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Abstract  Land use land cover changes cause serious challenges to management of natural resources in river basins. This 

comes in form of depletion of water resources, land use conflicts, haphazard developments and is also a climate change driver. 

This study sought to investigate the Spatio-temporal changes of land use/cover in River Kuja basin. The objective was to map 

the changes on the land surface to generate data and information that could inform design of conservation and policy 

measures that can be used to conserve the water resources within the basin. The study used thirty years period with four (4) 

decadal satellite images of 1990, 2000, 2010 and 2020. The images were downloaded and pre-processed to 1G level as a 

GeoTIFF single band and eight (8) bit files. Ground truthing was done to verify actual ground features. Land use/cover 

changes were calculated as a percentage and translated to square kilometers and presented in a clear map showing variations 

over the decadal periods. The research hypothesized that there would be no significant Spatio-temporal changes in land 

use/cover types that can be attributed to the degradation of water resources between 1990 and 2020. The hypothesis was 

tested using Paired Sample t-test. The study showed land use change in the basin during the period under study. The null 

hypothesis was therefore rejected. Water bodies reduced from 41sq.km to 35sq.km, a decrease of 12.20%, forests decreased 

by 50.8%, shrubland decreased by 63.3%, bare land decreased by 34.3%, while agriculture increased by 231.2%, urban 

built-up areas increased by 223.6%, and grassland increased by 27.4%. The study indicates that the main causes of land use 

land cover changes in this basin include sugarcane production, population growth, infrastructural developments, climate 

change and land tenure insecurity. As such, there is a need to design conservation and policy measures to conserve the water 

resources within the basin. 
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1. Introduction 

Land use primarily encompasses the economic and 

cultural uses including agriculture, residential, recreational, 

commercial, mining, industrial, social status activities at a 

given place or on a given piece of land. Land use in most 

cases is determined by ownership and as such public land use 

and private land uses are likely to be very different. However, 

there are instance where some public lands are used for 

private activities [1]. A good example is riparian lands which 

are in most cases used by members of the community hosting 

the lands for their private use such as farming, production   

of bricks or planting of trees. Land use determines the   

land cover. Land cover on the other hand deals with the 

observable biophysical cover on the surface of land. It does 

not only refer to vegetation that covers the land but also the 

soils, groundwater, surface  water and biodiversity [2]. It is 
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argued that land cover should be limited to vegetation and 

man-made features on the earth’s surface. That definition 

thus cuts out places consisting of bare rock or naked earth 

surface and a description of the land as opposed to land cover. 

Within the same lenses, water surface are arguably not land 

covers. Fundamentally, land cover should mean something 

that covers the surface of land, whether it is natural or 

man-made and therefore all farm crops, forests, shrubs, 

infrastructure such as roads, rails, dams, residential or 

commercial premises, pavements, airports/strips, stadiums, 

swimming pools and the likes are land covers albeit artificial 

[3].  

The performance of ecosystem services is directly linked 

to the type and intensity of land use and land cover and 

associated management practices in a given area. In other 

words, what defines land cover depends on land uses and  

the management practices which goes into the land use [4]. 

This explains why changes in land use and land cover can 

alter the supply of ecosystem services and affect the 

well-being of both human beings and nature. Several factors 

define land cover namely anthropogenic activities (land use), 
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geographical location, altitude and morphology [5]. With the 

constantly changing land use, there is a corresponding land 

cover change with the same magnitude.  

The cumulative effects of changes in land use and land 

cover translates to changes in the watershed function, river 

basin morphology and the cascading system; water and air 

quality, wastes generation, quality of the ecosystem, climate 

and human health in the long run [5]. Abella [6] deduced that 

it is imperative to underscore the fact that land cover cannot 

be understood in any dimension without delving into the 

concept of land use because land cover is a function of land 

use and so is the change in land use [7]. Any in interest in 

land cover must therefore trail land use. 

Land use planning and management is directly and 

strongly related to the characteristics of hydrologic 

circulation. The hydrological cycle on the hand is a 

determinant function in the characteristics of the cascading 

system of a river basin. Land Use/Land Cover (LULC) 

change is therefore one of the elements that directly impacts 

on the watershed hydrological cycle [8]. It is widely evident 

that anthropogenic activities cause LULC change and 

subsequently impose a huge impact on the hydrological 

processes and water resources in a river basin. Garg [9] 

studied “Human-induced land use land cover change and its 

impact on hydrology,” and established that the water supply 

and the hydrological cycle diminished as a result of LULC 

change that was worsened population pressure and 

development along river basins that was increasing rapidly 

[10]. 

Tuffa [11] identified LULC changes and population 

pressure on natural resources as some of the most common 

problems in developing countries since their economic 

development mainly depends on agriculture. Ethiopia for 

instance has recorded, in increase in human activities leading 

to expansion of agricultural land, harvesting of timber, and 

urbanization over the past 40 years [12]. The study further 

observed that increased deforestation in southeast Ethiopia 

resulted in varied changes in land use and corresponding 

land cover, thereby affecting the local watershed 

hydrological cycle causing flood vulnerability of various sub 

watersheds within the region.  

