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Abstract  The Golgi apparatus plays a key role in the secretory pathway of eukaryotic cells. The exact physiological roles 

and the molecular mechanism of regulation of dynamics of such membranous structures are not fully understood. According 

to time-lapse imaging data, Golgi-derived membrane structures are highly dynamic and vary in number and shape,        

i.e. globules, networks, branches, and tubules. Quantification of such dynamics is crucial for further understanding       

the mechanism of regulation of this organelle. However, reliable quantification methods for Golgi-derived tubules in   

living cells have not been established. In this study, we demonstrate a semi-automated and user-friendly method, 

2D-GolgiMorphSubtype system, to segment, classify, and quantify Golgi cisternae and Golgi-derived membrane structures. 

A combination of adaptive local normalization and Otsu’s thresholding methods are used for segmentation of subcellular 

objects. A total of 34 morphological features are used for classification by supervised machine learning. A bagged decision 

tree is chosen as a classifier for morphological subtypes. Correlation analysis is used to imply possible conversion between 

different Golgi tubule morphological subtypes. Our segmentation method was found to have the lowest root-mean square 

error (RMSE) compared to other segmentation methods. Our system revealed a negative correlation between tubule and 

Golgi cisternae intensity prior to blink-out, supporting that tubular structures are derived from the Golgi apparatus, and that 

this can be quantified from live cell movie data. Our system was able to classify seven morphological subtypes of 

Golgi-derived membrane structures, namely globules, lumps, loops, short, medium, long, and branch types with more than  

96% accuracy. Total area, number, and length of morphological subtypes were found to be useful for profiling the dynamics 

of Golgi-derived membranes from different movies. Negative correlations among morphological subtypes indicate that 

Golgi-derived membranes may interconvert between subtypes, whereas positive correlations imply that Golgi-derived 

membranes may be derived from a common source. Therefore, the 2D-GolgiMorphSubtype system is the first system for 

classification of morphological subtypes of Golgi cisternae and Golgi-derived membrane structures. Morphological features 

of subtypes are useful for characterization of Golgi tubule dynamics in time-lapse imaging experiments. We believe that our 

system is suitable for profiling the effects of drugs and gene perturbations on Golgi dynamics, thereby further enhancing our 

understanding of the molecular mechanisms that regulate membrane function in living cells.  

Keywords  Golgi-derived membrane tubules, Rab6A, 2D-GolgiMorphSubtype, Morphological subtypes, Classification 

 

1. Introduction 

Golgi and Golgi-derived membrane structures serve to 

sort and transport proteins and lipids to specific subcellular 

compartments [1]. Defects in regulation of the Golgi 

apparatus, or its associated transport pathways, are known to  
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be relevant to a variety of diseases [2-4]. For many years,  

the study of transport pathways from the Golgi apparatus to 

the Endoplasmic Reticulum (ER) have utilized the drug 

brefeldin A (BFA), which acts by inhibiting the association 

of the coat protein complex I (COPI) coat with the Golgi 

apparatus, and this, in turn, leads to an acceleration of the 

formation of membrane tubules that can be visualized 

emanating from this compartment [5]. Although the Golgi 

apparatus is an organelle that has been intensively studied, 

the regulation and roles of morphological variants of 

Golgi-derived membrane structures are not fully understood. 

Moreover, this organelle also displays a complex set of 
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interactions with both the microtubule and actin 

cytoskeletons [6-9], which regulate the formation and 

transport of Golgi-derived membrane carriers of various 

sizes and shapes [10]. The molecular mechanisms that 

underlie these phenomena are not fully understood, and one 

limitation has been the absence of a reliable quantification 

system for assessing the morphology of Golgi-derived 

membrane structures. 

A variety of segmentation methods and detection tools 

have been developed for the study and quantification      

of organelle morphology [11]. However, there is no  

specific tool for the analysis of the unique and complex 

morphological traits of the Golgi apparatus and 

Golgi-derived membrane structures. Because mitochondria 

display similar morphological changes to Golgi-derived 

membrane structures, e.g. fission and fusion [12,13], and 

tools for segmentation and classification of mitochondrial 

morphological changes are developed, their study may 

provide hints to establish a morphological analysis system 

for Golgi dynamics. The micro-P [14] and CellProfiler   

[15] image analysis platforms have been used for 2D 

mitochondrial morphological analysis, and MitoGraph and 

micro-P 3D are used for 3D mitochondrial morphological 

analysis [16,17]. In this study, we have used similar 

approaches to the micro-P platform for developing and 

establishing a biologist-friendly and semi-automatic 

detection system for the specific purpose of classifying and 

quantifying morphological changes to the Golgi apparatus 

and Golgi-derived membrane structures upon BFA treatment, 

as a main objective. This system shows that quantifying the 

morphological features of Golgi-derived membrane 

structures has potential for furthering our mechanistic 

understanding of membrane dynamics in living cells and 

provides a platform for profiling the behavior of this 

important organelle. 

