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Abstract  The design of systems, or agents, situated in dynamic environments is of considerable practical and theoretical 

importance. This paper describes experiments examining the efficacy of dynamic sensing policy when the time cost of 

processing sensor information is significant. Extending the TILEWORLD experiments performed earlier by Obied, et al. in 

[1] this article produce interesting development of EBDI-POMDP agent by integrating among knowledge base models, 

decision theory and Self-Organizing system. This article clear distinguishes between sensing policy and sensing cost, since; it 

described experiments examining the efficacy of dynamic sensing policy when the time cost of processing sensor information 

is significant. It is demonstrates that several expected features of sensing cost and planning cost do arise in empirical tests. In 

particular, it is trying to answer the question is how would scalability of agent improve? The observations that for a given 

sensing cost and degree of world dynamism, an optimal sensing rate exists and, it is shows how this optimal rate is affected by 

changes in these parameters.  
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1. Introduction 

Situated agents are artificial systems capable of intelligent, 

effective behaviour in dynamic and unpredictable 

environments [2]. Their design raises important theoretical 

and practical questions about the optimal control of 

reasoning with limited computational resources. Previously, 

Obied and others presented a paper describing theoretical 

and empirical studies of self regulation for situated agents in 

[1]. The experimental system was a modification of the 

TILEWORLD [3] coupled with the EBDI real-time 

reasoning system [4]. In this domain an agent is repeatedly 

confronted with the choice of whether or not to replan; that is, 

to recompute its optimal course of action. The results 

reported showed that when the cost of replanning is 

significant, the optimal strategy is to replan reactively, when 

the environment has changed in an important way that 

renders invalid previous decisions and commitments.  

To successfully implement a reactive replanning strategy, 

an agent must be able to determine when such changes have 

occurred. In the TILEWORLD, certain observable events are 

reliable indicators of significant change. The experiments 

reported made the simplifying assumption that the agent had 

perfect knowledge of the current state of the world, and 

could detect these events at no cost. This is obviously 

unrealistic as a model of an agent with real sensors.  

Although sensors can run in parallel with reasoning systems,  
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processing the output of the sensing can have costs in terms 

of reasoning time. In addition, the certainty of sensing 

information can increase when additional time is spent on 

further processing. When the cost of sensing is significant, 

an agent cannot afford to incur this cost too frequently. 

Costly sensing is no different, in some ways, from costly 

replanning; the optimal strategy is to reactively sense just 

when there is some interesting feature in the environment to 

observe. Unfortunately, in most domains this strategy is not 

practical, as there are no reliable low-cost indicators that can 

be used to trigger sensing. Thus agent designers, and 

possibly agents themselves, must make decisions about how 

and when to schedule sensing. These decisions are critical to 

realistic planning/acting systems and autonomous agents 

such as the NASA Mars Rover [2]. Designing sensing 

policies has become a focus for recent work; for example, 

that of Chrisman and Simmons in [5] which argues for static 

sensing policies, where decisions about when to sense are 

made in advance by agent designers in order to reduce 

planning complexity, the work of Abramson in [6] which 

presents a decision theoretic analysis of how often to sense 

for errors that may occur during plan execution, and the work 

of Kinny and others in [2] which argues static sensing policy 

in specific level of dynamism, and their results indicate that 

static sensing policies can be successful, provided that the 

rate of change in the environment and the cost of sensor 

processing do not vary too greatly. But it can be dangerous to 

extrapolate the results of experiments of this nature to more 

complicated domains that involve complex sensing 

strategies and noisy and uncertain sensors such as those used 

by real robots, the effects observed do seem to support the 

hypothesis that static sensing policies can be effective, 
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provided that the rate of change in the environment and the 

cost of sensor processing don't vary too greatly [2]. 

Given the important interactions between sensing, 

planning and action, we have extended the methodology 

developed by Kinny and others in [1] to model agents that 

incur significant sensing costs. The aims of authors in this 

paper, was to measure experimentally various predicted 

effects that arise due to sensing cost, and to examine the 

sensitivity of dynamic sensing policies to variation in the rate 

of change in the world, the cost of sensing and the world size. 

Furthermore, they extended the experiments in [1] for 

planning cost in different circumstances; increasing the rate 

of world (complex environment), increasing the size of 

world and the cost of planning. In this paper, we may find the 

answer of the question is how would scalability of agent 

improve? 

  Sect. 2 describes the background and relevance 

domains, sect. 3 presents formal framework, 

  Sect. 4 describes empirical validation with some 

questions and their answers to support the method and 

the final section presents the conclusions and future 

work. 

2. Background 

2.1. Extensible Beliefs Desires and Intentions (EBDI) 

Model 

The proposed EBDI provides a highly suitable 

architecture for the design of situated intentional software 

that continuously monitors and/or observes its environment 

and acts in accordance with its situated BDI, grounded in a 

normative settings [4]; Beliefs correspond to service 

information derived and/or accessed from a range of sources, 

including; domain, environment or the beliefs of other 

services. 

Desires represent the state of affairs in an ideal world, 

which often maximise the service's own goals. By comparing 

a system‟s beliefs set (observed system states) against its 

desires, the system detects a mismatch and triggers a set of 

intentions [7]. 

