theorem with no current source

< om0 9.8) = 2 12

, 0(ug
R, (0K u, Xem) | 2

Xi X

ot’

(1= 52 R -OK w275

(122)

Matching both sides of Eq. (120) one finds 7, =R,(6)/@-52)"? and y =R, (6)/(1-B)!? for the spatial
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rotation dependent space and time components of Lorentz scaling factor, which reduce to those in Eq. (10) without rotation,
and transforms covariant Eg. (122) into invariant form in which is the Lorentz invariant classical differential form of
Poynting theorem in free space.

It is also important to point out that conservation of electromagnetic energy and linear momentum equations can also be
written for the trigonometric circular Lorentz boost along the direction of motion following the steps to write Eq. (122). For a
circular boost along the x-axis, we write the following matrix equation for the Poynting theorem under rotational boost

Si0(K p,Ug) / ot LI0(K Ul ) / cat Si0(K )/ ot

Lok w,s,) 1 ox cosf sind 0 O) Lo, sy/ox Lok w,8}) 1 ox

¢ —sin@ cos® 0 0 © ¢

: - i , —L,(-0)| i ' (123)
Lo(KpS,) 1oy 0 0 1 0| Lakus))iey Lok .S} oy

C C C

i o 0 01" :

Lok ws,) oz Lok syl oz Lok s}/ oz

C C C

from which, similar to writing Eq. (123), one can write the covariant and then invariant form of Poynting theorem with no
current source. Steps similar can be taken to write the equation for the conservation of linear momentum in free space.

It is also instructive to demonstrate the Lorentz invariance of the symmetric energy-momentum tensor in the massive
inertial frame X'. Using Einstein’s gravitational field equation (118) we write

T -ROTPRO) = G =ROGPRO) (124)

Since T% s Lorentz invariant, then G must also be invariant between frames ¥’ and X . In other words, Einstein
field equation must also be Lorentz invariant between frames ¥’ and X, written as

G KT -G _KTP (125)

This demonstrates the ability of a simple and theoretically reliable derivation of the symmetric energy-momentum tensor
and Lorentz invariance of relativistic quantities between two inertial frames in relativistic electrodynamics and in the
classical field theory. Knowing the symmetric energy momentum tensor, one can solve Einstein’s field equation for the
curvature of the universe.

11. Conclusions

We introduced a four-dimensional generalized Minkowski spacetime frame in which the space and time coordinates are
linearly interrelated. After satisfying Lorentz invariance of metric equation between two massive inertial frames, we used
classical vector transformation to derive general expressions for Cartesian components of the relativistic velocity, which is
valid at any speed, including the speed of light. Considering two massive inertial frames form a closed and isolated system in
four dimensional spacetime, we integrated the relativistic velocity components with conservation of energy and new way of
using Faraday tensor and its dual in Minkowski space-time to prove that the electric and magnetic fields are Lorentz invariant
under circular boost and spatial rotation of planes about a fixed axis. We demonstrate that the product of covariant and
contravariant Faraday tensors and of their duals lead to non-zero electromagnetic field Lagrange density in free space, which
is physically realistic since electromagnetic fields carry energy and momentum while they propagate free space. We derived
analytical expressions for Lorentz invariant Maxwell’s equations, current continuity equation, and symmetric electromagnetic
energy-momentum tensor between two inertial frames, with and without source. We further demonstrated that symmetric
energy-momentum tensor can be used have a reliable derivation of Lorentz invariant electromagnetic fields between two
inertial frames in the case of circular Lorentz boost and spatial rotation about a fixed coordinate axis. We believe that the
proposed theory may have profound effect in creating new research areas in theoretical physics.
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APPENDIX I. Time Dilation, Doppler Shift, and Energy Dispersion Relation

