
American Journal of Fluid Dynamics 2021, 11(1): 1-4

DOI: 10.5923/j.ajfd.20211101.01

Exploring Blasius and Falkner-Skan Equations

with Python

Jay P. Narain

Retired, Worked at Lockheed-Martin Corp

Abstract The solution of Blasius Equation with various numerical methods is reviewed. The Falkner-Skan equation is

also solved with these methods. The application methods range from classical Euler, Runge-Kutta, to Artificial Intelligence

Machine Learning methods. The code for each method is available for verification in python scripting language.

Keywords Blasius Equation, Falkner-Skan Equation, Fast and accurate solutions

1. Introduction

The solution of Blasius [1] and Falkner-Skan [2]

equations for laminar boundary layer has been an interesting

topic for over 100 years. There are overwhelming number of

analytical and numerical methods to solve these equations.

Presently numerical solution techniques from very basic

Euler and RK4 integration and other initial value problem

solvers with shooting method, boundary value problem with

finite difference method, to the machine learning methods

are discussed.

2. Discussions

The well-known Blasius [1] equation and boundary

conditions are:

𝑓 ′′′ 𝜂 +
1

2
𝑓 𝜂 𝑓 ′′ 𝜂 = 0;

 𝑓 0 = 0, 𝑓 ′ 0 = 0; 𝑓 ′ ∞ = 1.0 (1)

Where derivatives are with respect to eta, f being a

function of 𝛈. The equation being non-linear cannot be

solved by straightforward integration. This can be treated as

both the initial value or the boundary value problem. For

initial value problem, the general way to solve such an

equation is to write it as a system of first order differential or

partial differential equations as follows,

𝑑𝑓

𝑑𝜼
= 𝒇′ , 𝑓 0 = 0,

𝒅𝒇′

𝒅𝜼
= 𝒇′′ ,

𝑓 ′ 0 = 0,
𝒅𝒇′′

𝒅𝜼
= −

𝟏

𝟐
 𝒇 𝒇′′, 𝒇′′ 𝟎 = 𝒇𝒑𝒑(𝟎) (2)

* Corresponding author:

narain2@yahoo.com (Jay P. Narain)

Received: Jan. 7, 2021; Accepted: Feb. 1, 2021; Published: Feb. 6, 2021

Published online at http://journal.sapub.org/ajfd

So, it boils down to simple three first order equations.

Only problem is, we don’t have any idea what 𝒇𝒑𝒑(𝟎) 𝑖𝑠. A

numerical scheme, known as shooting method, comes out

handy. The solution of the set of equations are carried out

for two initially guessed values of fpp(0). The objective is

to achieve 𝑓 ′ ∞ = 1.0 condition at the outer boundary. A

secant method is used to get an estimate of updated value

of fpp(0). The iterative procedure is carried out till outer

boundary condition at 𝑓 ′ ∞ = 1.0 𝑖𝑠 𝑚𝑒𝑡 . The outer

boundary of 𝜂 = ∞ is usually met at 𝛈 between 5 and 6.

Euler Integration:

This is classic integration scheme. For simplicity in

coding and writing this paper, we will use following

nomenclature,

x1 = 𝒇, x2= 𝑓 ′, 𝑥3 = 𝑓′′ , and t = 𝛈. The range of t,

comprised of N points, is divided into equally spaced step

size dt.

dx1/dt = x2, is written as, x1 = x1 + x2*dt + 0.5* x3* dt**2

(3)

dx2/dt = x3, is written as, x2 = x2 + x3 * dt (4)

dx3/dt = -1/2 x1x3, is written as, x3 = x3 – ½ *x1*x3*dt (5)

Usually, a simple code in any language will give a

converged solution in 5 to 6 iteration. The magic value of

fpp(0) or x3(0) will appear as 0.332….. You will find many

numbers after this basic value in literature. I have enclosed

all the software on my website http://www/angelfire.com/co

2/jpnarain/Euler_blausius_upd.py. This file contains the

Blasius equation solver.

