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Algebraic Points of Given Degree on the Affine Curve 

𝑪: 𝒚²= 𝟒𝒙𝟓 + 𝟏 
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Abstract  In this work, we determine the set of algebraic points of given degree over ℚ  on the curve of affine equation 

𝑦²= 4𝑥5 + 1. This note extends a result of Booker, Sijsling, Sutherland, Voight and Yasak in [1] who gave a description of 

the set of ℚ-rational points i.e the set of points of degree one over ℚ on this curve. 
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1. Introduction 

Let 𝐶 be a smooth algebraic curve defined over ℚ. Let 𝐾 

be a numbers field. We note by 𝐶(𝐾) the set of points of 𝐶 

with coordinates in 𝐾 and  𝐶(𝐾) 𝐾:ℚ ≤𝑑  the set of points 

of  𝐶 with coordinates in 𝐾 of degree at most 𝑑 over ℚ. 
The goal is to determine the set of algebraic points of 

given degree over ℚ on the curve 𝐶  given by the affine 

equation  

𝑦2 = 4𝑥5 + 1 

The Mordell-Weil group 𝐽(ℚ) of rational points of the 

Jacobian is a finite set (refer to [1,4]). 

We denote by: 𝑃 =  0, 1 , 𝑃 =  0,−1  and ∞ the point 

at infinity. In [1] Booker, Sijsling, Sutherland, Voight and 

Yasak gave a description of the rational points over ℚ on 

this curve. This description is as follows: 

Proposition: The ℚ-rational points on 𝐶 are given by  

𝐶 ℚ =  𝑃, 𝑃 ,∞   

In this note, we give an explicit description of algebraic 

points of given degree over ℚ on the curve 𝐶. 

Our main result is given by the following theorem: 

Theorem: The set of algebraic points of given degree over 

ℚ on the curve 𝐶 is 

given by: 

 𝐶 𝐾 = ℱ0 ∪ 𝐴1

 𝐾:ℚ ≤𝑑

∪ 𝐴2 

With: 

ℱ0 =   𝑥,−
 𝑎𝑖𝑥

𝑖
𝑖≤
𝑛
2

 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−5

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸0 ; 
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𝐴1 = ℱ1 ∪ ℱ2 =

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 ± 𝑏0 = 0 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸1  
 

 

 

and 

𝐴2 = 𝐺1 ∪ 𝐺2

=

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 ± 𝑏0 = 0, 𝑎1 ± 𝑏1 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸2 
 

 

 

where  

𝐸0 =   𝑎𝑖𝑥
𝑖

𝑖≤
𝑛

2
  

2

=   𝑏𝑖𝑥
𝑗

𝑗≤
𝑛

2
  

2
 4𝑥5 + 1  , 

𝐸1 =   𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 

2

=   𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 

2

 4𝑥5 + 1  

and  

𝐸2 =   𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+2

2
 

 

2

=   𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−3

2
 

 

2

 4𝑥5 + 1  

2. Auxiliary Results 

For a divisor 𝐷 on 𝐶, we note ℒ 𝐷  the ℚ-vector space 

of rational functions 𝐹  defined on ℚ such that 𝐹 = 0 or 

𝑑𝑖𝑣 𝐹 ≥ −𝐷 ; 𝑙 𝐷  designates the ℚ -dimension of ℒ 𝐷 . 
In [1, 4] the Mordell-Weil group 𝐽(ℚ) of 𝐶 is isomorph to 

ℤ/5ℤ and 𝐶 is a hyperelliptic curve of genus 𝑔 = 2. Let 

𝑥, 𝑦 be two rational functions on ℚ defined as follow:  

𝑥 𝑋, 𝑌, 𝑍 =
𝑋

𝑍
 et 𝑦 𝑋, 𝑌, 𝑍 =

𝑌

𝑍
. 
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The projective equation of 𝐶 is 𝑌2𝑍3 = 4𝑋5 + 𝑍5 

We denote by 𝜃 = 𝑒𝑖
𝜋

2  ∈ ℂ  and let's put 𝐵𝑘 =

  
1

4

5
 𝜃2𝑘+1, 0  for 𝑘 ∈  0, 1, 2, 3, 4 . 

Let us designate by 𝐷. 𝐶  the intersection cycle of 

algebraic curve 𝐷 defined on ℚ and 𝐶. 

Lemma 1: 

 𝑑𝑖𝑣 𝑥 = 𝑃 + 𝑃 − 2∞  
 𝑑𝑖𝑣 𝑦 = 𝐵0 + 𝐵1 + 𝐵2+𝐵3 + 𝐵4 − 5∞  
 𝑑𝑖𝑣 𝑦 − 1 = 5𝑃 − 5∞  
 𝑑𝑖𝑣 𝑦 + 1 = 5𝑃 − 5∞  
Proof: (See [10]). 

Consequence of lemma 1:  

5𝑗 𝑃 = 5𝑗(𝑃 ) and 𝑗 𝑃 + 𝑗 𝑃  = 0. 

