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Abstract  The aim of this work is to measure the influence of genome-wide association study single nucleotide 

polymorphisms (SNPs) in Alzheimer’s disease (AD). Data mining methods were tested. Data used were obtained from ADNI 

database. Subjects were 214 normal controls (NCs), 364 subjects with mild cognitive impairment (MCI), and 179 subjects 

with early AD. Linear regression (LR), random forests (RF) and multifactor dimensionality reduction (MDR) models were 

used. The results demonstrate the effectiveness of using RF and MDR. The MDR model produced the best sensitivity in all 

comparisons using only 3 SNPs. Regarding specificity, LR resulted in the best specificity in two comparisons (NC vs. MCI 

and MCI vs. AD), while MDR produced the best specificity in comparison of NC vs. AD. Several significant polymorphisms 

associated with MCI and AD were identified. RF and MDR are alternatives to existing methods for detecting genetic 

interactions. 

Keywords  Alzheimer’s disease, Single nucleotide polymorphisms, Linear regression, Random forest, Multifactor 

dimensionality reduction 

 

1. Introduction 

It is typically believed that genes and biomarkers involved 

in age-related diseases, such as coronary artery disease, 

cerebrovascular disease, and Alzheimer’s disease (AD), play 

a vital role in human ageing [1]. 

AD is a complex neurodegenerative disorder that affects 

up to eighty-one million persons worldwide [2]. AD is 

usually divided into two types: (i) cases with strong  

familial clustering, which often show Mendelian disease 

transmission mechanism and generally exhibit an early (65 

years) or very early (50 years) age of onset (collectively 

referred to as EOAD) and (ii) cases of later-onset age 

(LOAD) (typically well beyond 65 years), showing no 

obvious familial aggregation. A strong genetic basis is 

known for AD, with heritability estimates of approximately 

80% [3]. To identify the genes involved in the common 

LOAD, efforts have focused on conducting genome-wide 

association studies (GWAS) [4]. 

Whole-exome sequencing and GWAS are recommended 

to identify the risk gene variants for LOAD [5,6]. Their main 

role is to identify rare coding variants that were recently  
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recognized as a risk for LOAD [6-9]. With respect to 

common variants for AD, since 2009, five large GWAS and 

one meta-analysis have identified more than twenty loci 

significantly associated with LOAD. According to their 

potential role in the process causing AD, these genes were 

classified into three groups: (1) lipid metabolism: APOE, 

CLU, ABCA7 and SORL1; (2) immune response: CR1, 

CD33, MS4A, EPHA1, ABCA7, CLU, HLA-DRB5/DRB1 

and INPP5D; and (3) endocytosis: BIN1, PICALM, EPHA1, 

RIN3, CD2AP, SORL1, MEF2C and MADD [5,10-14]. 

However, in most cases, the identified single nucleotide 

polymorphisms (SNPs) have small to moderate effect sizes, 

and the proportion of heritability explained is quite modest. 

The aim of this work is to measure the influence of GWAS 

SNPs on gene expression in AD [15]. Due to limitations of 

the linear model and other parametric statistical models, 

machine learning and data mining methods will be tested for 

the same data, mainly random forests (RF) and multifactor 

dimensionality reduction (MDR), as explained by Moore   

et al. (2010) [16]. 

2. Methods 

2.1. Experimental Setup 

The data used in the present study were downloaded from 

the Alzheimer’s Disease Neuroimaging Initiative (ADNI) 

database. The ADNI is a consortium of universities and 

medical centers that was established to develop standardized 
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imaging techniques and biomarker procedures in normal 

subjects, subjects with MCI, and subjects with early AD 

[17]. 

The subjects for the study were classified as normal 

controls (NC), subjects with MCI, or subjects with early AD. 

The criteria for classification of the subjects were described 

in McKhann et al. (1984) [18]. 

2.2. Dataset 

In the present study, data were downloaded from the 

ADNI web site (ADNI 1 data) in November 2016. In     

this work, only ADNI1 subjects with all detailed clinical 

information and genotype data were included. 