According to [13] the changes in the natural vegetation 

and physical soil conditions are typically the prime cause of 

changes in the characteristics of rainfall-runoff of the local 

catchments, which consequently change the river cascading 

system [14]; [15]. Several studies show that the changes in 

vegetation cover, i.e., deforestation, lead to an increase in 

water yield and sedimentation but reduced capacities of 

water bodies within the basin.  

Literature identifies that land use alters the hydrodynamics 

of a river basin [16]. The changes in the land surface are 

attributed to anthropogenic factors. Therefore, integration of 

hydrodynamics modeling, Spatio-temporal analysis and 

socio-ecological factors is important in generating data and 

information that could be used to design conservation and 

policy measures to conserve the water resources within a 

basin. For the integration to yield results, land use classes 

must be mapped and the changes over a specified period   

of time computed. The changes, which must be related to  

the drivers, have not been studied within the study area 

especially in the aspect of planning and management of 

water resources in the basin.  

This study sought to assess the extent of land use land 

cover changes of River Kuja basin from 1990 to 2020. The 

study hypothesized that there would be no significant 

Spatio-temporal changes in land use/cover types that can be 

attributed to the degradation of water resources. 

2. Literature Review 

2.1. Land Use Land Cover Change 

Land use land cover change (LULC) is the temporal 

differences on land surface over a time period. Land use 

primarily encompasses the economic and cultural uses 

including agriculture, residential, recreational, commercial, 

mining, industrial, social status activities at a given place or 

on a given piece of land [17]. Land use in most cases is 

determined by ownership and as such public land use and 

private land uses are likely to be very different. However, 

there are instance where some public lands are used for 

private activities [18]. A good example is riparian lands 

which are in most cases used by members of the community 

hosting the lands for their private use such as farming, 

production of bricks or planting of trees. Land use 

determines the land cover. Land cover on the other hand 

deals with the observable biophysical cover on the surface  

of land. It does not only refer to vegetation that covers    

the land but also the soils, groundwater, surface water and 

biodiversity [19].  

Mark [20] observed unusual increase in cropland within 

Shurugwi region in Midlands Province in Zimbabwe. Vast 

forested lands were converted to agricultural activities to 

provide food, charcoal for fuel, logs for constructing houses 

and animals’ pens, and other uses. Communal built-up 

settlements increased around Davangere City in India, a 

region with several water bodies. The drivers were mainly 

push for food security and scrub land [21]. [22] researched 

on land use changes in Kodaikanal Tamil Nadu. The study 

monitored the changes for a period of 40 years and 

concluded that built-up and agricultural areas increased with 

direct decrease in forested areas and water bodies.  

2.2. Satellite Images on LULC 

Following accelerating land use and land cover changes, 

researchers strive to maintain an up-to-date objective and 

accurate LULC maps. All aspects of the land use and land 

cover changes are evaluated reliably through the use of 

remote sensing satellite data. [23], note that there are various 

techniques through which LULC can be characterized but 

remote sensing presents the most reliable, extensive and 

highly temporal and spatial resolution data. Remote sensing 
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is presently the most accurate technology for examining 

different spectrally sensitive changes of the earth’s surface.  

The data acquired through GIS technology is equally 

imperative for sculpting other natural and cultural processes. 

Integrating remote sensing images with adjustable 

resolutions with the use of diverse descriptive models, has 

been used to acquire past, present and predict future land use 

and land cover patterns [24]. Satellite data in form or maps 

have been used over the years to assess LULC changes and 

the technology has been effective with regards to cost and 

time [25]. From the operational point of view satellite images 

taken by remote sensing has been successful in monitoring 

LULC changes [26]. The success is only based on comparing 

images of the same surface taken at different time. For any 

notable changes to be observed through satellite images, the 

timing should not be close. According to [27], best results 

have been obtained by comparing images of the same land 

area taken at least a decade apart. 

To improve the characterization and classification 

accuracy of land cover mapping, spectral indices are 

commonly used [28]; [29]. Some studies [30]; [31] have 

investigated the role played by landscape metrics in this 

discipline. Numerous other studies have, however, 

demonstrated a significant corves elation between LULC and 

landscape, and subsequently, between LULC and landscape 

metrics and the associated changes as well [32]; [33]. These 

studies investigated not only the degree of relationship of 

certain LULC and landscape metrics, but also the effects of 

the scales and classifications on the landscape metrics 

themselves.  

According to [34], landscape metric parameters 

established through satellite imaging are commonly used to 

indicate biodiversity, water quality and land cover changes 

over time. They provide a set of spatial tools for analyzing 

Landscapes and their arrangement and properties of their 

morphological and topographical features. These metrics, 

can provide information about the LULC over a long period 

of time. Furthermore, the landscape metrics of interest   

can provide quantitative values through which certain 

features can generally be described. Because of these 

properties, landscape Satellite images can provide additional 

information that improves LULC classification [35].  

Satellite images are generated through integrating 

Geographic information system (GIS) and remote sensing 

technologies. According to [36], GIS and remote sensing can 

help with mapping spatial location and real-world features 

and visualizing the spatial relationship among the features. 

