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Abstract  The solution of Blasius Equation with various numerical methods is reviewed. The Falkner-Skan equation is 

also solved with these methods. The application methods range from classical Euler, Runge-Kutta, to Artificial Intelligence 

Machine Learning methods. The code for each method is available for verification in python scripting language. 
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1. Introduction 

The solution of Blasius [1] and Falkner-Skan [2] 

equations for laminar boundary layer has been an interesting 

topic for over 100 years. There are overwhelming number of 

analytical and numerical methods to solve these equations. 

Presently numerical solution techniques from very basic 

Euler and RK4 integration and other initial value problem 

solvers with shooting method, boundary value problem with 

finite difference method, to the machine learning methods 

are discussed. 

2. Discussions 

The well-known Blasius [1] equation and boundary 

conditions are: 

𝑓 ′′′  𝜂 +
1

2
𝑓 𝜂 𝑓 ′′  𝜂 = 0;  

 𝑓 0 = 0, 𝑓 ′ 0 = 0; 𝑓 ′ ∞ = 1.0     (1) 

Where derivatives are with respect to eta, f being a 

function of 𝛈. The equation being non-linear cannot be 

solved by straightforward integration. This can be treated as 

both the initial value or the boundary value problem. For 

initial value problem, the general way to solve such an 

equation is to write it as a system of first order differential or 

partial differential equations as follows, 

𝑑𝑓

𝑑𝜼
= 𝒇′ , 𝑓 0 = 0,

𝒅𝒇′

𝒅𝜼
= 𝒇′′ ,  

𝑓 ′ 0 = 0,
𝒅𝒇′′

𝒅𝜼
=  −

𝟏

𝟐
 𝒇 𝒇′′, 𝒇′′  𝟎 =  𝒇𝒑𝒑(𝟎)  (2) 
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So, it boils down to simple three first order equations. 

Only problem is, we don’t have any idea what 𝒇𝒑𝒑(𝟎) 𝑖𝑠. A 

numerical scheme, known as shooting method, comes out 

handy. The solution of the set of equations are carried out  

for two initially guessed values of fpp(0). The objective is  

to achieve 𝑓 ′ ∞ = 1.0 condition at the outer boundary. A 

secant method is used to get an estimate of updated value  

of fpp(0). The iterative procedure is carried out till outer 

boundary condition at 𝑓 ′ ∞ = 1.0 𝑖𝑠 𝑚𝑒𝑡 . The outer 

boundary of 𝜂 = ∞ is usually met at 𝛈 between 5 and 6. 

Euler Integration: 

This is classic integration scheme. For simplicity in 

coding and writing this paper, we will use following 

nomenclature, 

x1 = 𝒇,  x2= 𝑓 ′, 𝑥3 =  𝑓′′ , and t = 𝛈. The range of t, 

comprised of N points, is divided into equally spaced step 

size dt. 

dx1/dt = x2, is written as, x1 = x1 + x2*dt + 0.5* x3* dt**2 

(3) 

dx2/dt = x3, is written as, x2 = x2 + x3 * dt           (4) 

dx3/dt = -1/2 x1x3, is written as, x3 = x3 – ½ *x1*x3*dt (5) 

Usually, a simple code in any language will give a 

converged solution in 5 to 6 iteration. The magic value of 

fpp(0) or x3(0) will appear as 0.332….. You will find many 

numbers after this basic value in literature. I have enclosed 

all the software on my website http://www/angelfire.com/co

2/jpnarain/Euler_blausius_upd.py. This file contains the  

Blasius equation solver.  

Runge-Kutta4 Integration scheme: 

This scheme was developed over 100 years ago and has 

been one of the most accurate integration methods. This 

method is 4th order accurate compared to first order accuracy 

of Euler scheme. It is as fast as Euler method and as accurate 

as any higher order schemes for Blasius equation. The 

solution procedure is basically splitting the Blasius equation 
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in three first order equation and use shooting method to get 

converged solution. Note, the method of integration involves 

different steps than Euler method. The outline for the method 

is, 

def f1(x1,x2,x3,t): 

dx1dt = x2 

return dx1dt                   (6) 

def f2(x1,x2,x3,t): 

dx2dt = x3 

return dx2dt                    (7) 

def f3(x1,x2,x3,t): 

dx3dt = -0.5*x1*x3 

return dx3dt                    (8) 

Integrate in the range of given t with following RK4 

procedure. Remember we are solving simultaneous 

equations. 