Whole-genome sequencing (WGS) data of 819 individuals 

were obtained from the ADNI database 

(http://adni.loni.usc.edu/). An initial quality control 

(QC)-based filtering step was performed using PLINK [19] 

and applied to the selected datasets. The following QC 

procedures were carried out in order, according to the steps 

suggested by Shi et al. (2012) [1]. 

  SNPs with genotyping rate less than 0.95 (--geno 0.05) 

were excluded from further analysis.  

  SNPs with a minor allele frequency (MAF) less than 

0.01 (--maf 0.01) were excluded from further analysis. 

  A list of SNPs with MAF between 0.01 and 0.05 was 

generated (--freq). Within this short list, SNPs with a 

genotyping rate less than 0.99 (--geno 0.01) were 

excluded (--exclude) from further analysis. 

  SNPs with a Hardy-Weinberg Equilibrium p value less 

than 0.001 (--hwe 0.001 --hwe-all) were excluded from 

further analysis, irrespective of status (AD cases or 

controls). 

  Individuals with a genotyping rate less than 0.95 

(--mind 0.05) were excluded from further analysis. 

Table 1.  Demographic characteristics of the participant groups 

Characteristic 

Study Group P value 

NC 

N=214 

MCI 

N=364 

AD 

N=179 
Overall 

NC vs. 

MCI 

NC vs. 

AD 

MCI vs. 

AD 

Age, mean ± SD, y 75.67±4.91 74.74±7.32 74.44±7.33 0.230    

Education, mean ± SD, y 16.07±2.80 15.68±3.04 14.65±3.17 <0.001 0.384 <0.001 0.001 

Gender,%    0.003 0.005 0.895 0.005 

- Males 53.7 65.7 53.1     

- Females 46.3 34.3 46.9     

Marital status,%    0.008 0.001 0.149 0.254 

- Married 70.8 80.5 80.4     

- Widowed 15.9 11.5 10.6     

- Divorced 6.5 6.6 5.0     

- Never Married 7.0 1.4 3.9     

Ethnicity, %    0.366    

- Not Hisp/Latino 98.6 96.7 96.6     

- Hisp/Latino 0.9 3.0 2.2     

- Unknown 0.5 0.3 1.1     

Table 2.  Gene regions and SNPs used in the current study 

Gene Location SNP ID 

ABCA7 19p13.3 rs3764650 

BIN1 2q14.3 rs744373, rs7561528 

CD2AP 6p12.3 rs9296559 

CD33 19q13.41 rs3865444 

CLU 8p21.1 rs11136000, rs7012010 

CR1 1q32.2 rs6701713, rs3818361, rs1408077 

EPHA1 7q35 rs11771145, rs11767557 

EXOC3L2 19q13.32 rs597668 

FERMT2 14q22.1 rs17125944 

MS4A6A/ MS4A4E 11q12.1 rs670139, rs610932 

NME8 7p14.1 rs2718058 

PICALM 11q14.2 rs3851179, rs541458, rs543293, rs677909 

SLC24A4 RIN3 14q32.12 rs10498633 

SORL1 11q24.1 rs2070045, rs661057 

APOE-ε4 19 Number of Copies 
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This yielded a total of 757 subjects, including 179 LOAD 

patients, 364 MCI patients and 214 NC.  

SNPs belonging to the top AD candidate genes listed on 

the AlzGene database [20], together with those listed by 

Lambert et al. (2013) [13] and Nettiksimmons et al. (2016) 

[21], were selected for use in this study if they were present 

in the ADNI database. Table 1 summarizes the demographic 

characteristics of the participant groups, while table 2 

summarizes the top candidate genes used in this study and 

their identification numbers, all of which have been 

proposed to play some role in AD. 

2.3. Linear Regression (LR) Model 

Binary logistic regression analysis was performed under 

an additive model that included age and sex as covariates to 

test for associations between each SNP allele and LOAD risk. 

The data were divided according to age into groups in which 

each contains an approximately equal number of samples. 