For instance, GIS can help to visualize where some types   

of natural resources are and how human respond to their 

occurrence within their reach (LULC). This can help with 

raising a red alert if the occurrence of such natural resources 

or the human response to their occurrence (e.g. Sand & Sand 

harvesting) is anything of an alarm eg (flash floods).. GIS 

and Remote Sensing can also help with mapping spatial 

location and real-world features and visualizing the spatial 

relationship among the features.  

2.3. Drivers of Land Use Change 

Changes in LULC is a consequence of numerous factors 

interacting on the surface of the land. These factors either 

originate from human activity or natural forces. Among the 

human activities, the size and population growth plays a 

major role, but it is not the only triggering human cause of 

LULC changes [37]. The effects of population growth can be 

magnified or weakened by institutional factors and national 

and regional policies, as well as processes of globalization, 

all of which shape economic opportunities within a region.  

In West Africa, populations respond in multifaceted and 

interrelated ways that eventually affect land use and land 

cover patterns. For example, the progressive integration of 

West Africa into a global market economy has added 

pressure to expand foreign investment in the mining and 

timber industries of the Guinean forest countries, resulting 

into increased rate of forest loss [38]. This demonstrates that 

land uses are partially defined by demands informed by need 

for merchandise for international trade.  

Structural adjustment innovations have stimulated 

agricultural specialization toward several cash crops, such  

as cotton and peanuts in the Sahelian countries. These  

crops have been substituted with a more diverse mix of local 

grains and tubers. Moreover, increasing household income  

of the growing population affects consumption patterns, for 

example, there has been increasing demand for processed 

food such as meat, and dairy from the wealthy urban 

populations. Consequently, land use and exploitation of 

natural resources has been intensified to meet the growing 

demand [39]. 

Natural factors also drive significant changes in LULC. 

Climate change is the most dynamic natural factor which 

affects land cover at decadal time scales. The elements    

of climate changes which induce LULC changes include 

recurrent and persistent drought conditions in Arid and 

Semi-Arid Lands (ASALSs) in many parts of the world 

including Sub-Saharan Africa [40]. Empirical evidence [41] 

shows that chronic and severe drought has directly changed 

the land cover by shrinking water bodies, desiccating soils, 

stressing the vegetation, and exposing bare soil and sandy 

substrate to intensive erosion. Indirectly, it has changed land 

use because people are not able to use the land for crop 

farming whether for commercial or subsistence purposes and 

neither for foraging by livestock. They are subsequently 

forced to find alternative ways of securing their livelihoods, 

which in turn leads to a change in the land use and land 

cover.  

The threat of drought to agriculture in the Sahel forced 

farmers and pastoralists to migrate from the drought affected 

areas toward more humid stretches of land, or into the urban 

centers to search for alternative livelihood. In other instances, 

the combined pressure of drought and population growth has 

stimulated investments in soil and water conservation, and  

in agricultural escalation in places like southern Niger and 

central Burkina Faso [42]. 

Climate change has also led to torrential rainfall which 
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often cause devastating effects such as landslides, and flash 

floods [43]. Flash floods on the other hand cause huge 

changes on the land cover and land use. Reports have been 

made of cases of permanent displacement of people due to 

rise in L. Victoria level or river draining their waters into the 

lake [44]. Consequently, some agricultural activities along 

the rivers and the lake basin are done amidst fear of floods. In 

conclusion, the literature reviewed here have shown that the 

characteristics of any river basin are a function of land use 

and land cover in the river basin, population growth and 

climate change. This study looking at mapping the temporal 

changes in LULC, is therefore key in providing information 

that can help in planning for conservation and management 

of the Kuja basin’s natural resources. 

3. Methodology 

3.1. Study Area  

The study was conducted in River Kuja basin in    

Kenya (figure 3.1). It is an extensive basin spanning from 

Kiabonyoru highlands in Nyamira County downwards to 

Lake Victoria. It lies within coordinates 0.65°S 43.97°E 

(34.883110 -0.996036 Decimal Degrees) and has a total 

length of 147 km. The basin is averagely 2,000m above the 

sea level but rises to 3,000m above the sea level at its source 

in Nyamira. 

The basin has an area of 6,900km2 (2,664 sq. mi) with a 

population of approximately 2,215,764 people [45]. The 

river has an average discharge of 58 m3 s-1 (2,048 cu ft s-1). 

The river runs across the Gucha land where it is commonly 

known as Gucha River. Part of it is referred to as River 

Mogonga, a name symbolizing the deadly effects of this river 

when it floods. The other part that passes through Luo 

communities is referred to as River Kuja. 

 

Figure 3.1.  Map of River Kuja Basin (Source: Gucha-Migori basin 

IWRM Plan) 

3.2. Methods 

Methods employed to achieve the desired objective of 

land use land cover mapping for river Kuja entailed a couple 

of sequential steps; Data acquisition, Data processing, 

Training Data collection, Image classification, Accuracy 

assessment and Change detection. The data used on 

Spatio-temporal changes on land use land cover included a 

thirty-year decadal satellite images 1990, 2000, 2010 and 

2020, Digital Elevation Model (DEM) of resolution 30m x 

30m, soils in the basin, field surveys data and basin shapefile. 