Situated intentions represent an action set for the system to 

undertake in a given situation to achieve its specified desires, 

and /or to address the mismatch between the system‟s 

environment (beliefs) and system‟s goals (desires). 

Normative intentions represent a set of actions to be 

undertaken to ensure a specified set of norms including 

obligations (deontics), and rule representations are observed 

before a given intention is enacted. Also, maintaining the 

integrity of emerging rules. 

Utility intentions represent a set of actions to optimise 

goal-oriented intentions [4].   

This means that at any point an agent may find itself with a 

number of competing intentions. In the first instance this 

may be a conflict over whether to act or to deliberate. Further 

intentional conflicts will arise as the agent seeks to comply 

with its personal norm set (ontology), the global norm set 

(shared ontology) and its obligations to itself and other 

agents. Some of these competing intentions may even be 

contradictory. Methods for optimising an agent‟s decision 

processes, so that the action with the highest reward for the 

system is completed, have been studied for some time [8]. 

However defining and implementing functions that provides 

a notion of action utility is very problematic. The complete 

specification can consist of a very large (even infinite) 

number of perception-action pairs, which can vary from one 

task to another [9]. Also the terms „agent‟ and „environment‟ 

are coupled, so that one cannot be defined without the other. 

In fact, the distinction between an agent and its environment 

is not always clear, and it is sometimes difficult to draw a 

line between them [10]. 

2.2. Partial Observable Markov Decision Processes  

A partially observable Markov decision processes 

POMDP is a generalization of an MDP. It assumes that the 

effects of actions are nondeterministic, as in MDPs, but does 

not assume that feedback provides perfect information about 

the state of the world. Instead, it recognizes that feedback 

may be incomplete and environmental data is subject to 

uncertainty. Due to this, a POMDP is said to be partially 

observable [11]. To see why this extension is important, 

consider the interactions between an agent modelled by 

POMDP and its environment. On one hand, the world states 

can be changed by executing actions. This procedure can be 

viewed as the control effects of actions. On the other hand, a 

feedback is provided to the agent when the world states 

change. This procedure can be viewed as the 

information-gathering effects of actions since different 

actions can change the world to different states and in turn 

this allows the agent to receive varying feedback [11]. 

Therefore, POMDP provides a unified framework to handle 

these two sources of uncertainties: the control effects of 

actions and information-gathering effects of actions. Hence, 

POMDP provides a method of making tradeoffs between 

choosing actions to change the world states and actions to 

collect information for the agent. Thus, a method is 

presented that takes into account the risk associated with a 

given circumstance and allows the agent to gather and utilize 

data to maximize its expected reward or minimize 

unpredictability and maximize safety.  

2.3. TILEWORLD 

TILEWORLD was initially introduced in [3] as a system 

with a highly parameterized environment which could be 

used to investigate reasoning in agents.  

The TILEWORLD is inherently dynamic: starting in some 

randomly generated world state, based on parameters set by 

the experimenter, it changes over time in discrete steps, with 

the appearance and disappearance of holes. An agent can 

move up, down, left, or right, and can move tiles towards 

holes. The experimenter can set a number of TILEWORLD 

parameters, including: the frequency of appearance and 
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disappearance of tiles, obstacles, and holes; the shape of 

distributions of scores associated with holes; and the choice 

between hard bounds (instantaneous) or soft bounds (slow 

decrease in value) for the disappearance of holes. In the 

TILEWORLD, holes appear randomly and exist for as long 

as their defined life-expectancy, unless they disappear 

because of the agent's actions. The interval between the 

appearance of successive holes is called the hole gestation 

time. 

The TILEWORLD agent is a 2-dimentional grid on which 

an agent scores points by moving to targets, known as holes. 

When the agent reaches a hole, the hole is filled, and 

disappears. The task is complicated by the presence of fixed 

obstacles. The TILEWORLD is four connected, that is the 

agent can move horizontally or vertically, but not diagonally. 

A lower bound on the shortest path length between two 

points is thus given by the Manhattan distance ( )x y  . 

2.4. EBDI-POMDP Agent 

EBDI-POMDP agent has argued in [1] which has 

provided a model-based regulation mechanism to support 

planning in unknown dynamic environments. It has 

applications to danger theory with deliberative and 

anticipatory support to respond to environmental triggers. In 

this way deliberation is a response to danger signals with 

intentions set and reviewed based on the benefits (utility) 

that may accrue from enacting these intentions. In other 

words, reaction of autonomic systems‟ to a known stimulus 

has to be analyzed based on logics, deontics reasoning   

and overall effect (or utility). So actions may be selected  

for predictability and safety by a rigorous risk assessment 

being performed at each agent autonomously –defined, 

deliberation cycle. That is the agent selects its intentions 

based on the best available data to optimise the system‟s 

operation. Additionally the agent is capable of reviewing  

its own operation in terms of optimising its 

observe-deliberate-act sequence. Theoretical and 

experimental work into an efficient and effective 

reconsideration of intentions in autonomous Extended 

Belief-Desire-Intention (EBDI) agents was presented. The 

framework integrates an abstract EBDI agent architecture 

with decision theoretic approaches; Partially Observable 

Markov Decision Processes (POMDP). Agents were used as 

proactive autonomous social entities that can adapt to 

environmental changes and solve problems, which they 

encounter during execution, with limited or no human 

intervention. The conclusion of this work that the knowledge 

base is not scalable in highly dynamic worlds; however, 

interesting future work which mentioned in [1] includes 

investigating ways to develop methods for the agent to 

improve its behaviour in complex domains. For this the 

POMDP-EBDI agent is a promising candidate to facilitate 

rigorous logical monitoring and tending of large complex 

systems. 