Using Eq. (9) for the general form of four-covariant metric equation under Lorentz transformation, we write
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where ¢’? =c?, u?= uf +u§ +u22, u'2 —ug(z +u§,2 +uZ Matching of Egs. (Ala) and (Alb) yields
1/2
u? o 1 2 '
At:}/tt l_C_2 1_ 2 2(7 uX +7/ uy +7/ uZ ) At, (AZ)
j/tt
For motion along x axis, u 2/¢? = Uy 2 /¢ and Y =7 =1 (-4 )U2 Eq. (A2) reduces to
.2 ~1/2 2 1/2 , Sz 2 ~1/2 , '
M=pe|l-o | 125 ] at :(1—ﬂ ) At=[1-T | A=At (A3)
c c? c

Using w=2x/T , Eq. (A3) allows us to write the following expression for the relativistic invariance of Doppler shift
between two massive inertial frames under Lorentz transformation

) ) 1/2
1
Aw'=7n[1—u—2J 1‘ﬁ(72 U'x2+y uy? + u;z) Ao, (Ad)
c cy

tt

For motion along the +x axis, u 2 /¢? = Uy 2 /¢? and Y =0 =1/ Q-4 )1/2_7/ Eqg. (A4) reduces to Aw' = jAw for

the relativistic Doppler shift in the classical four-dimensional spacetime theory.

Recall that Ives and Stilwell [22] who observed the wavelength of hydrogen atom emitted by canal rays with and against
their motion by using a mirror and discovered the frequencies of displaced lines of incoming and outgoing light rays and their
average are given by [23]

’ ’
o) + ol

;e (A5)

o=y (1-Ploi al=r(rplo; =

Consider forward and inverse (incoming and outgoing) plane waves of frequencies @, «'and wave vectors IZ(IZ’) in the
massive inertial framesX and ', respectively, with wave functions
o= Aea).tﬂZ-F ; o = A'e? "k (A6)
where w/k=cand w'/k'=c’ in the massive inertial framesX and X', respectively. With Lorentz invariant phases of
plane waves A¢'=0 (A¢=0) between T’ andX, (X and X;), we can write
AagtTky Ty =A0't TK-F';  AaptFky-Ty=AwtFTK-F (A7)
where Aa, is the incremental shift in the angular frequencies of plane waves in stationary inertial frameX;. Aew'and Aw

are the incremental shifts in@'and @ in framesX’ and X . Using the generalized time t'=t'(x,y,z,t) and velocity,
equalities in Eq. (A7) lead to

Aap(L- B)t=Aoir (1- A7)t Aw(1+B)t=Aalp (1- B2 ), (A8a)

Aap (- B)t=Ro, 7 (1- A7)t Aay (L+ )t = Aoy (1- 571, (Agh)
wherek -F =0and Kk F'=0, which can be proven by using w/k =cand @’k"'=c’, and spacetime coordinate equations.
Doppler shifts in the angular frequencies of forward and inverse plane waves and their averages in the massive inertial frames
' and X are then written as
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(-8 ,__(p Ao, +Ael
Aw, = ( )2 Awy, Ao :(—)ZAa)O = Awy, =+T =rAay, (A9a)
7 (1-5°) re(1-)
1-p8 1+ Aw, +Ao_
Ao, = (—)2Aw0’ Aa. = (—)2Aw0 = Aoy == —— =A%, (Agp)
Tt (1—ﬁ ) Tt (1—ﬂ )
Expressions for angular frequencies in the massive inertial frames %' and X are then written as

’

a)':a)6+%a)évza)6+2—':%; w=%+%wav=%+2—,% (A10)
where @) and ey are the background angular frequencies and Ay and Ay are the Doppler shifts with Aw'g/ Ak'=u’
and Awmg/Ak=u . Multiplying o' and @ with A=h/27z and using &hAa)=(hAky)u' =Apgu’ = m(’,u'2 and
hAay = (hAKy)u = Appu = mou2 , ONe can write

2 2
mou’ mou
0 E =mc? = mgc? + ——2

2\/1—u’2/c’2 , 2\/1—u2/c2

where moc’2 =hayy =Ejy and moc2 =hay = Egare the rest energies of a particle in =’ and X.