Runge-Kutta4 Integration scheme:

This scheme was developed over 100 years ago and has

been one of the most accurate integration methods. This

method is 4th order accurate compared to first order accuracy

of Euler scheme. It is as fast as Euler method and as accurate

as any higher order schemes for Blasius equation. The

solution procedure is basically splitting the Blasius equation

2 Jay P. Narain: Exploring Blasius and Falkner-Skan Equations with Python

in three first order equation and use shooting method to get

converged solution. Note, the method of integration involves

different steps than Euler method. The outline for the method

is,

def f1(x1,x2,x3,t):

dx1dt = x2

return dx1dt (6)

def f2(x1,x2,x3,t):

dx2dt = x3

return dx2dt (7)

def f3(x1,x2,x3,t):

dx3dt = -0.5*x1*x3

return dx3dt (8)

Integrate in the range of given t with following RK4

procedure. Remember we are solving simultaneous

equations.

k11 = dt*f1(x1,x2,x3,t)

k21 = dt*f2(x1,x2,x3,t)

k31 = dt*f3(x1,x2,x3,t)

k12 = dt*f1(x1+0.5*k11,x2+0.5*k21,x3+0.5*k31,t+0.5*dt)

k22 = dt*f2(x1+0.5*k11,x2+0.5*k21,x3+0.5*k31,t+0.5*dt)

k32 = dt*f3(x1+0.5*k11,x2+0.5*k21,x3+0.5*k31, t+0.5*dt)

k13 = dt*f1(x1+0.5*k12,x2+0.5*k22,x3+0.5*k32,t+0.5*dt)

k23 = dt*f2(x1+0.5*k12,x2+0.5*k22,x3+0.5*k32,t+0.5*dt)

k33 = dt*f3(x1+0.5*k12,x2+0.5*k22,x3+0.5*k32, t+0.5*dt)

k14 = dt*f1(x1+k13,x2+k23,x3+k33,t+dt)

k24 = dt*f2(x1+k13,x2+k23,x3+k33,t+dt)

k34 = dt*f3(x1+k13,x2+k23,x3+k33, t+dt)

x1 += (k11+2*k12+2*k13+k14)/6

x2 += (k21+2*k22+2*k23+k24)/6

x3 += (k31+2*k32+2*k33+k34)/6

t += dt (9)

The Rk_blasius_upd.py shows the details of entire

scheme.

All the above and following Blasius equation solvers give

the following nice plot:

Figure 1. Solution of Blasius equation by various methods

Here are some public domain box solvers used for Blasius

equation:

1. Pycse [5] boundary value problem solver bvp. Works

nicely and gives similar solution. Refer to

pycse_blasius_bvp_upd.py code. This solver is little

unstable for more complex equation, such as

Falker-Skan [2] equation. Their bvp_nl works better

and is similar to their finite difference approach

discussed in following section 3.

2. Octave [6] using lsode numerical scheme. Refer to

files df1.m and df2.m to run Octave interactive setup.

This is an initial value problem solver.

3. A finite difference approach using scipy.optimize [5]

fsolve solver. This is a very robust and reliable scheme.

There is no shooting method involved and solutions

are very accurate even in Falkne-Skan [2] favorable

and adverse pressure gradient flows. It does not have

any convergence problem with higher eta regions. It is

simple to use and my most recommended method.

Refer to file scipy_blasius_fds.py code.

4. The artificial intelligence using machine learning has

also caught up with the Blasius equation solution. The

code enclosed here is from the creator of pycse group

[5]. The concept of regression is used to update weight

 American Journal of Fluid Dynamics 2021, 11(1): 1-4 3

and bias while minimizing the equation function with

boundary condition. This is also a non- shooting

method. However the iterations used to minimize the

function takes longer run time (140 s). Refer to

mlBlas_Fs.py code.