The POMDP framework is used a domain independent 

meta level reasoning component, which let the agent to 

control the process by EBDI model. Meta level 

EBDI-POMDP defined as (S,A,Ω,O,R, ). Where the state s

  S in this model denotes an internal state of the agent, 

containing a belief part and intention part, actions and 

rewards, Ω denotes the observations, the observation 

function O, and the state transition function   to designer 

for now. 

Since the POMDP used to model EBDI, the agent either 

performs an object level action (act) or the agent deliberates 

(del) [1]. 

Thus A={act,del} denotes whether the agent acts or 

deliberates. Because the optimality criterion of policies 

depends on the reward structure of the POMDP, the rewards 

for action act and deliberation del in state sS define as 

follows: 

int
( )

( , )
( )

W ifa act
R s a

W s ifa del

s   
  

  

        (1) 

Where int
S S refers to the state the agent intends to be in 

while currently being in state s. 

With respect to this last intuition, however, must mention 

that the real reward for deliberation is indirectly defined, by 

the very nature of POMDP, as the expected worth of future 

states in which the agent has correct intentions. 

As intentions resist reconsideration, the agent prefers 

action over deliberation and the implementation of the 

reward structure should thus favour action if the rewards are 

equivalent. 

2.5. Self-Organising System 

The essence of self-organization is that system structure 

often appears without explicit pressure or involvement from 

outside the system. In other words, the constraints on form 

(i.e. organization) of interest to us are internal to the system, 

resulting from the interactions among the components    

and usually independent of the physical nature of those 

components. The organization can evolve in either time or 

space, maintain a stable form or show transient phenomena. 

General resource flows within self-organized systems are 

expected (dissipation), although not critical to the concept 

itself. The field of self-organization seeks general rules about 

the growth and evolution of systemic structure, the forms it 

might take, and finally methods that predict the future 

organization that will result from changes made to the 

underlying components. The results are expected to be 

applicable to all other systems exhibiting similar network 

characteristics. The main current scientific theory related to 

self-organization is Complexity Theory, which states: 

"Critically interacting components self-organize to form 

potentially evolving structures exhibiting a hierarchy of 

emergent system properties" [12]. 

The elements of this definition relate to the following:  

  Critically Interacting - System is information rich, 

neither static nor chaotic  

  Components - Modularity and autonomy of part 

behaviour implied  
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  Self-Organize - Attractor structure is generated by local 

contextual interactions  

  Potentially Evolving - Environmental variation selects 

and mutates attractors  

  Hierarchy - Multiple levels of structure and responses 

appear (hyperstructure)  

  Emergent System Properties - New features are evident 

which require a new vocabulary. 

For more details see [12]. 

3. Method 

3.1. Self-Organizing via EBDI-POMDP Agent 

Interesting developments of EBDI-POMDP agent when 

dynamism increasing is integrate it with Self-Organizing 

system, to diagnose complex environment's changes to 

decrease the uncertainty. In other words, we argue how can 

we develop EBDI-POMDP agent to do so in complex 

environment (variable change), when the environment 

indeterminist (when the agent is equipped with incomplete 

world description in terms of dynamism)? 

Also, we need to know; if we increase the level of 

dynamism how will be the agent‟s behavior?  

To answer these questions the authors integrate self 

organizing system with EBDI-POMDP agent as two layers 

working together for this task. First layer represents many 

simple agents, to read and send the information as perception 

to beliefs set of EBDI-POMDP agent which represents the 

second layer. 

3.2. General Framework 

In this section we formalize general development of our 

framework to diagnose risk and or benefit of above idea as 

observer architecture, and in the next section we formalize 

the idea for TILEWORLD simulation.    

Suppose we have system that finite set of properties X and 

suppose we know the initial values of them.  

Furthermore, if non-self enter the environment and there is 

a change in such property the state of property will change 

(ON or OFF) according with (appear or disappear of hole in 

TILEWORLD). 

So, to do self regulation by Self-Organizing system to 

diagnose non-self entity that entered the environment as a 

risk or benefit we need to do two steps as follow: 

1-  We need to determine signal zone, in other words 

determine specific system properties that already 

changed after non-self entered the environment 

(attention switching). 

2-  We need to know what that change represent is for 

whole system, such as a risk or benefit? 

To do above steps we will use two layers of agents. 

 Firs Layer   

This layer contains number of simple agents embedded in 

nodes as fixed reader agents, in other words, each node 

includes one simple agent to read and send the value of 

property at any time.  

Suppose we have finite set of properties X which 

represents all system properties, since  

11 12( , , ....., ,.... )ij NNX x x x x      (2) 

Let p X , represents the set of properties may be 

changed or not after non-self entered the environment.  

N represents number of all cells (nodes). 

Now, we can use fixed simple agents to determine p .  

The simple agent which embedded in each node will read 

the value of property and it save triple 
'

( , , )v vv ijij ij
 , and 

send ijv  to EBDI-POMDP agent‟s beliefs, since, 

v
ij

 Represents the value of property ijx  before non-self 

entered the environment (initial value of ijx ). 