The study area was first delineated using DEM data and river 

shapefile. It was measured by acquiring remotely sensed 

satellite images of River Kuja basin and ground truthing 

processes. The images were captured over different times 

and compared while considering different temporal 

phenomena like water bodies, agriculture, forests, shrub  

land, urban areas and grassland. The different classes were 

analyzed and results presented and discussed. 

Thirty years with four (4) decadal satellite images of 1990, 

2000, 2010 and 2020 were downloaded and pre-processed  

to 1G level as a GeoTIFF single band and eight (8) bit files. 

The images were sourced from www/http/landsat.usgs.gov. 

Full Scene digital Landsat Thematic Mapper (TM) and 

Landsat Enhanced Thematic Mapper/ Plus (ETM+) satellite 

images were processed and used. Hardcopy images for    

use in reconnaissance and ground truthing activities were 

processed, clipped to study area, enlarged and printed at the 

scale of 1:50,000 at the Department of Resource Surveys and 

Remote Sensing (DRSRS). In order to perform a multi-stage 

analysis to improve the accuracy, aerial photographs were 

obtained for specific sample sites from the Surveys of 

Kenya's photo-library in Nairobi. The year 1990 was chosen 

as the base year since the study used decadal approach of 30 

years until 2020. This is because patterns of change in land 

and land use phenomena, though dynamic depending on the 

driving forces, often have slow progress and require such 

periods to detect major spatial and temporal changes. 

Reference data was collected from the field in order to 

understand and correlate the satellite image features with 

study area features. Using analogue image interpretation 

elements, hard copies of colored images were applied to 

identify observable patterns of land cover features. The 

elements used include tone, colour, texture, association and 

pattern. The identified points were geo-referenced, described 

either retrospectively or instantaneously, and used as training 

features. The training sites were selected randomly based on 

observable features and information like government reports 

and vegetation maps were also collected during the field 

reconnaissance. 

3.2.1. Data Acquisition  

Landsat data was selected and data was fetched through 

google earth engine application programming interface. This 

data is also available through Glovis and Earth explorer but 

google earth engine was preferred. This study was seeking to 

understand the changes of land cover in river Kuja basin in 

relation to its implications to water resources and this was 

done in four epochs; 1990, 2000, 2010 and 2020. Landsat  

has numerous sensors ranging from Landsat 1 through to 

Landsat 9 that was launched by NASA in late 2021 [46], 

table 3.1 shows the data used for this project. The respective 

datasets were acquired for the area of interest and were ready 

for processing. 
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Table 3.1.  Satellite Images downloaded for analysis 

Data Temporal resolution Spatial Resolution Source Start year End year Where used in the project 

Landsat 5 16 days 30m USGS 1984 2013 1990 

Landsat 7 16 days 30m USGS 1999 - 2000, 2010 

Landsat 8 16 days 30m USGS 2014 Current 2020 

 

The use of google earth engine to extract satellite images 

was preferred over the conventional use of Glovis and earth 

explorer. This is because in cases where the study area is vast, 

the method gives ease of access and capabilities to leverage 

the platform for processing as it offers cloud computing 

functionalities in a free-to-use approach in the explorer  

web app [47]. It has a parallel high-speed processing 

capability with Google computational machine algorithms 

and Application Programing Interfaces (APIs) which support  

the common coding languages [48]. These modules easily 

enable the users to extract, analyze and present big spatial 

data in powerful and easier ways without applying 

specialized computer coding expertise. Landsat has evolved 

over time and there are a couple of sensors that have 

petabytes of data archived overtime [49].  

3.2.2. Data Processing  

Data processing was done by leveraging the power of 

Google earth engine (GEE) cloud computing resources. This 

was to enable the user to have access to powerful online tools 

in the research area. Algorithms were developed to do the 

following; 

a. Cloud masking 

 

Figure 3.2.  Cloud Masking Process for River Kuja Basin 

Being a river basin, river Kuja experiences moist 

conditions and rainfall during the rainy season. Given that 

the temporal resolution of Landsat instrument is relatively 

long (16 days) finding cloud free images was troublesome, 

therefore a cloud masking algorithm was applied on GEE to 

filter out images with clouds and only remain with images 

that are less cloudy (Figure 3.2). The algorithm returns 

images that could have clouds in low percentage hence the 

next step (Mosaicking) was used to stitch together images 

and create a cloud free image.  

b. Mosaicking  

Mosaicking is a process of bringing together images    

of different scenes of the sensor to make one image. This 

process was done to generate one image for each epoch 

(Figure 3.3) and a computation of the median was done.  

 

Figure 3.3.  Mosaicking Process during satellite image preparation 

c. Removing Noise  

Remotely sensed data as well as any other data often to 

have components of errors. In this case, the researcher 

sought to clean the images prior to the use. The corrections 

were done and algorithm developed for pre-processing to 

address atmospheric and geometric corrections.  

d. Band composite  

At this stage the spectral bands were selected to aid in the 

identification of ground features. The principle behind this 

was that different objects would respond differently when 

illuminated by sunrays and therefore the spectral signature 

would vary across different wavelengths and detected 

differently by the sensor. The spectral bands were used to 

develop vegetation indices such as normalized difference 

vegetation index among others. The bands selected were the 

red, green, blue, near infrared, and the shortwave infrared. 