2. Materials and Methods 

2.1. Time Lapse Images of Golgi Cisternae and 

Golgi-Derived Membrane Structures 

HeLa cells were transiently transfected with plasmids 

encoding the Golgi-localizing protein Rab6A tagged with 

enhanced yellow fluorescent protein (EYFP). Rab6A is a 

small GTPase protein associated with Golgi cisternae and 

Golgi-derived membranes and is used to visualize these 

membrane structures. During treatments with BFA, 

Golgi-derived membrane structures are formed and rapidly 

relocate to the ER [18]. Confocal image stacks of cells 

expressing YFP-Rab6A were acquired using an Andor 

Revolution spinning disk confocal microscope, equipped 

with a UPLSAPO 100x/1.40 NA oil objective at a frame rate 

of two frames per second. The microscope generated images 

with 1000x magnification, with a maximum theoretical 

optical resolution of 212 nanometers. Six movies were 

analyzed, and each contained 500 frames, approximately 4 

minutes in total length. Each movie had different image sizes 

(movie 1: 461423 pixels; movie 2: 410490 pixels; movie 3: 

320304 pixels; movie 4: 319280 pixels; movie 5: 512366 

pixels; movie 6: 474165 pixels) to fit the cells being 

imaged. 

2.2. Semi-Automated 2D Segmentation and 

Classification System 

 

Figure 1.  Golgi tubule detection and subtype classification system. 

Stack of raw images of simulated tubules is generated. Gaussian noise and 

impulse noise are added to test inference of background noises on 

segmentation by our system and other conventional methods (see S1 Table 

and S2 Figure). a A low pass Gaussian kernel filter is applied to avoid 

over-segmentation. b(1) Output after filtering is segmented by adaptive 

local normalization thresholding (ALNT), which generates a sharp edge and 

clear boundary of the object. b(2) The ALNT-processed images are 

converted to binary output by Otsu’s method. b(3) The tubule outputs after 

removal of insignificant objects are the final outputs of segmentation. 

Morphological features of Golgi-derived membrane structures are 

calculated (c) and are applied to identify gold standards of morphological 

subtypes (d). e The gold standards are applied to train classifiers. The best 

classifier for tubule subtyping is performed by 10–fold cross-validation. f 

Results are saved as binary and RGB image stack files after segmentation 

and subtype classification and MS Excel files for offline use 

The overview of our biologist-friendly system for 

segmentation and subtype classification of Golgi-derived 

membranes is presented in Figure 1. The concept is that    

is designed to be a simple and accurate system for 

segmentation and subtype classification, and that is should 

provide the biologist the opportunity to set an appropriate 

threshold for better accuracy of segmentation. The system is 

built as a standalone application in MATLAB R2016a 

software using a 64-bit Windows operating system. In   

brief, a low pass Gaussian filter was applied before the 

segmentation of Golgi-derived membranes (Fig. 1a). 

Golgi-derived membrane structures are segmented (Fig. 1b). 

Morphological features of the Golgi tubules were calculated 

(Fig. 1c) and used for the next processing step of 

expert-based grouping (Fig. 1d) and automated classification 

of subtypes of Golgi-derived membranes (Fig. 1e). Outputs 
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by this system are exported as image, video, and MS Excel 

files for further analysis (Fig. 1f). 

2.2.1. Segmentation Methods of Golgi Cisternae and 

Golgi-Derived Membrane Structures 

According to the raw movie image data, Golgi cisternae 

appear as brighter objects compared to the Golgi-derived 

membranes, and the Golgi cisternae were therefore  

detected at a threshold of 0.4% top maximal intensity prior  

to them disappearing following BFA treatment. “Time of 

disappearance” is represented as the time point at which 

Rab6A redistributes to the ER (generally referred to as Golgi 

blinkout; blur). In Table 1, TimeGC corresponds to the 

frame of Golgi disappearance (Table 1, FrameGC). Although 

many methods of segmentation for intracellular organelles 

are available, the most accurate method for tubular structures 

is considered to be Adaptive Local Normalization 

Thresholding (ALNT; [19]), which is the segmentation 

method for mitochondria [14]. The ALNT performs a 

calculation of statistical variance in window size, which 

assesses pixel brightness of the object region and its 

surrounding background, to detect the localization of the 

object. Therefore, we applied this well-known and efficient 

method used in mitochondrial segmentation to segment the 

Golgi tubules in this study. Moreover, we found that the most 

accurate segmentation method for these Golgi tubules was 

found to be the ALNT combining with the Otsu’s method 

[20], as representative test results shown in Fig. 1b.  

Table 1.  Identification of Blinkout Time of Golgi Cisternae 

Features 
Movies 

1 2 3 4 5 6 

TimeGC 3 2 2 3 3 3 

FrameGC 344 272 231 380 358 372 

TimeGC is the time of Golgi cisternae disappearance in units of minutes, which 

corresponds to the frame number (FrameGC), and these values, in turn, represent 

the time point at which Rab6A redistributes to the ER (blur). 

2.2.2. Classifiers for Profiling Various Golgi-Derived 

Membrane Structures 

Due to similarities between the morphology of 

Golgi-derived membranes and mitochondria [12,13], we 

used a similar approach to that used by micro-P, software for 

mitochondrial morphological subtyping [14], to establish our 

classifier. We firstly defined seven morphological subtypes, 

namely, globules, lumps, loops, short tubules, medium 

tubules, and long tubules, and including branched tubules 

according to the physical structures seen in our image data. 