k11 = dt*f1(x1,x2,x3,t) 

k21 = dt*f2(x1,x2,x3,t) 

k31 = dt*f3(x1,x2,x3,t) 

k12 = dt*f1(x1+0.5*k11,x2+0.5*k21,x3+0.5*k31,t+0.5*dt) 

k22 = dt*f2(x1+0.5*k11,x2+0.5*k21,x3+0.5*k31,t+0.5*dt) 

k32 = dt*f3(x1+0.5*k11,x2+0.5*k21,x3+0.5*k31, t+0.5*dt) 

k13 = dt*f1(x1+0.5*k12,x2+0.5*k22,x3+0.5*k32,t+0.5*dt) 

k23 = dt*f2(x1+0.5*k12,x2+0.5*k22,x3+0.5*k32,t+0.5*dt) 

k33 = dt*f3(x1+0.5*k12,x2+0.5*k22,x3+0.5*k32, t+0.5*dt) 

k14 = dt*f1(x1+k13,x2+k23,x3+k33,t+dt) 

k24 = dt*f2(x1+k13,x2+k23,x3+k33,t+dt) 

k34 = dt*f3(x1+k13,x2+k23,x3+k33, t+dt) 

x1 += (k11+2*k12+2*k13+k14)/6 

x2 += (k21+2*k22+2*k23+k24)/6 

x3 += (k31+2*k32+2*k33+k34)/6 

t += dt                                        (9) 

The Rk_blasius_upd.py shows the details of entire 

scheme. 

All the above and following Blasius equation solvers give 

the following nice plot: 

 

Figure 1.  Solution of Blasius equation by various methods 

Here are some public domain box solvers used for Blasius 

equation: 

1.  Pycse [5] boundary value problem solver bvp. Works 

nicely and gives similar solution. Refer to 

pycse_blasius_bvp_upd.py code. This solver is little 

unstable for more complex equation, such as 

Falker-Skan [2] equation. Their bvp_nl works better 

and is similar to their finite difference approach 

discussed in following section 3. 

2.  Octave [6] using lsode numerical scheme. Refer to 

files df1.m and df2.m to run Octave interactive setup. 

This is an initial value problem solver. 

3.  A finite difference approach using scipy.optimize [5] 

fsolve solver. This is a very robust and reliable scheme. 

There is no shooting method involved and solutions 

are very accurate even in Falkne-Skan [2] favorable 

and adverse pressure gradient flows. It does not have 

any convergence problem with higher eta regions. It is 

simple to use and my most recommended method. 

Refer to file scipy_blasius_fds.py code. 

4.  The artificial intelligence using machine learning has 

also caught up with the Blasius equation solution. The 

code enclosed here is from the creator of pycse group 

[5]. The concept of regression is used to update weight 
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and bias while minimizing the equation function with 

boundary condition. This is also a non- shooting 

method. However the iterations used to minimize the 

function takes longer run time (140 s). Refer to 

mlBlas_Fs.py code. 

Note: There are couple of important variables in boundary 

layer theory, namely displacement thickness and momentum 

thickness. The displacement thickness is described as, 

δ* = ⎰  1 −
𝑢

𝑢𝑒
 𝑑𝑦 =  

𝜈𝑥

𝑢𝑒
 ⎰  1 − 𝑓 ′ 𝑑𝜼 

=   
𝜈𝑥

𝑢𝑒
 ( 𝜼 − 𝒇 )|at large eta.           (10) 

This is an exact solution. The numerical solution shows 

that ( 𝜂 − 𝑓) is constant after a value of 𝜂 = 4.99. This value 

is 1.7208.  

 δ* = 1.7208 x/ 𝑅𝑒𝑥,             (11) 

where Rex is the local Reynold’s number. 

Similarly, the momentum thickness is defined as:  

θ= ⎰ 𝑢  1 −
𝑢

𝑢𝑒
 𝑑𝑦 =  

𝜈𝑥

𝑢𝑒
 ⎰ 𝑓′ 1 − 𝑓 ′ 𝑑𝜼, 

where 𝜂 varies from 0 to ∞.        (12) 

This has an exact solution of  

 θ= 2.*f’’(0)x/ 𝑅𝑒𝑥 = 0.664 x / 𝑅𝑒𝑥.    (13) 

Although these parameters can be evaluated as additional 

equations in Euler and RK4 schemes, it is nice to know that 

they have an exact solution. 