3.2.3. Land Use Classes  

The classes identified and used in the study are as 

tabulated in table 3.2. 
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Table 3.2.  Different land use classes used in River Kuja basin 

No. 
Land use / 

land cover 
Description 

1. Urban 

Residential, industrial, commercial, 

recreational Areas, institutional, and 

road networks 

2. Forest Area of land dominated by trees 

3. 
Cultivated areas / 

Agricultural Land 

Both irrigated and rain fed arable land, 

cropland, farming and fallow fields 

4. Shrub land 

Plant community characterized by 

vegetation dominated by shrubs, often 

including shrubs, herbs and geophytes 

5. Grass land Area under continuous cover of grasses 

6. Water Bodies Rivers, pans and dams 

3.2.4. Training Data Collection  

Training data were collected to give information to a 

machine learning module; the spectral signature of a specific 

land cover type. This was done through visual image 

interpretation approach. Polygons for different classes were 

collected in readiness for subsequent classification exercise 

(Figure 3.4). 

 

Figure 3.4.  Training data sites during the supervised classification process 

3.2.5. Image Classification 

Image classification was done through the use of Random 

Forest and maximum likelihood algorithms, the training  

data was split into training, testing and validation sets   

using the ratio of 70, 20 and 10 respectively. A set of indices 

were also computed to help in differentiation between 

classes and reduce the probability of getting mixed classes, 

the indices calculated included: normalized vegetation index, 

normalized wetness index, normalized multiband drought 

index, modified soil-adjusted vegetation index, Normalized 

difference snow index and enhanced vegetation index. The 

indices were added to the images as additional bands and 

were included during the classification process.  

The classification made sure that the bands with the 

highest correlation plots were used to develop image 

composite, that are then applied to collect the training 

datasets. Highly correlated bands, is interpreted as those 

having the same type of features, with minimal class to class 

confusion.  

3.2.6. Accuracy Assessment 

This is a statistical test to evaluate the accuracy of       

a classification exercise, there are numerous modules for 

doing this, however, the most common and efficient method 

chosen for this exercise were the kappa coefficient, error 

matrix, producers and consumers accuracy assessment.  

The advantage of kappa coefficient error matrix is that it 

helps identify the type and nature of errors associated    

with classification process including their quantities. The 

following equations helped in computing the accuracy of the 

image’s classification; 

i) Producers Accuracy =  

Total number of  correct pixels in a given category

Total number of  correct pixels in areference data
 

ii) User’s Accuracy =  

Total number of  correct pixel in a given category

Total number of  pixels that were 

actually classified in that category

 

iii) Overall Accuracy = Sum of diagonal metric 

Total number of pixels 

iv) Kappa Index = Observed accuracy- chance agreement 

1-chance agreement 

4. Results and Discussion 

4.1. Image Classification for Land Use/Cover  

Seven land use classes were identified and used to define 

classes during the land cover land use mapping process. The 

classes applied are in Table 4.1 below: 

Table 4.1.  Land use/land cover Class (Source: Encyclopedia of Soil in the 
Environment 2005) 

No. 
Land use/land 

cover Class 
Description 

1. Water Bodies Rivers, pans and dams 

2. 
Agricultural 

Land 

Both irrigated and rain fed arable land, 

cropland, farming and fallow fields 

3. Urban 

Residential, industrial, commercial, 

recreational 

Areas, institutional, and road networks 

4. Bare land Land without any vegetation or structures 

5. Forest Area of land dominated by trees 

6. Shrub land 

Plant community characterized by 

vegetation dominated by shrubs, often 

including shrubs, herbs and geophytes 

7. Grass land Area under continuous cover of grasses 

The seven land use/cover classes were used in change 

detection process on the different satellite images acquired 

for the entire Kuja River basin. The classes were first 

quantified in each time series step then each class, 
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determined by the number of pixels, expressed as the surface 

area on the ground representing the spatial extent in 

kilometres.  

4.2. The Land Classification 

The results of land cover classification depended on the 

output of the major classes shown in table 4.1. However,  

the Landsat sensors in pre-1990 years, had high level of 

confusion with other land classes. As the years went by, the 

classification segmentation became better, contributed by  

the bettering of the sensors being produced for Landsat     

5, and Landsat 8. The maps below show the output of     

the land classification done in a hybrid methodology. The 

hybrid method ensured a pre-image segmentation using 

machine learning technique (k means classification). After 

segmentation, the training sets were then collected while 

validating with both the segmented image and the classified 

images. The study being done in 4 epochs produced the 

following maps as presented in the sections below. 

4.2.1. Land Cover/Use Distribution in 1990 

The year 1990 was the baseline time for the decadal 

satellite images analysis process. The image showed that 

agriculture occupied 11.4% with an area of 788 sq.km while 

water 0.59% with an area of 41 sq.km. Forests covered the 

greatest area of River Kuja basin followed by grassland and 

shrub land (Table 4.2). The high forest cover was attributed 

to the fact that some areas within the basin had not been 

opened for agriculture and urbanization hence remained 

under indigenous forest cover. The overall vegetative  

cover in the basin added up to 4,920.39sq.km. This translated 

to 71.31% of the total basin area. Urban areas covered     

an area of 161sq.km which translates to 2.3% of the land. 