Two hundred forty Golgi-derived membrane structures from 

all movies were randomly and manually picked, and these 

samples were automatically classified into the seven 

morphological subtypes (globules: 24 objects; lumps: 30 

objects; loops: 34 objects; short: 39 objects; medium   

length: 46 objects; long: 26 objects; branch: 41 objects) 

using morphological criteria (Table 2). Thirty-four 2D 

morphological features of gold standards were extracted to 

train and test the performance of classifiers (Table 3). To 

choose the best classifiers, many classifiers of supervised 

machine learning were used to evaluate predictive accuracy 

of classification. The performance of classifiers was 

accomplished by 10-fold cross-validation for 10 runs by 

using a suitable application named Classification Learner 

App (CLA) provided in MATLAB software. The CLA tool 

provides not only the quantitative accuracy of prediction but 

also the percentage accuracy of confusion matrix for 

cross-validation results. Finally, the best classifier was used 

for further tests in this study. 

2.3. Profiling Dynamics of Golgi-Derived Membranes in 

Different Movies Using Features of Morphological 

Subtypes 

Total area, length, and number of morphological subtypes 

in individual cells in individual frames were calculated to 

profile various dynamics of Golgi-derived membranes from 

different movies. Morphological features were normalized 

and Principal Component Analysis (PCA) was applied to 

visualize high dimensional data by use of MATLAB 

software [25]. MATLAB provides many principal 

component algorithms for multivariate data analysis. The 

choice of appropriate algorithm is dependent on the 

characteristic of data to be analyzed. Among these 

algorithms, Alternating Least Squares (ALS) is designed to 

better deal with missing values and performs well on large 

data sets. Since the ALS algorithm optimizes the fit of model 

with very quick convergence and relatively free from local 

minimum problems [26], it was chosen for this study. 

Table 2.  Features Used as Criteria to Group Subtypes 

Subtypes Descriptions 

Loops ObjHole = 1 

Globules Area ≤ 30,              ObjHole = 0 

Lumps Area > 30, AxialRatio ≤ 2, ObjHole = 0 

Short Area > 30, AxialRatio > 2, ObjHole = 0, BrNum = 1,     BrMaxLength ≤35 

Medium length Area > 30, AxialRatio > 2, ObjHole = 0, BrNum = 1,  35< BrMaxLength <70 

Long Area > 30, AxialRatio > 2, ObjHole = 0, BrNum = 1,     BrMaxLength ≥70 

Branch Area > 30,              ObjHole = 0, BrNum > 1 
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Table 3.  Morphological Features Used for Classifying Golgi-Derived Membranes 

No. Names Descriptions 

1 Area The number of pixels of the object 

2 ConvArea The number of pixels of the convex hull of the object 

3 BBoxWidth The pixels of width of the bounding box 

4 BBoxHeight The pixels in height of the bounding box 

5 BBoxArea The number of pixels of the bounding box of the object 

6 MajorAxis The pixels of the long axis of the bounding ellipse of the object 

7 MinorAxis The pixels of the short axis of the bounding ellipse of the object 

8 AxialRatio The ratio of the MajorAxis to the MinorAxis of the object 

9 Eccentricity 

Eccentricity is the ratio of distance between the foci and centre of the ellipse to its major 

axis length of the object. When eccentricity is 1, the object is linear. The object with 

zero eccentricity is a circle. 

10 Solidity The ratio of the Area divided by the ConvArea of the object 

11 Perimeter The number of pixels in the boundary of the object 

12 Euler The number of objects subtracted with the number of holes in the object 

13 Orientation The angular degree between the x-axis and major axis of the object 

14 MeanIntensity Mean gray-level value of the object 

15 StdIntensity Standard deviation value of gray-level of the object 

16 SkewnessIntensity 
The value of the asymmetry of the probability distribution of object intensity to its mean 

intensity 

17 ObjHole The number of holes in the object 

18 Compactness 
The ratio of square root of 4-time object area divided by π to major axis, sqrt (4 ∙ area / π) 

/ (major axis) 

19 *Elongation The ratio of the BBoxWidth to the BBoxHeight 

20 Roundness 
The ratio of 4π-time object area to square of the perimeter of major axis, (4π ∙ area) / 

(perimeter of major axis)^2 

21 Convexity The ratio of the perimeter of convex area to the perimeter of the object 

22 *FibreLength The pixels of geodesic length by the geodesic method (GEOD, [21]) of the curve object 

23 *FibreWidth The ratio of the Area of the object to the FibreLength length of the object 

24 *Curl The ratio of the MajorAxis length to the FibreLength length of the object 

25 Energy 
Measure of uniform property of the object gray-scale image using gray-level 

co-occurrence matrix (GLCM; [22, 23]) 

26 Entropy Measure of randomness property of the object gray-scale image [24] 

27 Homogeneity Measure of a diagonal GLCM of the object gray-scale image 

28 Contrast Measure of variance and inertia properties from GLCM of the object gray-scale image 

29 *TipNum The number of endpoints of the object 

30 *BrNum The number of skeletal branches 

31 *BrLength The pixels of length of the skeletonized object processed by the GEOD method 

32 *BrMaxLength 
The maximum of pixel length of the skeletonized object processed by the GEOD 

method 

33 *BrMinLength The minimum of pixel length of the skeletonized object processed by the GEOD method 

34 *BrRatioLength The ratio of the BrMinLength length divided by the BrMaxLength length 

* Golgi cisternae do not have these features. 