Lemma 2: 

 ℒ ∞ =  1  
 ℒ 2∞ =  1, 𝑥 = ℒ 3∞  
 ℒ 4∞ =  1, 𝑥, 𝑥²  
 ℒ 5∞ =  1, 𝑥, 𝑥², 𝑦  
 ℒ 6∞ =  1, 𝑥, 𝑥², 𝑦, 𝑥3  

Proof: 

-  We have 𝑙 ∞ = 1 since if 𝑙 ∞ = 2, then the curve 

𝐶 is of genus zero (see [1,4]), which is not the case. 

-  Since the genus of  𝐶  is equal to 2, then 2∞  is a 

canonical divisor of 𝐶, so 𝑙 ∞ = 𝑔 = 2. 
-  For the rest we apply the Riemann-Roch theorem which 

says that 𝑙 𝑚∞ = 𝑚 − 1 if 𝑚 ≥ 3. 

Lemma 3: 

A ℚ-base of ℒ 𝑚∞  is given by 

𝔅𝑚 =  𝑥𝑖| 𝑖 ∈ ℕ 𝑎𝑛𝑑 𝑖 ≤
𝑛

2
 

∪  𝑥 𝑗𝑦| 𝑗 ∈ ℕ 𝑎𝑛𝑑 𝑗 ≤
𝑚 − 5

2
 . 

Proof:  

It is clear that 𝔅𝑚  is free and it remains to show that  

𝑐𝑎𝑟𝑑 𝔅𝑚 = dimℒ  𝑚∞  . 

According to the Riemann-Roch theorem, we have  

dimℒ  𝑚∞  = 𝑚 − 𝑔 + 1. 

According to the parity of 𝑚, we have the following two 

cases: 

Case 1: Suppose that 𝑚 is even and let 𝑚 = 2ℎ. Thus  

we have 𝑖 ≤ m/2 = ℎ  and we have 𝑗 ≤ (2h-5)/2 ⇔
𝑗 ≤ (2h-5-1)/2 = ℎ − 3 = ℎ − 𝑔 − 1 . Then we get 𝔅𝑚 =
 1, 𝑥,… , 𝑥ℎ ∪  𝑦, 𝑦𝑥,… , 𝑦𝑥ℎ−𝑔−1 . we have 𝑐𝑎𝑟𝑑 𝔅𝑚 =

ℎ + 1 +  ℎ − 𝑔 − 1 + 1 = 𝑚 − 𝑔 + 1 = dimℒ  𝑚∞  . 

Case 2: Suppose that 𝑚 is odd and let 𝑚 = 2ℎ + 1. Thus 

we have 𝑖 ≤ m/2 ⇔  𝑖 ≤ (2h+1)/2 ⇔  𝑖 ≤ 2h/2 = ℎ and 

𝑗 ≤(m-5)/2⇔ 𝑗 ≤(2h+1-5)/2= ℎ − 𝑔. 
Then we get 𝔅𝑚 =  1, 𝑥, … , 𝑥ℎ ∪  𝑦, 𝑦𝑥, … , 𝑦𝑥ℎ−𝑔 . 

We have 𝑐𝑎𝑟𝑑 𝔅𝑚 = ℎ + 1 +  ℎ − 𝑔 + 1 = 𝑚 + 1 −

𝑔 = dimℒ  𝑚∞  . 

Lemma 4: 

𝐽(ℚ) ≅ ℤ/5ℤ =   𝑃 −∞  
=  𝑎 𝑃 −∞ , 𝑎 ∈  0, 1, 2, 3, 4     

Proof: (See [1,4]). 

3. Proof of Theorem 

Given 𝑅 ∈ 𝐶 with  ℚ 𝑅 :ℚ = 𝑛. The work of Booker, 

Sijsling, Sutherland, Voight and Yasak in [1] allows us to 

assume that 𝑛 ≥ 2. 

Note that 𝑅1, 𝑅2, … , 𝑅𝑛  are the Galois conjugates of 𝑅 . 

Let's work with  

𝑡 =  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ ∈ 𝐽(ℚ) , according to 

lemma 4 we have 𝑡 = 𝑎 𝑃 −∞ , 0 ≤ 𝑎 ≤ 4. 
So we have  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ = 𝑎 𝑃 −∞ .  