'v
ij

 Represents the value of property ijx  after non-self 

entered the environment. 

'
0

1

if v vij ijv
ij

otherwise

 
  



           (3) 

1, 2,..., 1,2,.....,i N and j N    

After we finish this step will have set of properties that 

concerning with the change in environment (attention 

switching), to send it as matrix information to 

EBDI-POMDP agent‟s beliefs.  

 Second Layer 

This layer uses the knowledge base model EBDI-POMDP 

agent and backward information as artificial immune system 

to determine the changes in specific properties, either 

represent a risk or benefit by the same diagnosing way which 

done in [1], but with decreasing the uncertainty which yields 

from combining Self-Organizing system to model. 

3.3. Framework via TILEWORLD 

This section presents formal model‟s parameter in 

TILEWORLD.   

Let 11 12( , , ....., ,.... )ij NNX x x x x , represents 

the states set of cells (appearance or disappearance of hole) 

in TILEWORLD, since N represents number of cells in 

TILEWORLD. 

p X , represent the set of cells except obstacle‟s cells. 

11{ ,... , ... , }ij nmp x x x , ,n m N     (4) 

v
ij

, represents the state of cell when hole OFF. 

'v
ij

, represents the state of cell when hole ON. 
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In this moment it is possible to use number of simple 

agents embedding in TILEWORLD cells except cells which 

already have obstacle. Each cell includes simple agent k 

which defined as follow: 

 

Step1.      Procedure  k 

Step2.          ( , )foreach i j p do  

Step3.                 ijget x  

Step4.                  if  ijx = “ON” 

Step5.                          set ijv  =1 

Step6.                 else   

Step7.                        set ijv  = 0 

Step8.         end foreach 

Step9.        end Procedure  

Figure 1.  Shows fixed simple agents in TILEWORLD to read value of 

each cell 

By steps from Step1-Step3 in Fig.1, we will get 

information from all cells in p, by steps from Step4-Step7 we 

will decide if the state of hole appearance or not. 

Now, ijv  in Eq.3 can redefine   as follow: 

'
1

0

if x v
ij ijv

ij
otherwise

 
  



            (5) 

1, 2,..., 1,2,.....,

,

i n and j m

n N m N

  

 
 

and ijx  represents the state of hole in cell ,i j . 

The effect of this process will be matrix for all agents 

11 1

1

....

: ::::: :

....

m

n nm

k k

k k

 
 
 
  

. 

For instance 

0 1 0 1

0 0 0 0

0 0 0 0

1 1 0 0

 
 
 
 
 
 

 means, there are 4 holes 

appearance in our small grid in this example and the 

locations of these holes are; (1,2),(1,4),(4,1) and (4,2). So, 

EBDI-POMDP agent will chose closer hole of it location to 

fill it as we explained in sect. 2.3. 

4. Empirical Investigations 

The TILEWORLD is easy to implement, but still offers 

enough complexity to investigate research questions. 

Additionally, for the development of theoretical ideas on 

such research questions, the TILEWORLD offers a very 

intuitive domain to concretely formulate otherwise very 

abstract concepts. The task of an agent in the TILEWORLD 

is to visit holes in order to gain as many points as possible. 

The agent decides which hole to visit based on hole distances 

- it always chooses to visit the nearest hole. The same 

simplifications used in the original TILEWORLD of Kinny 

and Georgeff [13] and Obied and others [1] are assumed here 

except some parameters such as increasing dynamism, 

adding sensing cost in some experiments. 

Following [13] and [1] the effectiveness ε of an agent is 

defined as the ratio of the actual score achieved by the agent 

to the score that could in principle have been achieved. This 

measurement is thus independent of the randomly distributed 

parameters in a trial. Also, the Dynamism γ (an integer in the 

range 1 to 120 denoted by γ) represents the ratio between the 

world clock rate and the agent clock rate. If γ =1 then the 

world executes one cycle for every cycle executed by the 

agent. Larger values of γ mean that the environment is 

executing more cycles for every agent cycle; if γ > 1 then the 

information the agent has about its environment may not 

necessarily be up to date In Table 1 an overview of the values 

of relevant parameters that were used in the experiments are 

given; [ , ]x y  denotes a uniform distribution from x  to y

and ( , )x y  denotes the range from x  to y . Note that 

each TILEWORLD was run for 15,000 time steps, and each 

run was repeated 50 times, in order to eliminate experimental 

error. Wall represents obstacles, hole life expectancy l 

represents hole age before it disappear and gestation time g 

represents elapsed time between two successive appearances 

of holes. 

Table 1.  Overview of the experiment parameters 

Parameter Value 

World dimension 20 

Hole score 10 

Hole life-expectancy l [240,960] 

Hole gestation time g [60,240] 

Dynamism (γ) (1,120) 

Initial no. of holes 4 

Number of time-steps 15,000 

Number of trials 50 

Wall life time   

Wall number 10 

Replanning rate 0 or   

Planning cost (p) 0.5,1,2, or 4 

4.1. EBDI-POMDP-SO 

This section produces new version of EBDI-POMDP 

agent, so to distinguish between new agent and other agent 

which used in [1], let us call new agent in this section as 

EBDI-POMDP-SO agent.  