3. Results 

3.1. System Performance of 2D-GolgiMorphSubtype 

System to Quantify Morphological Features from 

High Content Imaging 

3.1.1. Comparison of Segmentation Performance with Other 

Existing Methods 

Several conventional methods of segmentation were 

compared with our system to evaluate comparative 

performance in segmentation. Gaussian noise and impulse 

noise were applied to test the robustness of our system     

in segmentation and root-mean square error (RMSE) was 

used for statistical evaluation of segmentation accuracy, as 

previously reported [27]. Accuracy of segmentation, as 

determined by a low RMSE, is shown in Figure 2 (our 



 American Journal of Biomedical Engineering 2020, 10(2): 29-43 33 

 

 

2D-GolgiDetect: 23.82; saliency detection algorithm [28]: 

28.84; black top-hat method of MorphoLibJ-ImageJ plugin 

[29]: 31.34; Chan-Vese algorithm [30,31]: 39.66). Variables 

of the ALNT for proper segmentation of Golgi-derived 

membranes in this study are shown in Table 4. Although the 

advantage of ALNT is to detect objects from heterogeneous 

backgrounds, we found that detection accuracy was 

influenced by gray level thresholds and noise ratios (Table 5, 

TuTH; S1 Table). Table 5 shows that intensity thresholds are 

varied across different movies. The variation of gray 

thresholds seen underlined the importance of having the 

option for users to be able to adjust the threshold and thereby 

improve accuracy of segmentation. In summary, our system 

was capable of identifying objects from noise; up to values of 

20% Gaussian noise and impulse noise at intensities of gray 

levels from 0.7 or higher (see S1 Table and S2 Figure). 

Table 4.  ALNT Parameters for Segmentation 

Filter Kernel Filter Size Step Size Filter Standard Deviation 

disk [4, 8] 0.5 0.35 

Table 5.  Thresholds for Segmentation of Golgi Tubules 

Features 
Movies 

1 2 3 4 5 6 

TuTH 0.50 0.65 0.55 0.65 0.65 0.40 

TuTH is the intensity of thresholding and shown as normalized gray level (0-1). 

Table 6.  Accuracy of Classifiers 

Classification Methods Average Accuracy (%) 

Decision Tree (Fine) 95.57 

Naive Bayes (Gaussian) 86.80 

SVM (Linear) 95.89 

KNN (Weighted) 95.14 

Ensemble (Bagged Trees) 96.94 

3.1.2. Manual Selection and Feature Extraction of Gold 

Standards for Training Classifiers 

Since mitochondrial dynamics display similar patterns and 

morphological changes to those of Golgi-derived membrane 

structures [12,13], we therefore adapted approaches used by 

micro-P to establish a classifier suitable for this class of 

membrane organelle [14]. Morphological features, different 

types of images, and cell types may cause differences     

in clustering mitochondria to different mitochondrial 

morphological subtypes. For example, six subtypes have 

been identified in single-plane of Chinese hamster ovary 

(CHO) cell images, namely small globules, swollen globules, 

straight tubules, twisted tubules, branched tubules, and loops 

[14]. 3D volumetric measurements, e.g. volume, axial ratio, 

mean distance to the surface, number, and average of 

skeleton branches, have been used to identify five subtypes, 

namely globules, lumps, short tubules, long tubules, and 

branched tubules in mouse skin tissue [32]. 3D features have 

also been used to classify six subtypes, namely lumps, 

simple tubules, branched tubules, small reticulum, and large 

reticulum in 3D stack images of plant cells [33]. We 

therefore inspected our own time lapse images to determine 

how many morphological subtypes of Golgi-derived 

membranes may be present. From this, we determined that 

seven morphological subtypes could be identified, including 

branched tubules, globules, lumps, loops, short tubules, 

medium tubules, and long tubules.  

Thirty-four 2D morphological features of ‘gold standard’ 

subtype morphologies were extracted for establishing 

candidate classifiers, as shown in Table 3. For instance, 

loops had hole(s) within the object (Fig. 3a: (3)). Globules 

were defined as having the smallest area and a rounder shape 

(roundness) (Fig. 3a: (1)). Lumps were larger than the area of 

the structures annotated in the globules cluster (Fig. 3a: (2)). 

This shape was distinguished from the globules shape by the 

AxialRatio length feature and area. Clusters of short, medium 

length, and long tubules were linear, and were grouped by 

length (BrMaxLength). These linear clusters may result  

from the events of Golgi tubule fission and fusion over time 

(Fig. 3a: (4) short tubules; (5) medium length tubules; (6) 

long tubules). Number of branches (BrNum) was used to 

distinguish the linear tubules from branched tubules, and 

holes (ObjHole) are used to distinguish them from loops. The 

branched tubules had more branches and greater tip numbers 

than others (Fig. 3a: (7)) and were recognized by the use of 

the branched numbers (BrNum) and tip numbers (TipNum) 

features. 