The urbanized area include residents, industrial spaces, 

commercial areas, road networks and road facilities. The 

overall Kappa accuracy analysis for the classification in 

1990 was 82%. The matrix table below shows the land cover 

classes distribution of the basin with the level of both 

producers and users accuracy. 

 

Table 4.2.  Matrix table for the Land Cover Classification Map for 1990 

1990 Reference Data  Accuracy 

Classified Area 

(Km2) 

Class Area Covered (Km2) Percentage of Class Producers Accuracy User Accuracy 

Water 41 0.59% 0.96 0.77 

Agriculture 788 11.4% 0.87 0.83 

Urban 161 2.3% 0.81 0.67 

Bare land 502 7.3% 0.79 0.75 

Forest 1886 27.31% 0.8 0.74 

Shrub land 1033 15.0% 0.87 0.82 

Grassland 1212 17.6% 0.77 0.83 

 Others Unclassified 1277 18.5%   

 TOTAL 6,900 100%   

Accuracy 
 Overall Accuracy = 85% 

 Overall Kappa =82% 

Table 4.3.  Matrix table for the Land Cover Classification Map for 2000 

2000 Reference Data Accuracy 

Classified Area 

(Km2) 

Class Area Covered (Km2) Percentage of Class Producers Accuracy User Accuracy 

Water 40 0.58% 1 1 

Agriculture 1973 28.6% 0.97 0.93 

Urban 173 2.5% 1 1 

Bare land 730 10.62% 0.93 0.81 

Forest 1500 21.7% 0.81 0.74 

Shrub land 718 10.4% 0.76 0.63 

Grassland 919 13.3% 0.73 0.82 

 Others Unclassified 847 12.3%   

 TOTAL 6,900 100%   

Accuracy 
Overall Accuracy = 81% 

Overall Kappa =87% 
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Figure 4.1.  Land use Image for the year 1990 

 

Figure 4.2.  Land use Image for the year 2000 

 

Figure 4.3.  Land use Image for the year 2010 

 

Figure 4.4.  Land use Image for the year 2020 

Table 4.4.  Matrix table for the Land Cover Classification Map for 2010 

2010 Reference Data Accuracy 

Classified Area 

(Km2) 

Class Area Covered (Km2) Percentage of Class Producers Accuracy User Accuracy 

Water 39 0.56% 0.97 0.96 

Agriculture 1863 27.0% 0.93 0.95 

Urban 464 6.7% 0.76 0.72 

Bare land 700 10.1% 0.93 0.81 

Forest 1243 18.04% 0.98 0.98 

Shrub land 219 3.2% 0.83 0.93 

Grassland 1242 18.0% 0.93 0.78 

 Others Unclassified 1130 16.4%   

 TOTAL 6,900 100%   

Accuracy 
 Overall Accuracy = 85% 

 Overall Kappa =82% 
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4.2.2. Land Cover/Use Distribution in 2000 

The classes showed a spatial variability over the 10 years 

temporal time space as summarized in table 4.3. Water 

bodies reduced their area of coverage from 41sq.km in 1990 

to 40sq.km in 2000. The 1.0 sq.km variation has possible 

great impact on the hydrology of the basin (find other studies 

that have indicated that that is true and refer). Agriculture 

sprang up 1973sq.km, more than double the area covered   

in a decade temporal space hence occupying 28.6% of the 

entire basin. Forests have reduced from 27.31% in 1990 to 

21.7% in 2000. Urbanization also increased with a margin  

of 12sq.km. The overall Kappa accuracy analysis for the 

classification in 2000 was 87%.  

4.2.3. Land Cover/Use Distribution in 2010 

In 2010, urbanization increased from 2.5% in 2000 to  

6.7% of the basin area as shown in table 4.4. Forests have 

reduced to 1243sq.km. Shrub land constantly declined from 

15% in 1990, to 10.4% in 2000 and 3.2% in 2010. The water 

bodies in the basin are reducing in surface coverage where in 

the two decades, there is a loss of 2sq.km. Bare land showed 

a mixed coverage over the period. The overall accuracy    

in the 2010 classification was 85% while overall Kappa 

accuracy analysis was at 82%. 

4.2.4. Land Cover/Use Distribution in 2020 

In the last classification temporal space presented in table 

4.5, water bodies reduced to 36sq.km while agriculture shot 

up to 2610sq.km occupying 37.8% of the entire River Kuja 

basin area. Urban area of coverage constantly increased    

to 521sq.km. Forests have also reduced significantly to 

928sq.km translating to 13.44% basin coverage. The overall 

accuracy in the 2020 classification was 87% while overall 

Kappa accuracy analysis was at 88%. 

The Figure 4.5 below gives the graphical comparison of 

the different land cover classes. Water resources, agriculture, 

urban development and grassland had an increasing trend 

over the period while forested area, shrubland and others 

unclassified showed rather a reducing trend. Bare land had  

a mixed change depending on prevailing anthropogenic 

factors. 

 

 

Figure 4.5.  Statistical comparison for land cover classes 1990 – 2020 

4.3. Population Analysis in the Basin 

Table 4.6 shows the population of the basin which 

includes portions of counties mapped under Kuja basin. 