Solving Self-Regulation agent (EBDI-POMDP-SO) for 

TILEWORLD domain delivers an optimal domain 
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dependent reconsideration strategy: the optimal 

EBDI-POMDP-SO policy lets the agent deliberate when a 

hole appears that is closer than the intended hole (but not on 

the path to the intended hole), and when the intended hole 

disappears. The experiment results shown in Fig.2, our 

results in this Figure is overall better than results as obtained 

in [1], as a result from combining Knowledge base and Self 

Organizing System.  

Self-Organizing System represents the first layer of 

EBDI-POMDP-SO agent as a parallel search algorithm to 

provide good awareness (sensing) about environment, and 

send this information to EBDI-POMDP which represents a 

second layer of EBDI-POMDP-SO agent.  

In addition, we can see in Fig.2 high dynamism of 

TILEWORLD about 120, which represents high complex 

environment rate with clear improvement of agent 

behaviour. 

However, the agent succeeds in filling those holes whose 

life-expectancy are sufficiently long, and even in highly 

dynamic world; there will some holes that meet these criteria. 

Also the agent may success fill only some small fraction of 

the holes. 

In Fig.3 it is clear to see the different between the two 

agents and EBDI-POMDP-SO outperforms other agent 

depending on planning time cost. The deferent between 

behaviors resulted from knowledge received from sensing 

operation which represents better than general knowledge 

which used in EBDI-POMDP agent without sensing 

operation.  

 

  

Figure 2.  Shows Self-Regulation (EBDI-POMDP-SO) Agent in TILEWORLD 

 

 

Figure 3.  Shows the comparison between EBDI-POMDP-SO agent and EBDI-POMDP agent which presented in [1] when p=0.5, 1, 2 & 4
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4.2. Sensing Policy 

Unlike the above experiment that assumed the sensing 

cost to be nil, this test will evaluate the EBDI-POMDP-SO 

agent's behaviour if this cost was not zero. To this end,     

a brief comparison between EBDI-POMDP and 

EBDI-POMDP-SO models is required. Whereby, if sensing 

cost is zero (or sensing is free) the EBDI-POMDP agent will 

request sensing information at every step. However, if 

sensing is not free this process will be expensive, hence, the 

agent will have to deliberate to determine how and when 

sensing information is queried. In other words, an optimal 

sensing policy for EBDI-POMDP agent will be required.  

Hence, we suggest adding the new agent as a filter to 

evaluate and analyse sensing information an event before 

they are sent to EBDI-POMDP agent (the upper layer). Thus, 

the observer (filter) represents middle layer between simple 

agents and EBDI-POMDP agent. Such a filtering process 

can be outlined as follows: 

Simple agents (or self-organising particles) scan the 

environment and broadcast the environment state according 

to a defined policy. For instance, sending the state of a given 

hole at a regular clock cycle.  

Filter evaluates the environment state information and 

send them to EBDI-POMDP agent in accordance with a 

defined filtering policy. For instance, if the environment 

state changed. 

Observer receives feedback from EBDI-POMDP agent 

concerning which hole was visited. 

Fig. 4 shows the observer algorithm, in which the observer 

in Step1 beliefs of EBDI-POMDP agent, Step2 to Step4 get 

information from simple agents that scan the environment 

and sending the information to observer at any moment     

of time. In Step5 to Step9 the observer evaluates the 

information about the environment by Boolean algebra 

function and send information as beliefs set to 

EBDI-POMDP agent if the information is important (i.e., in 

TILEWORLD if new hole appears closer than intended hole 

or if intended hole disappears), and end the process if not. 

 

 Step1.  B //Beliefs of EBDI-POMDP 

 Step2.  Procedure  m 

 Step3. ( , )foreach i j p do  

 Step4.        ijKget  

 Step5.            if ijk = “important” 

 Step6.                Update B 

 Step7.            else   

 Step8.         end foreach 

 Step9.        end Procedure  

Figure 4.  Shows observer algorithm 

The solution of the sensing policy and cost will follow the 

same method in section 3.3 for computing the planning cost 

and policy. Thus A = {send, end} denotes whether the agent 

sends information to Beliefs set or end sensing processes. 

Because the optimality criterion of policies depends on the 

reward structure of the POMDP, the rewards for action send 

and end the sensing process end in state sS define as 

follows: 

( )
( , )

( )

W if a sendsimp
R s a

W s if a end

  
  

  

      (6) 

Where impS S refers to the state of the information is 

important (some new hole appear or intended hole 

disappeared) to be in while currently being in state s. It is 

important to mention again EBDI-POMDP agent receives 

perception as beliefs depending on a sensing policy not on its 

query, in other words, it receives perception information 

regardless of whether the sensing operation is free or not. 

The use of filtering and sensing policies simplifies the 

adaptation of the deliberative regulation process provided by 

the EBDI-POMDP agent.  

4.2.1. Illustrative Example  

In Fig. 5 (a) represents current state of EBDI-POMDP 

agent, number in blue colour represents EBDI-POMDP 

agent current place, red colour represents intended hole. 