 

 

Figure 2.  Comparison of performance of conventional segmentation methods with our system. a A representative simulated image of various shaped 

tubule structures is used as a gold standard. b The simulated standard tubules have 20% Gaussian noise (G) and 20% impulse (I) noise at a gray level 0.7 

added. c Results of 2D-GolgiDetect system are the most accurate, i.e. with the lowest root-mean square error (RMSE), compared to other methods. d-f 

Results of other segmentation methods with their corresponding RMSE are shown 
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Figure 3.  Representative images of morphological subtypes of Golgi-derived membrane structures. a Several Golgi-derived membrane structures 

with different sizes and shapes from six movies were categorized into seven clusters, namely (1) globules, (2) lumps, (3) loops, (4) short, (5) medium, (6) 

long, and (7) branched tubules. b All clusters were confirmed by comparing with original images (gray: raw imaged stacks; right: binary images; dark green: 

segmented Golgi tubules; pink: segmented Golgi cisternae). Arrowheads with different colors in a (globules: blue; lumps: yellow; loops: red; short: light 

green; medium length: brown; long: cyan; branch: purple) are taken from the original micrographs in b 

3.1.3. Comparison of Performance of Classifiers Trained by 

Different Methods of Supervised Machine Learning 

Because seven classes of Golgi-derived membrane tubule 

clusters were defined before learning, all the candidate 

methods chosen for training the system were based on 

supervised machine learning. A total of 34 morphological 

features extracted from 240 objects (gold standards) were 

used for training different methods of machine learning to 

select the most suitable method for our system. The various 

classifiers have different advantages depending on the type 

of data. Although the decision trees algorithm is easy to use 

and fast for fitting and prediction to distinguish between 

classes, it has a low accuracy in prediction [34]. The Bayes 

classifier is a probabilistic classifier to generate the simplest 

Bayesian network models with strong independence (naive) 

between features that it is useful for multiclass classification 

[35]. Support vector machines (SVM) classifiers perform at 

medium speed for linear data and at slow speed for other data 

types with greater flexibility due to the Gaussian kernel scale 

mode [36,37]. The k-nearest neighbor (KNN) classifier is  

the simplest classification model based on the distance to 

points, to distinguish between classes [38]. We do not know 

whether the training methods cause over-training due to the 

composition of data, i.e. data of a particular type are 

predominant, such that the classifier may exhibit a poor 

performance for test data lacking such types of data. 

Ensemble classifiers are also used for comparison with other 

methods. However, avoidance of overfitting and speed of 

prediction of ensemble classifiers depends on the choice of 

algorithm. For example, a bagging algorithm using random 

forest with decision trees learner (Bagged Trees; [39,40]) has 

very high model flexibility compared to other algorithms 

such as AdaBoost with decision trees learner (Boosted Trees) 

and subspace with discriminant (Subspace Discriminant). In 

this study, we included a total of 20 models to see their 

accuracies in classification (see S3 Table).  

According to the accuracy of classification, five classifiers 

from those 20 candidates showed the highest accuracy of 

prediction in each main method (decision trees (1), naive 

Bayes (2), SVM (3), KNN (4), and ensemble (5)), as shown 

in Table 6. The best classifier for these Golgi tubule subtypes 

in this study was the ensemble classifier using bagging 

algorithm with decision trees learner (Table 6: 96.94%). 

Table 7 shows the average accuracy of the confusion  

matrix of the ensemble classifier type of bagged tree after 

processing 10 runs of 10-fold cross-validation. A small 

number of long tubules were misrecognized as loops (1.8%), 

and several lumps were misrecognized as globules (1.6%) or 

branched tubules (2%). Based on the accuracies determined, 

this study then applied the ensemble classifier type of bagged 

trees to automatically classify subtypes of all Golgi-derived 

membranes from six example time-lapse movies. 

It is unclear which combinations of features are  

important for classifying morphological subtypes. The 34 

morphological features were normalized and PCA was 

applied, and a biplot of two principal components was 

generated, as shown in Figure 4a. The 2D biplot covers all  

of the data (Fig. 4a; component 1: 83.10%; component 2: 

16.90%). The length of PCA vectors indicates the 

importance of features contributing to profile morphological 

subtypes, including features such as area, convexity, 

compactness, fiber length, width of fiber, number of tips, and 

number of branched tubules. Solidity and roundness were 

features found to be more prevalent in globules (Fig. 4c). 
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Fiber length, maximum length of tubule in skeletonized, 

major axis length, and area were more prominent in long 

tubules (Fig. 4d). Loops were defined as showing a thicker 

width of the tubules, more holes, branch numbers, and tip 

numbers (Fig. 4e-g). Why branched tubules have less tips 

and branches than loops were not clear (Fig. 4g), however 

numerous small branches of skeletonized loop objects may 

be the reason why more tips and branches are shown in the 

loops (see S4 Figure). In summary, the PCA identified useful 

features to inform which of the features are used by the 

ensemble classifier. 

 

Figure 4.  Identification of morphological features useful for classification of morphological subtypes. a The PCA result is shown as a biplot of two 

principal components. b Plot shows the data distributions of 0.5 standard deviations within the circles. Identification of 20 significant features from six 

movies for ensemble classifier is identified according to Eigen values, the longer vectors. Representative features are shown (c: circular shape; d: size and 

length; e: curve and width; f: object hole; g: number of object tips and branches). 