Generally, the human population in the basin increased from 

1,408,887 in 1989 to 2,215,764 in 2019 which is a difference 

of 806,877 translating to 57.3% increase with a compounded 

growth rate of 1.52%. Migori County contributed to a greater 

population size since River Kuja basin covers largely across 

the County. Narok County is the least covered by the basin 

hence the small population size. Migori County had a sharp 

population rise between 1989 and 1999 while Homabay and 

Narok Counties registered a sharp rise between 2009 and 

2019. 

Table 4.5.  Matrix table for the Land Cover Classification Map for 2020 

2020 Reference Data Accuracy 

Classified Area 

(Km2) 

Class Area Covered (Km2) Percentage of Class Producers Accuracy User Accuracy 

Water 36 0.52% 1 1 

Agriculture 2610 37.8% 0.94 0.96 

Urban 521 7.6% 0.96 0.98 

Bare land 330 4.8% 0.81 0.91 

Forest 928 13.44% 0.80 0.78 

Shrub land 379 5.5% 0.89 0.82 

Grassland 1544 22.4% 0.67 0.72 

 Others Unclassified 552 8.04%   

 TOTAL 6,900 100%   

Accuracy 
 Overall Accuracy = 87% 

 Overall Kappa =88% 
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Table 4.6.  Population dynamics of the basin  

COUNTY 
YEAR 

1989 
YEAR 1999 

YEAR 

2009 

YEAR 

2019 

Migori 487,556 714,897 779,878 916,436 

Kisii 391,067 414,601 437,665 453,281 

Homabay 180,432 217,887 227,998 335,868 

Nyamira 198,776 215,951 227,697 253,282 

Narok 151,056 170,591 176,497 256,897 

TOTAL 1,408,887 1,733,927 1,849,735 2,215,764 

Source: Kenya National Census reports (1989, 1999, 2009 and 2019) 

The thirty years temporal change in population from  

1989 to 2019 showed a compounded growth rate of 1.52%  

as computed by compounded growth rate formula. The 

population dynamics in the basin is shown in the figure 4.6 

below; 

 

Figure 4.6.  Population dynamics of River Kuja Basin 

4.4. Change Detection Analysis 

Change detection was undertaken to establish areas that 

have undergone any form of shifts across the study period, 

this is a pixel wise comparison of classes and was done to 

have an overview of stable areas and those areas that have 

undergone any form of shifts. Given the resolution of the 

satellite imagery and the size of the catchment pixel wise 

analysis show significant shifts plausibly due the number  

of activities that are taking place in a catchment. These 

include water and wind transport of materials, natural and 

anthropogenic activities. The following maps indicate the 

changes for different epochs.  

The results show that the land uses have changed over the 

decadal period in which the study was conducted. Table 4.7 

shows that agricultural area expanded exponentially from 

788sq.km to 2610sq.km while forests have reduced from 

1886sq.km to 928sq.km between 1990 and 2020. This 

translates to an agricultural percentage increase of 26.4% 

and reduction of forests by 13.87% respectively. Surface 

water retention reduced from 41sq.km to 36sq.km during  

the period under study. Urban generally increases towards 

2020, however, due to high pixel confusion in 1990, the 

classification had a low accuracy, thus the high area for 

urban in 1990. As the thick vegetation such as forest reduces, 

the grassland areas increase while grassland generally 

increases. Shrub land areas have also reduced.  

 

 

 

Figure 4.7.  Decadal Change detection of the basin 1990-2020 
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Table 4.7.  Overall Change from 1990 to 2020 

Reference Data Overall Change 

Class 

1990 

Area Covered (Km2) 

Percentage of Class 

2020 

Area Covered (Km2) 

Percentage of Class 

Area  

Changed (Km2) 

Overall  

Percent 

Percent 

Change per Class 

Water 41 0.59% 36 0.52% -5 -0.07% -12.2% 

Agriculture 788 11.4% 2610 37.8% 1822 26.4% 231.2% 

Urban 161 2.3% 521 7.6% 360 4.4% 223.6% 

Bare land 502 7.3% 330 4.8% -172 -2.5% -34.3% 

Forest 1886 27.31% 928 13.44% -958 -13.87% -50.8% 

Shrub land 1033 15.0% 379 5.5% -654 -9.5% -63.3% 

Grassland 1212 17.6% 1544 22.4% 332 4.8% 27.4% 

Others Unclassified 1277 18.5% 552 8.04% -725 -10.46% -56.7% 

TOTAL 6,900 100% 6,900 100%    

 

The satellite image analysis showed an overall percentage 

land use land cover change of 82%. This was contributed   

to by different land use classes pointing mainly to human 

activities as the main cause of the conversion from one class 

to another over the three decadal period under study.  

 

Figure 4.8.  Overall Change detection of the basin from 1990-2020 

4.5. Discussions 

The findings as demonstrated in figure 4.8 show that   

the entire basin experienced overall land use land cover 

change over the past 30 years. More of forests, shrub land 

and bare land were converted to cultivated agriculture    

and infrastructural development. This has exposed the soil 

surface and reduced indigenous land cover hence resulting to 

hydrological alterations Recharge of water resources like 

rivers, springs, tributaries, natural ponds, natural dams etc. 

was affected During precipitation, excess surface runoff 

accumulates and flow downstream from tributaries into the 

river and finally into the lake without reduced resistance. 