All significant SNPs were then put into a stepwise 

multivariable regression model to evaluate the association of 

SNPs and LOAD susceptibility. All statistical analyses were 

performed using IBM SPSS version 24.0. The adjusted p 

value of ≤0.05 was defined as statistically significant. 

A prediction score was developed using any significant 

SNP from the previous multivariable regression. This score 

was used for receiver operator characteristics (ROC) curve 

analysis with the calculation of the highest Youden Index to 

calculate best cut-off values that differentiate between the 

three diagnoses and for the evaluation of this prediction by 

sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV) and accuracy. 

2.4. Random Forests (RF) Model 

Twenty percent of the dataset was randomly selected and 

used as the training set, and consequently, the remaining   

80% served as the learning set. An RF model is a collection 

of individual decision tree classifiers, where each tree in the 

forest has been trained using a bootstrap sample of subjects 

from the data, and each attribute in the tree is chosen from 

among a random subset of attributes. Individual trees are 

constructed as follows from data having N samples and M 

attributes: 

1.  Choose a training set by selecting 20% of samples. 

2.  At each node in the tree, m attributes are randomly 

selected from the entire set of M attributes in the data 

(the magnitude of m is constant throughout the forest 

building). 

3.  Choose the best split at that node from among the m 

attributes. 

4.  Iterate the second and third steps until the tree is fully 

grown [16]. 

RF was performed using RapidMiner Studio software, 

version 8. The ReliefF algorithm was used for attribute 

selection. 

The RF model using regression resulted in a regression 

tree. This regression tree was used to calculate a prediction 

for diagnosis. ROC analysis with the calculation of the 

highest Youden Index was used to calculate best cut-off 

values for this prediction that differentiate between the three 

diagnoses. 

2.5. Multifactor Dimensionality Reduction (MDR) Model 

MDR is a computational strategy for detecting and 

characterizing non-linear patterns of gene–gene interactions 

in genetic association studies. MDR was developed as a 

genetic model-free non-parametric machine learning 

strategy for identifying combinations of genetic and 

environmental factors that are predictive of a discrete clinical 

end point [22]. 

MDR was performed using Multifactor Dimensionality 

Reduction Open Source software, version 3.0.2. 

2.6. Implementation 

An I7 PC was used together with the following software: 

  PLINK used for QC and was downloaded from the 

following site: 

http://pngu.mgh.harvard.edu/purcell/plink/. 

  IBM SPSS version 24.0 

  RapidMiner Studio software, version 8 (RapidMiner, 

Inc. Boston, MA, USA), downloaded from 

https://rapidminer.com. 

  Multifactor Dimensionality Reduction Open Source 

software, version 3.0.2, produced by The 

Computational Genetics Laboratory at Dartmouth 

Medical School, Hanover, New Hampshire, USA The 

software is available for download at 

http://www.multifactordimensionalityreduction.org/. 

3. Results 

3.1. Linear Regression (LR) Model 

The results of the multiple regression analysis are 

presented in table 3. The results indicate that the following 

SNPs are significant: APOE-ε4, CD33 (rs3865444), CR1 

(rs1408077), BIN1 (rs7561528) and EPHA1 (rs11771145). 

The prediction score resulting from the stepwise LR model 

was calculated using the following equation: 

Score = 0.823 + (APOE-ε4*0.322) + (BIN1_ 

rs7561528-AA*0.143) + (EPHA1_ rs11771145-AG*0.013) 

– (CD33_ rs3865444-TG*0.032) – (CR1_ 

rs1408077-GG*0.105) 

Table 4 shows the prediction accuracy results, sensitivity, 

and specificity for the prediction score. The highest accuracy 

occurred in differentiation between NC and AD (accuracy = 

70.2%, sensitivity = 69.8% and specificity = 70.64%), 

followed by differentiation between MCI and AD but with 

limited sensitivity (accuracy = 64.6%, sensitivity = 38.5% 

and specificity = 78.0%). The smallest accuracy occurred in 

the differentiation between NC and MCI (accuracy = 61.7%, 
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sensitivity = 57.4% and specificity = 70.6%). 