 

Figure 5.  Representative results of segmentation and classification of Golgi cisternae and morphological subtypes of Golgi-derived membrane structures. 

a The raw data of movie 6 is used as a truth reference. The frame numbers are as indicated. b The binary image showed excellent segmentation. Occasional 

segmentation errors occurred due to over-segmentation (a and b: red arrowheads) and missed (a and b: yellow arrowheads) tubules caused by a limitation of 

the ALNT, particularly at late time points (blur) when objects and their surrounding background had similar ranges of intensity. c Colored outputs label 

Golgi cisternae in pink and Golgi tubules in dark green. d Classification results successfully revealed seven subtypes of Golgi-derived membrane structures 

(globules: blue; lumps: yellow; loops: red; short tubules: light green; medium length tubules: brown; long tubules: cyan; branch: purple) 
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Table 7.  Confusion Matrix of Cross-Validation by the Use of Bagged Algorithm with Decision Trees Learner 

Correct Labels 
Predicted Labels (%) Positive 

Prediction 

False 

Discovery Branch Globules Long Loops Lumps Medium Length Short 

Branch 98.00 0.00 0.00 0.00 2.00 0.00 0.00 98.00 2.00 

Globules 0.00 98.40 0.00 0.00 1.60 0.00 0.00 98.40 1.60 

Long 0.00 0.00 96.80 3.20 0.00 0.00 0.00 96.80 3.20 

Loops 0.00 0.00 1.80 98.20 0.00 0.00 0.00 98.20 1.80 

Lumps 0.00 0.60 0.00 0.00 96.60 0.00 2.60 96.60 3.20 

Medium Length 0.00 0.00 0.00 2.80 0.00 96.00 1.20 96.00 4.00 

Short 3.00 0.00 0.00 0.00 3.00 0.60 94.60 94.60 6.60 

Average  96.94 3.20 

 

3.1.4. Illustration of Performance of 

2D-GolgiMorphSubtype System 

To fulfill our main objective to establish a 

biologist-friendly and semi-automatic system for the specific 

purpose of classifying and quantifying morphological 

changes to the Golgi apparatus and Golgi-derived membrane 

structures upon BFA treatment, representative results of  

our system performance, following segmentation, detection, 

and classification are shown in Figure 5. Figure 5b shows  

the accuracy of segmentation. Figure 5c demonstrates the 

system can distinguish Golgi from Golgi-derived 

membranes (pink: Golgi cisternae; dark green: Golgi 

tubules). Some instances are missed in the earlier time frame 

(Fig. 5a and b; red and yellow arrowheads), possibly due to 

rapid evolution of Golgi-derived membranes, movement out 

of the focal plane or segmentation errors of due to low 

intensity of the objects. Overall, this detection system 

showed excellent performance in segmentation. Moreover, 

the complete subtype classification system showed accurate 

classification of morphological subtypes of Golgi-derived 

membranes, as shown in Figure 5d (globules: blue; lumps: 

yellow; loops: red; short tubules: light green; medial tubules: 

brown; long: cyan; branched tubules: purple). 

3.2. Analysis of Features Obtained from the 

2D-GolgiMorphSubtype System for Profiling 

Various Golgi-Derived Membrane Structures 

3.2.1. Application of Numerical Features Extracted from 

Time-Lapse Images to Reveal Whether Golgi Tubules 

Are Derived from Golgi Cisternae 

Area and number of Golgi cisternae and Golgi-derived 

membranes are summarized in Table 8. To understand 

correlations of morphological changes to Golgi-derived 

membranes, Pearson’s correlation was used in this study, as 

shown in Figure 6a. Correlations among different paired data 

were converted into a heat map, i.e. blue and red for positive 

and negative correlations (R values), respectively, and with 

significance highlighted (*p-value < 0.05 and **p-value = 

0.001). With the exception of movie 6, changes in both the 

total area of the Golgi and its derived membranes fluctuated 

and correlated negatively in every movie (Fig. 6a), indicating 

that as the Golgi dispersed in the presence of BFA, it did so 

into tubular structures. However, changes in the total area of 

Golgi cisternae in movie 6 were negatively correlated with 

the results from other movies, e.g. GCarea6 (total area    

of Golgi cisternae of movie 6) vs. GCarea1, GCarea2, 

GCarea4, and GCarea5. In this movie, this was likely due to 

the fact that changes in the Golgi were only recorded at very 

late time points (Fig. 6b: black arrowhead). Such changes 

result in the kinetics of movie 6 being different from that in 

the other movies. By contrast, changes in the total area of 

Golgi-derived membranes in all movies showed identical 

directionality (Fig. 6c). 

