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Abstract  In this paper, we discuss speech recognition for persons with articulation disorders resulting from athetoid 

cerebral palsy. Because the speech style for a person with this type of articulation disorder is quite different from a physically 

unimpaired person, a conventional speaker-independent acoustic model for unimpaired persons is hardly useful to recognize 

it. Therefore, a speaker-dependent model for a person with an articulation disorder is necessary. In our previous work, a 

feature extraction method using a convolutional neural network was proposed for dealing with small local fluctuation of 

dysarthric speech, and its effectiveness was shown in a word recognition task. The neural network needs a training label 

(teaching signal) to train the network using back-propagation, and the previous method used results from forced alignment 

using HMMs as the training label. However, as the phoneme boundary of an utterance by a dysarthric speaker is ambiguous, 

it is difficult to obtain the correct alignment. If a wrong alignment is used, the network may be inadequately trained. 

Therefore, we propose a probabilistic phoneme labeling method using the Gaussian distribution. In contrast to the general 

approach, we deal with the phoneme label as the soft label, that is, our proposed label takes the continuous value. This 

approach is effective for the dysarthric speech which is the ambiguity of the phoneme boundary. The effectiveness of this 

method has been confirmed by comparing its effectiveness with that of forced alignment. 
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1. Introduction 

Recently, the importance of information technology in 

the welfare-related fields has increased. For example, sign 

language recognition using image recognition technology 

[1], text reading systems from natural scene images [2], and 

the design of wearable speech synthesizers for voice 

disorders [3] have been studied. However, there has been 

very little research on orally-challenged people, such as 

those with speech impediments. It is hoped that speech 

recognition systems will one day be able to recognize their 

voices.autism spectrum disorders and typically developing 

children. 

One of the causes of speech impediments is cerebral 

palsy. Cerebral palsy results from damage to the central 

nervous sys-tem, and the damage causes movement 

disorders. There are various types of cerebral palsy. In this 

paper, we focused on persons with articulation disorders 

resulting from the athetoid type as in [4]. Athetoid 

symptoms develop in about 10-15% of cerebral palsy 

sufferers. Some people who have difficulty in speaking can  
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communicate with others using sign language recognition 

or a speech synthesis system. However, many of those who 

have articulation disorders resulting from athetoid cerebral 

palsy are physically impaired, making the use of sign 

language difficult or impossible and speaking is the only 

communication method they have available. Several works 

for dysarthric speech recognition have been proposed. In [4], 

Mastumasa et al. investigated a Metamodel [5] and an 

acoustic model approach to increase recognition accuracy. 

In [6], Christensen et al. modified the pronunciation so they 

represent the specific speech impairments of the speaker. In 

[7], Christensen et al. investigated adaptation from 

out-of-domain (normal speech) models into the target 

domain (disordered speech) focusing on the feature 

extraction stage. Our previous work [8] also employed a 

convolutional neural network (CNN [9, 10, 11]) to deal 

with small local fluctuations of dysarthric speech. 

Because the speaking style of persons with articulation 

disorders is quite different from physically unimpaired 

persons due to the involuntary movement of their muscles, 

the conventional speaker-independent acoustic model is not 

very useful, and the recognition accuracy is considerably 

low. For dysarthric speech recognition, we previously 

proposed the robust feature extraction method using a 

convolutive bottleneck network (CBN [17]) that consists of 

a CNN and a bottleneck layer. A CNN is regarded as a 
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successful tool and has been widely used in recent years for 

various tasks, such as image analysis [12, 13, 14], spoken 

language [15], and music recognition [16]. A CNN consists 

of a pipeline of convolution and pooling operations 

followed by a multi-layer perceptron. In dysarthric speech, 

the key points in time-spectral local areas of an input 

feature map are often shifted slightly due to the fluctuation 

of the speech uttered by persons with articulation disorders. 

Thanks to the convolution and pooling operations, we can 

train the CNN robustly to deal with small local fluctuations. 

In [8], the networks were trained by back-propagation using 

training labels obtained from the forced alignment using 

HMMs (hidden Markov models); however, it is difficult to 

obtain the correct alignment because of the unclear spectra. 

The use of wrong training labels may result in the incorrect 

training of the networks. 