Note: There are couple of important variables in boundary

layer theory, namely displacement thickness and momentum

thickness. The displacement thickness is described as,

δ* = ⎰ 1 −
𝑢

𝑢𝑒
 𝑑𝑦 =

𝜈𝑥

𝑢𝑒
 ⎰ 1 − 𝑓 ′ 𝑑𝜼

=
𝜈𝑥

𝑢𝑒
 (𝜼 − 𝒇)|at large eta. (10)

This is an exact solution. The numerical solution shows

that (𝜂 − 𝑓) is constant after a value of 𝜂 = 4.99. This value

is 1.7208.

 δ* = 1.7208 x/ 𝑅𝑒𝑥, (11)

where Rex is the local Reynold’s number.

Similarly, the momentum thickness is defined as:

θ= ⎰ 𝑢 1 −
𝑢

𝑢𝑒
 𝑑𝑦 =

𝜈𝑥

𝑢𝑒
 ⎰ 𝑓′ 1 − 𝑓 ′ 𝑑𝜼,

where 𝜂 varies from 0 to ∞. (12)

This has an exact solution of

 θ= 2.*f’’(0)x/ 𝑅𝑒𝑥 = 0.664 x / 𝑅𝑒𝑥. (13)

Although these parameters can be evaluated as additional

equations in Euler and RK4 schemes, it is nice to know that

they have an exact solution.

Falkner-Skan boundary layer equation [2]:

The derivation of this similarity equation can be found in

text books and on Wikipedia. It is similar to Blasius equation

with additional terms to account for flow past wedge of angle

πβ. The equation is:

 𝑓 ′′′ + 𝑓𝑓 ′′ + β [1 – (f’)**2] = 0 (14)

With boundary conditions:

 𝑓 0 = 0, 𝑓 ′ 0 = 0; 𝑓 ′ ∞ = 1.0 (15)

For β = 1, the problem is of flow impinging on a vertical

plate, known as Hiemenz [3] flow. Here β < 0, corresponds

to adverse pressure gradient (often resulting in boundary

layer separation) while β > 0 represents a favorable pressure

gradient. β = 0 corresponds to a modified form of Blasius

equation. Douglas Hartree4 showed that physical solution to

the Falkner-Skan equation exist only in range -0.198838 < β

< 4/3. Our numerical solutions can reach β = 2. The stable

method can go even higher, though these solutions are

unrealistic.

The solution procedure by various numerical schemes is

similar to that of Blasius equation. The only difference in

being the equation for f’’’ and presence of β. Apart from

integration of simultaneous first order equations, I found

subsequent integration for different β very useful as it

alleviates guesswork for estimating f’’(0). The python lists

were helpful in doing that. The following table 1. shows the

value of f’’(0) for various methods and β.

The method of minimizing the loss function based on the

equation and boundary conditions, as described in the

method of section 4, can be used to solve the Falkner-Skan

equation for various β. Rackauckas8 has shown the

theoretical background for solving the ODEs with Neural

Networks which he describes as The Physics-Informed

Neural Network. He solves a first order and a second order

ode with a method similar to that described in section 4.

After studying this article, any order ode can be solved with

this scheme with confidence.

Carlos Deque-Daza, Duncan Lockerby and Carlos

Galeano [9] also solved Falkner-Skan equation using fourth

order finite difference scheme. This should be considered as

the most accurate solution. However, the other schemes give

similar results, as shown in Table 1, with faster run times and

similar accuracy except in near separation solution at β =

-0.198.