Our proof is divided in three cases: 

Case 𝒂 =  𝟎 

We have  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ = 0 ; then there 

exist a function 𝐹 with coefficient in ℚ such that  

𝑑𝑖𝑣 𝐹 = 𝑅1 +  𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ , then 𝐹 ∈ ℒ 𝑛∞  
and according to lemma 3 we have  

𝐹 𝑥, 𝑦 =  𝑎𝑖𝑥
𝑖

𝑖≤
𝑛
2

 

+ 𝑦  𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−5

2
 

 

For the points 𝑅𝑖 , we have  

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛
2

 

+ 𝑦  𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−5

2
 

= 0 

hence 𝑦 = −
 𝑎𝑖𝑥

𝑖
𝑖≤
𝑛+1

2  

 𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−5

2  

 and the relation 𝑦2 = 4𝑥5 + 1 

gives the equation  

𝐸0 =   𝑎𝑖𝑥
𝑖

𝑖≤
𝑛
2

 

 

2

=   𝑏𝑖𝑥
𝑗

𝑗≤
𝑛
2

 

 

2

 4𝑥5 + 1  

We find a family of points  

ℱ0 =   𝑥,−
 𝑎𝑖𝑥

𝑖
𝑖≤
𝑛
2

 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛
2

 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓𝐸0  

Cases 𝒂 =  𝟏 and 𝒂 =  𝟒 

For 𝒂 =  𝟏 , we have  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ =
 𝑃 −∞ = − 𝑃 −∞ ,  then there exist a function 𝐹 with 

coefficient in ℚ such that  

𝑑𝑖𝑣 𝐹 = 𝑅1 +  𝑅2 + ⋯+ 𝑅𝑛 + 𝑃 − (𝑛 + 1)∞ , then 

𝐹 ∈ ℒ (𝑛 + 1)∞  and according to lemma 3 we have  

𝐹 𝑥, 𝑦 =  𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

+ 𝑦  𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−4

2
 

 

We have 𝐹 𝑃  = 0 ⟹ 𝑎0 − 𝑏0 = 0. 
For the points 𝑅𝑖 , we have  
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 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

+ 𝑦  𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−4

2
 

= 0 

hence 𝑦 = −
 𝑎𝑖𝑥

𝑖
𝑖≤
𝑛+1

2
 

 𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−4

2  

 and the relation 𝑦2 = 4𝑥5 + 1 

gives the equation  

𝐸1 =   𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 

2

=   𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 

2

 4𝑥5 + 1  

We find a family of points  

ℱ1 =

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 − 𝑏0 = 0 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸1  
 

 

 

For 𝒂 =  𝟒 , we have  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ =
4 𝑃 −∞ = − 𝑃 −∞ . 

By a similar argument as in case 𝑎 = 1, we have  

ℱ2 =

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 + 𝑏0 = 0 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸1  
 

 

 

Finally, we have the family  

𝐴1 = ℱ1 ∪ ℱ2 =

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 ± 𝑏0 = 0 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸1  
 

 

 

Cases 𝒂 =  𝟐 and 𝒂 =  𝟑 

For 𝒂 =  𝟐 , we have  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ =
2 𝑃 −∞ = −2 𝑃 − ∞ , then there exist a function 𝐹 with 

coefficient in ℚ such that  

𝑑𝑖𝑣 𝐹 = 𝑅1 +  𝑅2 + ⋯+ 𝑅𝑛 + 2𝑃 − (𝑛 + 2)∞ , then 

𝐹 ∈ ℒ (𝑛 + 1)∞  and according to lemma 3 we have  

𝐹 𝑥, 𝑦 =  𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+2

2
 

+ 𝑦  𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−3

2
 

 

The function 𝐹 is of order 2 at point P so we must have 

 
𝐹 𝑃  = 0

𝐹𝑥
′ 𝑃  = 0

 ⟹  
𝑎0 − 𝑏0 = 0 
𝑎1 − 𝑏1 = 0 

  

For the points 𝑅𝑖 , we have  

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+2

2
 

+ 𝑦  𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−3

2
 

= 0 

hence 𝑦 = −
 𝑎𝑖𝑥

𝑖
𝑖≤
𝑛+2

2  

 𝑏𝑗𝑥
𝑗

𝑗≤
𝑛−3

2  

 and the relation  

𝑦2 = 4𝑥5 + 1 gives the equation  

𝐸2 =   𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+2

2
 

 

2

=   𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−3

2
 

 

2

 4𝑥5 + 1  

We find a family of points  

𝐺1 =

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+2

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−3

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 − 𝑏0 = 0 ,  𝑎1 − 𝑏1 = 0 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸2 
 

 

 

For 𝒂 =  𝟑 , we have  𝑅1 + 𝑅2 + ⋯+ 𝑅𝑛 − 𝑛∞ =
3 𝑃 −∞ = −2 𝑃 −∞ . 

By a similar argument as in case 𝑎 = 2, we have  

𝐺2 =

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+2

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−3

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 + 𝑏0 = 0 ,  𝑎1 + 𝑏1 = 0 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸2 
 

 

 

Finally, we have the family  

𝐴2 = 𝐺1 ∪ 𝐺2

=

 
 

 
 𝑥,−

 𝑎𝑖𝑥
𝑖

𝑖≤
𝑛+1

2
 

 𝑏𝑖𝑥
𝑗

𝑗≤
𝑛−4

2
 

 | 𝑎𝑖 , 𝑏𝑗 ∈ ℚ 𝑤𝑖𝑡ℎ

 𝑎0 ± 𝑏0 = 0, 𝑎1 ± 𝑏1 𝑎𝑛𝑑 𝑥 𝑟𝑜𝑜𝑡 𝑜𝑓 𝐸2 
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