3.2. Random Forests (RF) Model 

A regression tree of significant predictor SNPs was 

constructed, and it contained the following SNPs:  

APOE-ε4, CR1 (rs3818361), PICALM (rs543293), EPHA1 

(rs11767557), NM8 (rs2718058), PICALM (rs3851179) and 

CLU (rs11136000). The regression tree is presented in Fig. 1. 

The prediction score increased from the NC to the MCI and 

to the AD groups. ROC analysis was used to detect the best 

cut-off values to differentiate between the three diagnoses, 

and 0.856 was found to differentiate between NC and MCI, 

0.866 to differentiate between NC and AD, and 0.864 to 

differentiate between MCI and AD. All were statistically 

significant. However, the results are highly significant for 

the differentiation of NC vs. MCI and NC vs. AD (p<0.001) 

and weakly significant (p=0.014) for the differentiation of 

MCI vs. AD. 

Table 5 shows the prediction accuracy results for the 

prediction score. The highest accuracy occurred in the 

differentiation between NC and AD (accuracy = 69.4%, 

sensitivity = 67.1% and specificity = 71.4%), followed by 

the differentiation between NC and MCI (accuracy = 61.6%, 

sensitivity = 58.3% and specificity = 67.7%). The lowest 

accuracy occurred in the differentiation between MCI and 

AD (accuracy = 52.6%, sensitivity = 67.1% and specificity = 

45.5%). 

Table 3.  Results of multiple regression 

Gene SNP Allele OR (95% C.I.) 
Adjusted 

P value 

A- Comparison of NC and MCI 

APOE-ε4 Number of Copies 

0 

1 

2 

Ref. 

2.709 (1.812-4.050) 

10.997 (3.813-31.713) 

<0.001 

<0.001 

<0.001 

CD33 rs3865444 

TT 

GG 

TG 

Ref. 

1.819 (0.905-3.655) 

2.453 (1.204-4.998) 

0.035 

0.093 

0.013 

B- Comparison of NC and AD 

APOE-ε4 Number of Copies 

0 

1 

2 

Ref. 

4.479 (2.745-7.307) 

23.870 (7.917-71.981) 

<0.001 

<0.001 

<0.001 

CR1 rs1408077 

TT 

GG 

TG 

Ref. 

0.148 (0.029-0.752) 

0.216 (0.041-1.125) 

0.034 

0.021 

0.069 

BIN1 rs7561528 

GG 

AA 

AG 

Ref. 

2.273 (1.083-4.771) 

1.588 (0.954-2.645) 

0.051 

0.030 

0.075 

C- Comparison of MCI and AD 

APOE-ε4 Number of Copies 

0 

1 

2 

Ref. 

1.575 (1.033-2.400) 

1.983 (1.123-3.501) 

0.029 

0.035 

0.018 

EPHA1 rs11771145 

GG 

AA 

AG 

Ref. 

0.572 (0.290-1.129) 

0.616 (0.412-0.921) 

0.038 

0.107 

0.018 

Table 4.  Prediction accuracy results for LR of the SNPs 

 
Sensitivity 

95% C.I. 

Specificity 

95% C.I. 

PPV 

95% C.I. 

NPV 

95% C.I. 

Accuracy 

95% C.I. 

NC vs. MCI 
57.4% 

52.2-62.6 

70.6% 

64.0-76.6 

76.8% 

71.1-80.4 

49.3% 

44.1-57.1 

61.7% 

57.7-65.7 

NC vs. AD 
69.8% 

62.5-76.5 

70.6% 

64.0-76.6 

66.5% 

59.5-73.6 

73.7% 

66.9-79.2 

70.2% 

65.4-74.7 

MCI vs. AD 
38.5% 

31.4-46.1 

78.0% 

73.4-82.2 

46.3% 

40.1-54.0 

72.1% 

65.3-77.0 

64.6% 

60.6-68.8 
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Figure 1.  Random Forests Model Regression Tree  

Table 5.  Prediction accuracy results for RF of the SNPs 

 
Sensitivity 

95% C.I. 

Specificity 

95% C.I. 

PPV 

95% C.I. 