Falkner-Skan boundary layer equation [2]: 

The derivation of this similarity equation can be found in 

text books and on Wikipedia. It is similar to Blasius equation 

with additional terms to account for flow past wedge of angle 

πβ. The equation is: 

 𝑓 ′′′ + 𝑓𝑓 ′′ + β [ 1 – (f’)**2] = 0     (14) 

With boundary conditions: 

 𝑓 0 = 0, 𝑓 ′ 0 = 0; 𝑓 ′ ∞ = 1.0      (15) 

For β = 1, the problem is of flow impinging on a vertical 

plate, known as Hiemenz [3] flow. Here β < 0, corresponds 

to adverse pressure gradient (often resulting in boundary 

layer separation) while β > 0 represents a favorable pressure 

gradient. β = 0 corresponds to a modified form of Blasius 

equation. Douglas Hartree4 showed that physical solution to 

the Falkner-Skan equation exist only in range -0.198838 < β 

< 4/3. Our numerical solutions can reach β = 2. The stable 

method can go even higher, though these solutions are 

unrealistic. 

The solution procedure by various numerical schemes is 

similar to that of Blasius equation. The only difference in 

being the equation for f’’’ and presence of β. Apart from 

integration of simultaneous first order equations, I found 

subsequent integration for different β very useful as it 

alleviates guesswork for estimating f’’(0). The python lists 

were helpful in doing that. The following table 1. shows the 

value of f’’(0) for various methods and β. 

The method of minimizing the loss function based on the 

equation and boundary conditions, as described in the 

method of section 4, can be used to solve the Falkner-Skan 

equation for various β. Rackauckas8 has shown the 

theoretical background for solving the ODEs with Neural 

Networks which he describes as The Physics-Informed 

Neural Network. He solves a first order and a second order 

ode with a method similar to that described in section 4. 

After studying this article, any order ode can be solved with 

this scheme with confidence. 

Carlos Deque-Daza, Duncan Lockerby and Carlos 

Galeano [9] also solved Falkner-Skan equation using fourth 

order finite difference scheme. This should be considered as 

the most accurate solution. However, the other schemes give 

similar results, as shown in Table 1, with faster run times and 

similar accuracy except in near separation solution at β = 

-0.198. 

 

Table 1.  The f’’’(0) for various β and various methods. The solution for ** exist, but f’’(0) has to be prescribed 

β 
Euler 

h=0.006 

RK4 

h=0.05 

Scipy finite diff 

𝜼∞=10 h=0.005 

mlBlas_Fs 

𝜼∞ = 6 

h = 0.012 

Fourth order 

finite diff, 

ref9 

-0.198 0.03342 0.04606 0.025586 0.070586 0.005216 

-0.18 0.13092 0.13138 0.129085 0.13416615 0.128636 

-0.15 0.21737 0.217153 0.216735 0.217502 0.216361 

-0.12 0.2830 0.28114 0.282059 0.28178 0.281760 

-0.10 0.32037 0.31976 0.319518 0.32012 0.319270 

0.0 0.470 0.46964 0.469582 0.4700 0.469690 

0.5 0.92657 0.92768 0.926429 0.9282961 0.92768 

1.0 1.22993 1.23258 1.230088 1.233588 1.23258 

1.5 ** 1.47722 1.473477 1.47808  

2.0 ** 1.687217 1.682223 1.68840 1.687219 

 T 1.5 s T 1.843s T 398.5s T 1400 s T 40000s 
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The time shown will vary on your computer system. I used 

a 8GB, Intel i7 processor. The results are very similar for all 

the methods. Only solution from scipy finite difference 

method [5] is shown below 

 

Figure 2.  Velocity f’ profile, Stream function f profile and Velocity gradient f’’ profile for various wedge angles (β) 

Various programs to solve this problem are posted on my 

website http://www.angelfire.com/co2/jpnarain/. 

Note: All the calculations were done in Python 3.6.2. As 

Python is open software and changes frequently, sometimes 

backward compatibility is not guaranteed. At present Python 

is at version 3.90. To make life easier, I will recommend 

using version 3.6.2.to 3.6.8. If you see error about some 

libraries not found, keep on downloading them from their 

( .org ) websites. If you have never used Python, don’t worry, 

learning it is a piece of cake if you know any programming 

language. 

3. Conclusions 

I have briefly described the solution procedure for Blasius 

and Falkner-Skan equations. The programs are included for 

detailed work. This is from my class lecture note and is 

intended to encourage students to learn basic methods and to 

keep abreast with the developing technology. 
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