While, in Fig.5 (b-e) represent varying perception states in 

observer, which are received from simple agents. In state (b) 

the perception shows some hole (not intended hole) has 

disappeared, hence the observer will not send notification of 

this event to EBDI-POMDP agent because it is not an 

intended hole. In addition, in state (c) the perception shows 

an appearance of a new hole, and because it is not closer than 

the intended hole the observer does not send a notification 

message to EBDI-POMDP agent. However, in state (d) the 

perception shows the intended hole has disappeared, and 

then observer sends the notification to EBDI-POMDP agent 

to reconsider its intentions. Also, in state (e) the observer 

informs the EBDI-POMDP agent because it has detected the 

appearance of a new hole closer than the intended hole. 

4.2.2. Experimental Results 

As discussed above, often the optimal sensing policy is not 

affected by the sensing cost, as the sensing agents will send 

sensing information regardless of cost. Though, this not 

always so, hence to take sensing cost into account to evaluate 

EBDI-POMDP agent behaviour a new condition need to be 

added in this policy. For instance, if the request of sensing 

information maximises the EBDI-POMDP agent's 

deliberation utility, then it will be sent to agent otherwise end 

the process. Thus, the addition of this condition to the 

Boolean algebra function is shown in step 3 (Fig. 4), and can 

be solved by the use of observer layer with its own policy. 

This Simplify the evaluation task of the EBDI-POMDP 

agent's behaviour in varying sensing cost.  
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0   0   0   0       →      0   0   0   0     →      0   0   0   0      →    0   0   0   0 
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0   0   0   0             0   0   0   1              0   0   0   1              0   0   0    1 

 (b)                               (c)                             (d)                          (e) 

Figure 5.  Shows current state of EBDI-POMDP Agent and four perception steps in observer received from simple agents 

 

Figure 6.  An EBDI-POMDP Agent in varying sensing cost (q = 0, 1, 2 and 4) 

Now, by using the same information in Table 1, and by 

supposing the planning and moving cost is one time unit and 

varying sensing cost q=0,1,2,4 time unit, we can plot the 

experimental results as in Fig. 6 which shows sensing cost 

effect in EBDI-POMDP agent behaviour in TILEWORLD. 

In Fig. 6 an EBDI-POMDP agent in varying sensing cost 

which explicit effected in its behaviour. So, cheapest sensing 

cost very important to provide EBDI-POMDP agent 

important information about the change in the world, 

especially, when intended hole disappears or new hole closer 

than intended hole is appear.    

4.3. Dynamic Sensing Cost 

Previous sections have shown that the sensing cost affects 

EBDI-POMDP agent behaviour in specific domain size with 

varying sensing cost, but we have supposed the sensing cost 

is static (constant) throughout a given experiment session. 

However, in reality the sensing cost may vary throughout a 

given trial.  

To study, this requirement, in this section we suppose that 

the sensing cost changes randomly over the grid, this means 

that the Boolean algebra function mentioned above will send 

sensing information if it is important and when sensing cost 

is within the cost interval x q y  . Where x  is the 

minimum value of sensing cost and y  is the maximum 

value. In this experiment, a uniform distribution of sensing 

cost within [0, 4] interval. This means that the minimum 

value of sensing cost is zero and the maximum value is 4, 

with uniform probability distribution. Fig.7 shows 

EBDI-POMDP agent in TILEWORLD size 20×20 with one 

time unit of planning cost and sensing cost q changing 

randomly within [0, 4] interval. Fig.7, illustrates the 

EBDI-POMDP agent fluctuation due to random changing 

value of the sensing cost. 

4.4. Dynamic Planning Cost 

This section deals with planning cost in the same way as 

the randomly changing sensing cost described in the 

EBDI-POMDP Agent
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previous section. Fig. 8, illustrates the fluctuation of the 

agent performance. The behavior of EBDI-POMDP agent in 

Fig.8 represents fluctuations among the agent's previous 

behaviors when planning cost value p fluctuates among 1, 2, 

and 4.  

4.5. Increasing Size of World 

This section tries to generalize the deliberative regulation 

policies and the associated mechanisms detailed in previous 

sections, in order to cope with the TILEWORLD size 

increase from 20×20 to 100×100. To this end, the experiment 

studies two aspects, namely: (i) the effect of the world size 

increases on sensing process, (ii) on planning process? 

4.5.1. Effect on Sensing Process  

This considers how one observer (filter) can control a big, 

dynamic and noisy area, especially, when sensing cost 

increases. The observer in this case will receive poor 

environment‟s sensing information from simple agents. As 

when the TILEWORLD size increases the state space 

increases too. For instance, the state space in the 100×100 

TILEWORLD case is 1002, whereas in the case of 20×20 the 

state space is equal to 202. This affects the planning 

complexity. 

Now, by using the same parameters of experiment in 

previous sections shown in Table (1) with the same number 

of obstacles but in average distance of world d  60 and 

planning (moving) cost is one time unit, with varying sensing 

cost q.  

The experiment results shown in Fig. 9 show worse 

behaviour of EBDI-POMDP agent in TILEWORLD at all. 

Thus, to improve this behaviour we need many observers 

working together in multiple zone of the world. Each 

observer responsible of its zone and collaborates with other 

observers. So, if we divide the world to five zones, we need 

five observers to obtain the behavior of EBDI-POMDP agent 

in Fig. 6 in sect. 4.2.2.  

Fig.10 illustrates the different EBDI-POMDP agent 

behaviours in varying sensing cost. Where the first three 

curves represent EBDI-POMDP agent in world size 20×20 

and other three curves represent EBDI-POMDP agent in 

world size 100×100. 