NPV 

95% C.I. 

Accuracy 

95% C.I. 

NC vs. MCI 
58.3% 

52.4-63.9 

67.7% 

59.9-74.9 

76.9% 

72.3-80.9 

46.8% 

42.5-51.1 

61.6% 

56.9-66.1 

NC vs. AD 
67.1% 

58.9-74.7 

71.4% 

63.8-78.3 

68.1% 

61.9-73.6 

70.6% 

65.1-75.5 

69.4% 

63.9-74.5 

MCI vs. AD 
67.1% 

58.9-74.7 

45.5% 

39.7-51.3 

37.7% 

34.2-41.4 

73.8% 

68.4-78.5 

52.6% 

47.8-57.3 

Table 6.  Prediction accuracy results for MDR model of the SNPs 

Gene SNP 
OR 

95% C.I. 

Sensitivity 

95% C.I. 

Specificity 

95% C.I. 

PPV 

95% C.I. 

NPV 

95% C.I. 

Accuracy 

95% C.I. 

NC vs. MCI 

CD2AP + 

MS4A4E + 

APOE-ε4 

rs9296559 

rs670139 

Copies 

4.01 

2.80-5.74 

65.1% 

60.0-70.0 

68.2% 

61.5-74.4 

77.7% 

73.9-81.1 

53.5% 

49.3-57.6 

66.3% 

62.3-70.1 

NC vs. AD 

CR1+ 

EPHA1+ 

APOE-ε4 

rs1408077 

rs11771145 

Copies 

7.31 

4.67-11.43 

72.6% 

65.5-79.0 

73.4% 

66.9-79.2 

69.5% 

64.2-74.4 

76.2% 

71.4-80.5 

73.0% 

68.4-77.4 

MCI vs. AD 

CD2AP+ 

EPHA1+ 

SORL1 

rs9296559 

rs11771145 

rs661057 

3.72 

4.29-5.57 

76.5% 

69.6-82.5 

53.3% 

48.0-58.5 

44.6% 

42.3-48.0 

82.2% 

77.7-86.0 

61.0% 

56.7-65.1 

 

3.3. Multifactor Dimensionality Reduction (MDR) Model 

MDR did not result in a prediction score (as in linear 

regression and RF). However, it resulted in model using   

(if --- then). Table 6 shows the prediction accuracy results, 

sensitivity, and specificity for the MDR model of the SNPs. 

For the comparison of NC vs. MCI, MDR used CR2AP 

rs9296559, MS4A4E rs670139 and the APOE-ε4 gene, 

which resulted in an odds ratio (OR) of 4.01 and an accuracy 

of 66.3% (sensitivity = 65.1% and specificity = 68.2%). For 
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the comparison of NC vs. AD, MDR used CR1 rs1408077, 

EPHA1 rs11771145 and the APOE-ε4 gene, which resulted 

in an OR of 7.31 and accuracy of 73.0% (sensitivity = 72.6% 

and specificity = 73.4%). Comparison of MCI and AD used 

CD2AP rs9296559, EPHA1 rs11771145 and SORL1 

rs661057 and resulted in an OR of 3.72 and an accuracy of 

61.0% (sensitivity = 76.5% and specificity = 53.3%). 

4. Disscusions 

Prediction is often a primary goal of genomic data 

analyses. The complexity and high dimensionality of 

genomic data require flexible and powerful statistical 

learning tools for effective statistical analysis [23]. 

The LR model, together with other data mining and 

machine learning methods (RF and MDR), was tested for the 

same data, as suggested by Moore et al. (2010) [16]. 

The results demonstrated the effectiveness of using RF 

and MDR for identifying AD causal SNPs with acceptable 

accuracy. The MDR model produced the best sensitivity in 

all three comparisons (NC vs. MCI, NC vs. AD and MCI   

vs. AD) using only 3 SNPs for its algorithm. Regarding 

specificity, LR resulted in the best specificity in two 

comparisons (NC vs. MCI and MCI vs. AD), while MDR 

produced the best specificity in the comparison of NC vs. 