Table 1. The f’’’(0) for various β and various methods. The solution for ** exist, but f’’(0) has to be prescribed

β
Euler

h=0.006

RK4

h=0.05

Scipy finite diff

𝜼∞=10 h=0.005

mlBlas_Fs

𝜼∞ = 6

h = 0.012

Fourth order

finite diff,

ref9

-0.198 0.03342 0.04606 0.025586 0.070586 0.005216

-0.18 0.13092 0.13138 0.129085 0.13416615 0.128636

-0.15 0.21737 0.217153 0.216735 0.217502 0.216361

-0.12 0.2830 0.28114 0.282059 0.28178 0.281760

-0.10 0.32037 0.31976 0.319518 0.32012 0.319270

0.0 0.470 0.46964 0.469582 0.4700 0.469690

0.5 0.92657 0.92768 0.926429 0.9282961 0.92768

1.0 1.22993 1.23258 1.230088 1.233588 1.23258

1.5 ** 1.47722 1.473477 1.47808

2.0 ** 1.687217 1.682223 1.68840 1.687219

 T 1.5 s T 1.843s T 398.5s T 1400 s T 40000s

4 Jay P. Narain: Exploring Blasius and Falkner-Skan Equations with Python

The time shown will vary on your computer system. I used

a 8GB, Intel i7 processor. The results are very similar for all

the methods. Only solution from scipy finite difference

method [5] is shown below

Figure 2. Velocity f’ profile, Stream function f profile and Velocity gradient f’’ profile for various wedge angles (β)

Various programs to solve this problem are posted on my

website http://www.angelfire.com/co2/jpnarain/.

Note: All the calculations were done in Python 3.6.2. As

Python is open software and changes frequently, sometimes

backward compatibility is not guaranteed. At present Python

is at version 3.90. To make life easier, I will recommend

using version 3.6.2.to 3.6.8. If you see error about some

libraries not found, keep on downloading them from their

(.org) websites. If you have never used Python, don’t worry,

learning it is a piece of cake if you know any programming

language.

3. Conclusions

I have briefly described the solution procedure for Blasius

and Falkner-Skan equations. The programs are included for

detailed work. This is from my class lecture note and is

intended to encourage students to learn basic methods and to

keep abreast with the developing technology.

REFERENCES

[1] Blasius, H. , "Grenzschichten in Flüssigkeiten mit kleiner
Reibung". Z. Angew. Math. Phys. 56: 1–37., 1908.

[2] Falkner, V.M., and Skan, S.W., “Aero. Res. Coun. Rep. and
Mem. no 1314”, 1930.

[3] Hiemenz, Karl., “Die Grenzschicht an einem in den
gleichförmigen Flüssigkeitsstrom eingetauchten geraden
Kreiszylinder. Diss”. 1911.

[4] Hartree, D. R., “Numerical Analysis. Oxford University
Press.”, 1952.

[5] John Kitchin, “pycse-Python3 Computations in Science and
Engineering”, jkitchin@andrew.cmn.edu, 2018.

[6] John W. Eaton, “GNU Octave, gnu.org/software/octave”,
1996-2020.

[7] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt
Haberland, Tyler Reddy, David Cournapeau, Evgeni
Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson,
K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson,
Eric Jones, Robert Kern, Eric Larson, CJ Carey, İlhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E.A.
Quintero, Charles R Harris, Anne M. Archibald, Antônio H.
Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. (2020) SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python. Nature Methods, 17(3),
261-272.

[8] Chris Rackauckas, “Introduction to Scientific Machine
Learning through Physics-Informed Neural Network,
https://mitmath.github.io/18337/lecture3/sciml.jmd, 2020.

[9] Carlos Deque-Daza, Duncan Lockerby and Carlos Galeano,
“ Num sol of the Falkner-Skan equation using third order and
high order compact finite- difference schemes”, J. of Braz.
Soc. Of Mech. Eng., 2011.

Copyright © 2021 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

https://en.wikipedia.org/wiki/Aeronautical_Research_Council_Reports_and_Memoranda
https://en.wikipedia.org/wiki/Aeronautical_Research_Council_Reports_and_Memoranda
mailto:jkitchin@andrew.cmn.edu
https://mitmath.github.io/18337/lecture3/sciml.jmd
http://creativecommons.org/licenses/by/4.0/