E'=mc?= m(’)c’2 + (Al1)

APPENDIX 1l. Relativistic Mass and Energy Dispersion Relation

Expressions for relativistic mass and energy are derived by considering the differential change in the energy of a particle
moving under the influence of a force in frames ' and X as [10], [11]

dE' = (F'd")dt' =0’ -d(m't’) =0’ -dp’ = mi p’-dp’ = c2dm’, (A12a)

dE = (F.)dt = d-d(md) = 4 -dp = = p-dp = c2dm, (A12b)

Using the change of variables, the integrals of expressions in Eq. (A12a) and (A12) are written as

A T 1 I (a13)
r T 2 .2 o 2,2’
mo M w(C —u mo) " u(0)C U

where u? =u§ +u§ +uZ2 with (u(0) =0) and Ve —u? =p in the massive inertial frame X and u'? =u)’(2 +u§,2 +u;2

with u’(0)=0 and \/c'2 —u’? =n' in the massive inertial frame X’. The result integrals in Eq. (A13) give the relativistic
masses in the massive inertial frames =’ and X

m'(0) m(0) (AL4)
Vi-u?/c? N1-u?/c?
where m'(0) =m(0) =mg and u’(0) =u(0) =0 are rest mass and initial velocities in both frames.
2

m'(u’) = m(u) =

Since u? =u" , the relativistic mass is Lorentz scalar (m’(u”) =m(u) ) in both frames.

The relativistic energy dispersion relations for a particle moving under the influence of a force inthe =’ and £ frames
are found from the integrals of Egs. (A12a) and (A12b) that are written as

p(u) m'(u’) p'(u) m'(u’)

’ ’ ’ ’ 1 ! ’ ’
j pdp=c2 J m'dm or o j p'dp =c? j dm (A15a)
p'(0) m'(0) p'(0) m'(0)
p(u) Zm(U) 1 p(u) zm(U)
j pdp=c J' mdm or — _[ pdp=c _[ dm, (A15b)
m

p(0) m(0) p(0) m(0)
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where p’(0) =mpu’(0) =0, p(0)=muu(0)=0 and p'(u)=m'u’, and p(u) =mu, respectively.

Evaluating the first integrals in Egs. (A15a) and A15b), then multiply both sides by c¢?and c? , and finally taking square
root of the final results, one finds Einstein energy dispersion relation

12 U2
E'=he'=mc? = (0'2 P2+ mgc"‘) ; E=how=mc? = (02 p? + m§c4) , (A16)

Furthermore, evaluating the second integrals in Eqs (A15a) and (A15b), one can also write
2 2

Mou mou
E'=he' =m'c? =— = +myc?; E=ho=mc? =——2—— +myc?, (A17)

21-u'? | c? 2N1-u?/c?
Since by c'? =c?, p’2 = p2, and u? =u'?, relativistic energy is Lorentz scalar (E'(u") = E(u), which suggests that
vector transformation does not affect the relativistic invariance of energy.
Dividing both sides of Egs. (A16) and (A17) with c’?and c? ,we and write

2 )2 e, 22 vz,
mo=| 5+l 5 mo=| ——5—+1| %5, (AL83)
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which suggest that the rest mass is linear function of frequency at any ¢, and (i) my =0 at speed of light (v=c) when

nonstationary frame moves parallel to +x axes (¢ =0, zand @ =z /2) of stationary frame and (ii) my = 1@/ c¢? atv=0asits
limiting case at any angle (0< ¢ <2z and 0<@ < ). The first result (i) proves that a relativistic particle has zero mass as
it moves with the speed of light, frame independent. The energy dispersion relation (A16) becomes equal to

E'=ho' =m'c? =c’? p’2 ; E = hw=mc? =c? p2 , (A19)
The dynamic torsion balance experiment of Liu et al [24] yields an upper bound m;’b =1.2x107>* kg at f=7.41x10*Hz.

Equations (A18a) and (A18b) predict mg = 4.34x10*°kg suggesting that a particle at rest having a small magnitude but never

zero. Comparison shows a good agreement with measurements [24] and astronomical observations [25].
The second result (ii) is compared with the prediction of Heisenberg uncertainty principle in rest frame, which yields an
upper bound for the rest mass of photon

AEAt>h  — mEb =h!c?T =(h/27)f I¢? = hol 27c? (A20)
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