Table 8.  Sum of Numbers and Areas of Golgi Cisternae and Golgi-Derived 
Membranes 

Movies 

Golgi Cisternae Golgi-Derived Membranes 

Number 

(object) 

Area 

(pixel2) 

Number 

(object) 

Area 

(pixel2) 

1 3,237 364,223 55,525 1,971,541 

2 1,755 269,978 30,045 1,577,580 

3 1,272 156,009 12,036 387,660 

4 819 140,047 12,588 919,093 

5 2,516 361,491 54,602 2,499,838 

6 1,160 156,335 23,493 763,384 

Total 10,759 1,448,083 188,289 8,119,096 

3.2.2. Application of Morphological Features and Subtyping 

to Profile Golgi Dynamics From Different Movies 

Comparisons of total area, length, and number of subtypes 

were used to understand whether these features are useful  

for profiling Golgi tubule dynamics. The Golgi-derived 

membrane structures of 188,289 objects (Table 8) were 

classified into the seven subtypes by the best ensemble 

classifier type of bagged trees. This study used violin 

statistical analysis to analyze these features, as shown in 

Figure 7, with all data shown as distribution of density 

probability of data smoothed by a kernel density estimator 

(gray boxes), median (red lines), and mean (blue lines). 

Movies 1 and 5 had more globules and lumps than those of 

others (Fig. 7a and b). Loops, medium, long and branched 

tubules in movie 5 were more abundant than those in other 
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movies (Fig. 7c, e, and f). Movies 1, 2, and 5 had more short 

tubules (Fig. 7d). These results suggest that such features 

have potential for profiling variations of dynamics of 

Golgi-derived membranes from different movies. 

 

Figure 6.  Feature analysis suggests that Golgi membrane tubules are derived from Golgi cisternae. a Total area of Golgi cisternae (GCarea) and 

Golgi tubules (GTarea) show negative correlations analyzed in all movies by Pearson’s correlation (*p-value < 0.05 and **p-value = 0.001). Collations are 

shown as a heat map (R-values) with blue as positive, and red as negative correlations. b-c Time-dependent changes of Golgi cisternae and tubules in the 

movies fluctuate with similar kinetics. The black arrowhead indicates sudden area reduction in a late time frame of movie 6 

 

Figure 7.  Feature analysis of Golgi-derived membrane subtypes. Total area, number, and length features of a globules, b lumps, c loops, d short, e 

medium length, f long, and g network types are plotted with violin statistical analysis. Mean values are marked with blue lines and median values with red 

lines 
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Figure 8.  Profiling Golgi dynamics using features of morphological subtypes. a Total area, number, and length of seven subtypes were used for PCA 

to profile Golgi dynamics from different movies, and the results are shown as a biplot of two principal components. Data from different movies are labelled 

with different colors, as indicated. b PCA plot contains all data points and the data distributions of each movie of 0.5 standard deviations are shown within 

the circles 

 

Figure 9.  Morphological changes of subtypes among formation of Golgi-derived membrane structures. Time-dependent plots are smoothed by 

moving average (window = 50). Changes in the total numbers of morphological subtypes are shown as indicated (a: globules; b: lumps; c: loops; d: short 

tubules; e: medium tubules; f: long tubules; g: branched tubules) 

To understand whether or not the combination of these 

features can profile variations of dynamics of Golgi-derived 

membranes, data were normalized and PCA applied (Fig. 8a; 

component 1: 48.68%; component 2: 15.68%). In the plot, 

total area, length, and number of seven subtypes were in 

units of pixel2, pixel, and object, respectively. PCA was able 

to significantly separate movies 1, 2, and 5 from movies 3, 4, 

and 6 to these two groups by number and area of globules. 

Branched and long tubules could further distinguish movie 5 

from movies 1 and 2. With the exception of movie 3, PCA 

showed the data spread from lower left to upper right, and 

directions of such data distribution were correlated with the 

number of branched tubules. PCA showed a limited spread 

of data in movies 3 and 6 (Fig. 8a) as those two movies had 

low rate of morphological changes across all subtypes (Fig. 

9a-g). Due to the subtype classification results from movie 6, 

as shown in Figure 5, Golgi-derived membranes were found 

in branched or looped tubules at late time points (e.g. frames 

235-357; Fig. 9c: loops and g: branch). The spread of data in 

the PCA may indicate an increase in number of branched 

tubules, i.e. from early to late time points. Nonetheless, PCA 

identified important features for profiling and showed 

extremely high sensitivity profile dynamics of Golgi-derived 

membranes from different movies. 

As it is unclear how Golgi-derived membranes evolve 

over time, changes of morphological subtypes (Fig. 9) and 

correlations of the morphological subtypes (Fig. 10) were 

analyzed. The time-dependent changes were smoothed by 

averaging a particular time window (frames of the window = 

50) to avoid fluctuation. Total number of lumps, loops, and 

branched tubules increased until blink-out in all movies (Fig. 

9b: lumps; c: loops; g: branch). By contrast, changes in total 

number of globules gradually decreased until blink-out in all 

movies (Fig. 9a). Changes in total number of short tubules 

increased at early time points and kept constant or slowly 

decreased (Fig. 9d). Changes in total number of medium and 

long tubules were increased at early time points and 

decreased at middle time points (Fig. 9e: medium tubules;   

f: long tubules). According to the results, the kinetics of 

different types of tubules seem not to be correlated. One 

possibility is that small globules are first derived from Golgi 

cisternae via fission and that these globules fused and extend 

to later form other types of tubules as shown in Figure 10. 

Although the results of statistical analysis imply such 

changes to Golgi-derived membranes morphology, further 

cell biology studies would be needed to confirm this. 
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Interconversion among Golgi-derived membranes may be 

clarified by tracking systems in the future. 