4.5.2. Effect on Planning Process 

Evidently, as argued above the use of one deliberative 

agent (EBDI-POMDP) will perform poorly when the world 

size increases to 100×100 especially when dynamism 

increases. However, it is possible to show EBDI-POMDP 

agent's behaviour in TILEWORLD size 100×100 with 

varying planning cost and one time unite of sensing cost for 

five observers in the world, each observer works in its zone 

(Fig. 11). 

The worse behaviour of EBDI-POMDP agent as shown in 

Fig. 11 reflects the huge and long deliberative tasks 

undertaken by agent especially when compounded by the 

increasing dynamism. In other words, to improve the 

deliberative agent‟s performance to the level obtained in Fig. 

2 when the TILEWORLD size was 20x20, one alternative 

solution is to use at least 5 collaborative deliberative agent 

for instance scanning a 20×20 partition of the 100x100 

TILEWORLD.  

In Fig. 12, illustrates the behaviour of one EBDI-POMDP 

agent working in its 20×20 zone (partition), with varying 

planning cost p*=1, 2 and 4. Also, Fig. 12 shows the same 

results in Fig. 2 but with sensing cost one time unite, while in 

Fig. 2 was suppose sensing cost to be nil. 

 

 

Figure 7.  Shows EBDI-POMDP Agent with one time unit of planning cost and random change of sensing cost (q ~ [0, 4]) 
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Figure 8.  Shows EBDI-POMDP Agent with one time unit of sensing cost and random change of planning cost (P* ~ [1, 4]) 

 

Figure 9.  Shows EBDI-POMDP Agent in 100×100 world size with varying sensing cost (q=0,1,2 and 4) 

 

Figure 10.  Shows comparison between EBDI-POMDP Agent behaviors, the first three curves represent the agent world size 20×20 and  the other three 

curves represent the agent in 100×100 world size, and varying sensing cost (q=0,1,2 and 4) 
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Figure 11.  Shows EBDI-POMDP Agent in 100×100 size of world with one time unit sensing cost and varying planning cost (p=1,2 & 4) 

 

Figure 12.  Shows optimal behavior of EBDI-POMDP Agent in 20×20 world size with one time unit of sensing cost and varying planning cost (p*= 1, 2 and 

4) 

Furthermore, a comparison between the agent 

performance shown in Fig. 11 and Fig.12 is presented in Fig. 

13, in which the first three curves represent EBDI-POMDP 

agent as a part of five agents, each agent works in its 20×20 

zone and others three curves represent EBDI-POMDP agent 

working alone in world size 100×100.  

To study the EBDI-POMDP agent's performance if the 

world size vary randomly throughout a given experiment, the 

average distance of world d has been used to represent the 

mean distance of the world at any given time t. Where d 

value can be defined as 12 60d  , that is, the average 

distance of world d ranges from 12 (average distance of 

world 20×20) to 60 (average distance of world 100×100). 

The other parameters are shown in Table (1).  

Fig. 14 and Fig. 15 show EBDI-POMDP agent 

performance in dynamic world size starting from 20×20 

increasing to 100×100, when sensing cost q= 2 and planning 

cost p = 2 respectively. 

In Fig.14: Shows EBDI-POMDP Agent in multiple world 

size, the first curve represents the agent in 20×20, the second 

curve represents the agent in world starting from 20×20 

increasing to 100×100, and the last curve represents the 

agent in 100×100, when sensing cost q = 2, and planning cost 

one time unit. 

In Fig. 15 the first curve represents the agent in world size 

20×20 with planning cost p=2, the second curve represents 

EBDI-POMDP agent in world size starting from 20×20 

increasing to 100×100 with planning cost p=2, and the last 

curve shows the agent in world size 100×100 when p=2, and 

sensing cost one time unit.  

In addition, it is possible to show EBDI-POMDP agent in 

world size starting from 100×100 decreasing to 20×20, Fig. 
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16 and Fig. 17 show these behaviours when sensing cost q=2 

and planning cost p=2 respectively. 

In Fig. 16 the first curve represents the agent in world size 

20×20 with sensing cost q=2, the second curve represents 

EBDI-POMDP agent in world size starting from 100×100 

decreasing to 20×20 with sensing cost q=2, and the last curve 

shows the agent in world size 100×100 when q=2, and 

planning cost one time unit. 

In Fig. 17 the first curve represents the agent in world size 

20×20 with planning cost p=2, the second curve represents 

EBDI-POMDP agent in world size starting from 100×100 

decreasing to 20×20 with planning cost p=2, and the last 

curve shows the agent in world size 100×100 when p=2, and 

sensing cost one time unit. 

Finally, an interesting comparison between 

EBDI-POMDP agent's behaviours in world size starting 

from 20×20 increasing to 100×100, and starting from 

100×100 decreasing to 20×20, Fig. 18 and Fig. 19 show this 

comparison for sensing cost q=2 and planning cost p=2 

respectively. 

In Fig. 18 and Fig. 19 the black curve represents 

EBDI-POMDP agent in world size starting from 20×20 

increasing to 100×100, also it is started with higher 

effectiveness than red curve which represents 

EBDI-POMDP agent in world size starting from 100×100 

decreasing to 20×20, but when dynamism increases and the 

world size starting to change the red curve outperforms the 

black curve. 