Many water resources are therefore exposed to increased 

evaporation with low ground water recharge thus reduced 

water bodies’ capacity in the basin [50]. 

Results show that area under agriculture expanded by 

231.2% during the period under study. This is explained 

partly by increasing sugarcane production in the basin as an 

economic activity. There are three sugar factories that rely on 

sugarcane production i.e. Sony Sugar, Sukari Industries and 

Kisii Sugar Factory. Sony sugar factory also called South 

Nyanza Sugar Factory is located in Awendo Town in Migori 

County Kenya. It was established in 1979 and currently 

produces over 60,000metric tons on sugar with a Kenyan 

market share of 10.14%. Sukari Industries also called 

Ndhiwa Sugar Factory is located in Ndhiwa Constituency 

Homabay County, Kenya and started in 2015. The factory 

produces over 45,000 metric tons of sugar with a market 

share of 7.12%. There is a relatively new sugar factory, Kisii 

Sugar Factory located in South Mugirango constituency.   

It was established in 2016 and is estimated to produce 500 

metric tons on sugar per day. Several cash crops are also 

grown in the region. These included maize, tobacco, rice, 

coffee, tea, sorghum, millet and cassava. This is likely to be 

the basis for the increase in area under agriculture. 

Urban and infrastructural developments increased by 

223.6%. This e could also because of the sugar production 

companies that have resulted into expansion of the market 

centers, constructed more roads and boosted the general 

economy in the region where giving the natives opportunity 

to improve their livelihoods including opening of more 

businesses. Due to road accessibility, trading activities 

heightened across the southern parts of Kenya hence the 

expansion in the towns and market centers. In addition, 

construction of more schools, hospitals and social amenities 

accompany such kinds of development. These were further 

boosted by the Kenyan constitution 2010 adopted also  

during the period under study that has led to devolution of 

governance and resources to the county government thus 

contributing to several infrastructural developments. 

The population in the basin rose from 1,408,887 in 1989 to 

2,215,764 in 2019 according to Kenyan population census. 
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The environmental effect of such a population increase is 

devastating. It leads to the subdivision of the land that was 

once owned by grandparents in 1990s to their children and 

grandchildren. The 30 years change in population from 1989 

to 2019 was 806,877 translating to 57.3% increase with a 

compounded growth rate of 1.52%. Such change often result 

into natural resources depletion and degradation as deduced 

by [51] in his similar study. Many parcels of have been 

cleared for settlements and other diverse human activities. 

To fight food insecurity, every available land is converted to 

agriculture for subsistence farming. Furthermore, often the 

higher the population the more livestock rearing leading   

to competition for water resources. In some regions, ground 

water drilling and supply is the only option for water 

availability. With the increasing population, there is little 

efforts to conduct capacity building and awareness on 

environmental conservation measures.  

Climate change has directly and indirectly affected the 

land use land cover and the general ecosystem of the basin 

[52]. There is alteration of rainfall patterns, distribution and 

temperature in the area. Coupled with climate change, 

human activities like deforestation, expansion of agricultural 

land, urbanization and gold mining are likely to have long 

term effects on the hydrological processes such as runoff, 

infiltration, evapotranspiration and precipitation. Hence, it is 

important to create awareness and build the capacity of the 

communities in the basin on sustainable land use planning 

and management of water resources with much emphasis on 

bare land restoration, bush land and forests conservation, as 

well as regulation of agricultural expansion among others.  

5. Conclusions  

In this study, the land use land cover change for River 

Kuja basin over the three decadal period was analyzed. The 

results showed that there were changes that were detected 

over the entire basin under study. The agricultural area 

expanded exponentially from 788sq.km to 2610sq.km while 

forests have reduced from 1886sq.km to 928sq.km between 

1990 and 2020. This translates to an agricultural percentage 

increase of 26.4% and reduction of forests by 13.87% 

respectively. Surface water retention reduced from 41sq.km 

to 36sq.km during the period under study. Urban generally 

increases towards 2020, however, due to high pixel 

confusion in 1990, the classification had a low accuracy, thus 

the high area for urban in 1990. The satellite image analysis 

showed an overall percentage land use land cover change of 

82%. 

The results revealed that forests, shrub land and grassland 

were converted to agriculture and constructed /built-up  

areas. This resulted in change in the hydrological and 

hydrogeological systems within the basin, soil degradation 

and other ecological effects. These changes has implications 

on the natural resources sustainability and management  

and the overall livelihood of the local communities. Water 

resources reduced by 5sq.km which has negative impacts on 

the increasing human population and the ecosystem at large. 

Therefore, in order to manage land use in the basin, there 

is need for improved land conservation and management 

practices, proper land use planning and management, 

integrated basin wide management plan, and full 

participation and capacity building of the local communities. 

In this study, the analysis of land use land cover using remote 

sensing and GIS approach provided useful information in the 

dynamics and patterns of land use. This is essential for 

planners and decision makers to help in planning for 

management and sustainable utilization of Kuja river basin 

resources. 
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