 

Figure 10.  Correlation of morphological subtypes of Golgi-derived 

membrane structures from different movies. A total of seven subtypes 

from six movies were analyzed by Pearson’s correlation (*p-value < 0.05 

and **p-value = 0.001). Collations in total number are shown as a heat map 

(R-values) with blue as positive, and red as negative correlations 

Using quantitative features extracted from membrane 

tubules of various shapes and sizes, this study provides 

evidence that suggest that this wide variety of Golgi-derived 

membranes are derived from Golgi cisternae [10]. 

Furthermore, the system presented here was able to profile 

Golgi dynamics from different movies and suggest that 

conversions among morphological tubule subtypes readily 

occurs [10,41]. 

4. Discussion 

This work has established the 2D-GolgiMorphSubtype 

system, which is the first comprehensive tool for biologists 

to study the morphological changes of the Golgi apparatus 

and Golgi-derived membrane structures in living cells. The 

system utilizes a combination of existing segmentation 

methods, i.e. adaptive local normalization and Otsu 

thresholding methods, and together these methods are found 

to be the most suitable detection system for such kinds of 

tubular membrane structures. Critically, 34 morphological 

features have been found to be useful for classifying 

morphological subtypes of Golgi-derived membranes. 

Morphological features of subtypes play a benefit for 

profiling variations of such dynamics observed in different 

movies. The sensitivity of the system shows strong potential 

for profiling the effects of RNA interference and drugs on the 

dynamics of Golgi-derived membranes to enhance our 

understanding of the mechanisms of morphological changes 

that occur in Golgi-derived membranes. However, changes 

in the morphology of Golgi-derived membrane tubules needs 

to be confirmed by tracking systems to follow their 

interconversion between types, thereby taking into account 

dynamic phenomena, such as tubule shortening, extension, 

fission, and fusion, including their growth and motility. 

Because of a limit of temporal resolution of 2D cell movies, 

3D time-lapse movies with high temporal resolution are also 

needed to confirm exact morphological subtypes and how 

they evolve upon BFA treatment or other stimulation. 

5. Conclusions 

This study represents the first reported system for 

numerical morphological analysis of Golgi-derived 

membranes, classification of morphological subtypes of 

Golgi-derived membranes, and the quantification and 

profiling of such dynamic subcellular structures. This system 

should help biologists more rapidly and accurately screen for 

factors associated with the formation and movement of 

Golgi-derived membrane tubules. 
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Supporting Information 

S1 Table.  Statistical Evaluation Reports on Detection Performance with Varying Noise and Gray Levels 

Noise (%) RMSE Gray level (0-1) RMSE 

G0/I0 0.00 0.1 109.72 

G20/I20 15.58 0.2 80.04 

G40/I40 26.45 0.3 62.12 

G60/I60 33.38 0.4 36.28 

G80/I80 45.36 0.5 31.36 

  0.6 28.64 

  0.7 23.82 

  0.8 17.60 

  0.9 15.33 

  1.0 15.09 

G is Gaussian noise, and I is impulse noise. RMSE is the root mean square error. 

 

 

S2 Figure.  Performance evaluation of detection experiments with noise and intensity contamination. Tubular structures with a diameter of 2 pixels, 

and of various lengths and shapes are simulated, followed by addition of increasing Gaussian (G) noise and impulse (I) noise (A1-A5). The lowest RMSE is 

seen at G20/I20 with precise detection of the outputs (B2; see S1 Table: 15.58). The G20/I20 is set to add corrupt noise of increasing intensities of 

normalized gray levels (0-1) (C1-C10). At gray levels from 0.7 to 1.0 (C7-C10), the detection system maintains efficiency and provides accurate results 

(D7-D10) with low RMSE (see S1 Table: < 25). A specification of detection performance by 2D-GolgiDetect is that it can efficiently detect tubules in the 

presence of up to 20% Gaussian noise and impulse noise contamination at gray levels of 0.7 or higher 
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S3 Table.  Performance Comparison of Classifiers 

Classification Methods Average Accuracy (%) 

Decision Trees  

- Fine 95.57 

- Medium 95.38 

- Coarse 63.56 

Naive Bayes Classifier  

- Gaussian 86.80 

Support Vector Machines (SVM)  

- Linear 95.89 

- Quadratic 95.77 

- Cubic 94.80 

- Fine Gaussian 65.99 

- Medium Gaussian 94.80 

k-Nearest Neighbor (KNN) Classifiers  

- Fine 93.17 

- Medium 93.23 

- Coarse 38.01 

- Cosine 91.41 

- Cubic 89.51 

- Weighted 95.14 

Ensemble Classifiers  

- Boosted Trees 19.20 

- Bagged Trees 96.94 

- Subspace Discriminant 94.23 

- Subspace KNN 74.10 

- RUSBoosted Trees 95.75 

 

 

S4 Figure.  Example of why loop structures and branched tubules can show similar numbers of branches and tips. This figure shows an example of 

why branched tubules and loops can have similar numbers of tips and branches. a Representative binary object of loop structure (Fig. 5d: red tubule at frame 

97) is skeletonized, and the skeletonized object shows many tips (green circles) and branches (b). A branched tubule (purple tubule in movie 6 at frame 313) 

with similar numbers of tips and branches shown for comparison (c and d) 
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