 

 

Figure 13.  Shows comparison between two deliberative agents, once embedded in its zone size 20×20 and the second in world size 100×100, with varying 

planning cost (p, p* =1,2 and 4) 

 

Figure 14.  Shows EBDI-POMDP Agent in multiple world size, the first curve represents the agent in 20×20, the second curve represents the agent in world 

starting from 20×20 increasing to 100×100, and the last curve represents the agent in 100×100, when sensing cost q = 2, and planning cost one time unit 
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Figure 15.  Shows EBDI-POMDP Agent in multiple world size, the first curve represents the agent in 20×20, the second curve represents the agent in world 

starting from 20×20 increasing to 100×100, and the last curve represents the agent in 100×100, when planning  cost p = 2, and sensing cost one time unit 

 

Figure 16.  Shows EBDI-POMDP Agent in multiple world size, the first curve represents the agent in 20×20, the second curve represents the agent in world 

starting from 100×100 decreasing to 20×20, and the last curve represents the agent in 100×100, when sensing cost q = 2, and planning cost one time unit 

 

Figure 17.  Shows EBDI-POMDP Agent in multiple world size, the first curve represents the agent in 20×20, the second curve represents the agent in world 

starting from 100×100 decreasing to 20×20, and the last curve represents the agent in 100×100, when planning cost p = 2, and sensing cost one-time unit 
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Figure 18.  Shows EBDI-POMDP Agent in multiple world size, the black curve represents the agent in world starting from 20×20 increasing to 100×100, 

the red curve represents the agent in world starting from 100×100 decreasing to 20×20, when sensing cost q = 2, and planning cost one time unit 

 

Figure 19.  Shows EBDI-POMDP Agent in multiple world size, the black curve represents the agent in world starting from 20×20 increasing to 100×100, 

the red curve represents the agent in world starting from 100×100 decreasing to 20×20, when planning cost p = 2, and sensing cost one time unit 

4.6. Discussion 

In this article, we extended the TILEWORLD experiments 

performed in [1], this extension used the self-organizing 

agent model to scan the environment and broadcast the event 

in accordance with a specified filtering and sensing policy 

set. This extension provided a general framework to enable 

the use of meta-layering and reasoning to improve the 

performance of EBDI-POMDP deliberative regulation 

taking into account changing world size, and planning, 

sensing and feedback (filtering) policies.  

This framework enables designers with a mathematical 

model to use hierarchical clustering and data aggregation and 

filtering to integrate knowledge-based and self-organizing 

system based regulation. For instance, as detailed in method 

described in this article: 

  First Layer: which contains a number of simple agents 

(even finite state automata) embedded in each node. 

This is for instance providing sensing information for a 

given hole (or even a composite TILEWORLD).  

  Middle layer: which filters the world sensing 

information received (or observed) from simple agents. 

  Second Layer: which uses the knowledge base model 

EBDI-POMDP agent and backward information as 

artificial immune system to determine the changes in 

specific properties, either represent a risk or benefit by 

the same diagnosing way which done in [1] but with 

decreasing the uncertainty which yields from 

combining self-organizing system to model. The 

optimal EBDI-POMDP policy lets the agent deliberate 

when a hole appears that is closer than the intended hole 
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(but not on the path to the intended hole), and when the 

intended hole disappears.  

The experimental results have shown an overall improved 

agent deliberation performance compared to those obtained 

in [1]. In other words, the uncertainty decreased due to 

knowledge received from the sensing layer.  

However, in high dynamic domain the agent succeeds in 

filling those holes whose life-expectancy are sufficiently 

long, and even in highly dynamic world. There will be some 

holes that meet these criteria. Hence, the agent may success 

to fill only a small fraction of the holes. 

5. Conclusions 

Situated agents are artificial systems capable of intelligent, 

effective behaviour in dynamic and unpredictable 

environments. In this paper, we extended the TILEWORLD 

experiments performed earlier by Obied, Taleb and Randles 

in [1]; Interesting developments of EBDI-POMDP agent 

when dynamism increasing is integrate it with 

Self-Organizing system, to diagnose complex environment's 

changes to decrease the uncertainty. This article clear 

distinguishes between sensing policy and sensing cost, since; 

it described experiments examining the efficacy of dynamic 

sensing policy when the time cost of processing sensor 

information is significant. This paper demonstrates that 

several expected features of sensing cost and planning cost 

do arise in empirical tests. In particular, it is trying to answer 

the question is how would scalability of agent improve? The 

observations that for a given sensing cost and degree of 

world dynamism, an optimal sensing rate exists and, it is 

shows how this optimal rate is affected by changes in these 

parameters. The results indicate that and dynamic sensing 

policies with static and dynamic sensing and\or planning cost 

can be successful. Furthermore, it generalized the effects for 

larger world size, an important conclusion from above 

experiments the behavior of EBDI-POMDP agent improves 

if the number of agents increases in the same zone. Also, if 

the agent got started from specific world size which changes 

over the agent's trail to another world size (increases or 

decreases) the EBDI-POMDP agent still effective in varying 

dynamism.  

Moreover, to get sensing operation cheaper we need to 

change simple agents from full and fixed agents to agents do 

sensing by random search, which represents interesting 

future work for this article. 
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