AD. Accordingly, despite the smaller number of predictors 

in MDR, the classification performance achieved slightly 

better performance than other methods. 

Previous studies concentrated on the use of RF for the 

analysis of genetic data and found that it is an effective tool 

for such settings [23]. Wu et al. (2003) [24] compared    

RF with linear discriminant analysis (LDA), quadratic 

discriminant analysis (QDA), k-nearest neighbour (KNN) 

classifier, bagging and boosting classification trees, and 

support vector machine (SVM) for the separation of early 

stage ovarian cancer samples from normal tissue samples 

based on mass spectrometry data. RF performed better than 

other methods in terms of prediction error rate. Lee et al. 

(2005) [25] presented a comprehensive comparison of RF to 

LDA, QDA, logistic regression, partial least square (PLS), 

KNN, neural network, SVM, and other classification 

methods using seven microarray gene expression data sets. 

RF showed the best performance among all tree-based 

methods. These results suggest that RF is capable of accurate 

prediction. Carcia-Magarinos et al. (2009) [26] evaluated RF, 

classification and regression trees (CART), and logistic 

regression (LR) in 99 simulated scenarios involving different 

sample sizes, missing data, minor allele frequencies, and 

other factors. RF was more powerful in detecting true 

association. CART, RF, and LR yielded similar results in 

terms of detection of true association; however, CART and 

RF outperformed LR with regard to classification error. 

Molinaro et al. (2011) [27] compared RF with Monte    

Carlo logic regression and MDR in testing SNPs in 

pro-inflammatory and immuno regulatory genes and the risk 

of non-Hodgkin lymphoma. RF achieved the best power in 

these studies. 

Sherif et al. (2015) [28] used the ADNI-1 dataset to test for 

the ability of different Bayesian network structure learning 

algorithms to detect causal AD SNPs and gene-SNP 

interactions. They tested four types of classification 

algorithms: naïve Bayes (NB), tree augmented Bayes (TAB), 

Markov blanket (MB), and minimal augmented Markov 

blanket (MAMB). They demonstrated the effectiveness of 

using these algorithms for identifying AD causal SNPs with 

acceptable accuracy. The results indicated that the SNP set 

detected by MB-based methods has a strong association with 

AD and achieved better performance than other methods. 

Abd El Hamid et al. (2016) [29] used correlation-based 

feature selection (CFS) and chi-square feature selection to 

find the most important SNPs. The SVM classifier of 

different kernels has been used on ADNI-1. The results 

revealed that the SVM-trained model using RBF kernel had a 

relatively high association with AD and achieved an 

accuracy of 76.7%. 

The good results obtained by MDR models encouraged 

the development of modified MDR models such as 

K-Nearest Neighbours MDR (KNN-MDR) [30] and 

two-step unified model-based MDR (UM-MDR) [31]. 

However, the high false positive rates, as with the current 

results, are still a problem. One obvious reason for this 

finding is multiple testing: the large number of performed 

tests necessitates that the significance threshold be properly 

adapted, which is not always easy to do [30]. 

5. Conclusions 

The prediction of complex disease phenotypes from 

genotype data is an emerging research goal. SNPs and their 

association with AD can provide insights into the underlying 

mechanisms and identify SNPs that may serve as targets for 

therapeutic intervention. In conclusion, several significant 

SNPs associated with MCI and AD were identified in the 

APOE ε4, CD33, CR1, BIN1, EPHA1 PICALM, NM8, CLU, 

CD2AP and SORL1 genes. 

The current study showed that RF and MDR are 

alternatives to other existing methods for detecting   

genetic interactions, with important advantages. Among the 

advantages of their use is that they are able to detect 

interactions between SNPs. Moreover, these methods are 

non-parametric with no assumed prior distribution, unlike 

many parametric statistical methods. Nevertheless, 

parameters (distances, number of neighbours, window 

definition) are available to allow flexibility in the search 

strategies, which could help make these methods useful. 

Finally, using WGS data and the top related genes or adding 

other modalities, such as PET, MRI, or CSF markers, may 

improve the prediction accuracy. 
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