 

Figure 1.  Example of a spectrogram for /ikioi/ spoken by a physically 

unimpaired person 

 

Figure 2.  Example of a spectrogram for /ikioi/ spoken by a person with 

an articulation disorder using forced alignment (top) and manual alignment 

(bottom) 

Figs. 1 and 2 show the spectrograms for an utterance in 

Japanese (/ikioi/) spoken by a physically unimpaired person 

and a person with an articulation disorder. Fig. 2 shows a 

comparison of the forced and manual alignment. The 

dysarthric speech signal is not obviously clearer than the 

signal uttered by a physically unimpaired person. As shown 

in Fig. 2, the phoneme boundaries obtained by forced 

alignment are not in the proper location (but it is difficult to 

obtain the correct alignment even if we do alignment 

manually). In this paper, we propose a soft phoneme 

labeling method with a probability expression, which takes 

the ambiguity of the phoneme boundary into account. In [8], 

the binary value was used as the training (phoneme) label, 

but the hard decision may be unfavorable for the training 

label because the boundary between the adjacent phonemes 

is very unclear. In our approach, the phoneme labeling is 

represented using a Gaussian distribution configured with 

the mean which represents the center of each phoneme 

period. The phoneme label is given from the posterior 

probability of a GMM. The rest of this paper is organized as 

follows: in Section 2, feature extraction using CNN is 

described. In Section 3, our phoneme labeling method is 

described. In Section 4, the experimental data are evaluated, 

and the final section is devoted to our conclusions. 

2. Feature Extraction Using CBN 

2.1. Flow of the Feature Extraction 

First, we prepare the input feature for training a CBN from 

a speech signal. After calculating the short-term mel 

spectrum from the signal, a mel-map is obtained by merging 

the mel spectra into a 2D feature with several frames, 

allowing overlaps. For the output units of the CBN, phoneme 

labels that correspond to the input mel-map are used. The 

parameters of the CBN are trained by back-propagation with 

stochastic gradient descent, starting from random values. 

The input mel-map is converted to the bottleneck feature by 

using the CBN. Extracted features are used as the input 

feature of hidden Markov models (HMMs). 

2.2. CBN 

A CBN [17] consists of an input layer, a layer of 

convolution layer and pooling layer, fully-connected 

Multi-Layer Perceptrons (MLPs) with a bottleneck structure, 

and an output layer. The MLP stacks some layers, and the 

number of units in the middle layer is reduced as “bottleneck 

features”. The number of units in each layer is discussed in 

the experimental section. Since the bottleneck layer has 

reduced the number of units for the adjacent layers, we can 

expect that each unit in the bottleneck layer aggregates 

information and behaves as a compact feature descriptor that 

represents an input with linear discriminant analysis (LDA) 

or PCA. In this paper, an audio feature is input to a CBN, and 

the extracted bottleneck feature is used for speech 

recognition. 

3. Phoneme Labeling Based on 
Probabilistic Representation 

For an arbitrary utterance included K phonemes, we note 

Xt ∈ {1,2, … , 𝐾}  the random variable that indicates a 

phoneme at time t. For example, Xk = 𝑘 indicates that a 

phone label at time t is the k-th phoneme in an utterance. In 
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this paper, the probability p(Xk = 𝑘) is defined as follows: 

p Xt = 𝑘 = 
𝑁 𝜇𝑘 ,𝜎𝑘 

 𝑁(𝜇𝑘′ ,𝜎𝑘′ )
𝐾
𝑘′ =1

        (1) 

where N(μ, σ2) is the Gaussian probability density function 

with mean μ and variance σ2. K and k are the number of 

phonemes included in the utterance and its index, 

respectively. In this paper, μ and σ2 are the center of the 

k-th phoneme duration and its variance, and are defined as 

follows, respectively: 

μk =
𝑏𝑘−1+𝑏𝑘

2
              (2) 

σk = 𝛼(|𝜇𝑘 − 𝑏𝑘−1| + |𝜇𝑘 − 𝑏𝑘 |)        (3) 

where bk  is the boundary time between the k-th phoneme 

and (k + 1) -th phoneme, and α  is the non-negative 

hyperparameter that controls the variance (bk = 0 and bK  

are the start time and the end time of the utterance, 

respectively.) In our approach, we first give the phoneme 

boundary for each utterance. However, it is not the correct 

boundary but only an approximate boundary. Next, the 

phoneme duration and its variance are set up using the 

phoneme boundary based on (2) and (3). Finally, the 

existence probabilities for all frames are calculated by using 

(1), and the obtained probabilities are regarded as the 

phoneme labels. From the characteristics of the Gaussian 

distribution, the probability becomes high around the mean, 

but lower in the distance. Consequently, we expect that the 

soft phoneme labeling gives a good representation of not 

only the steady state around the center of the phoneme 

duration but also the unclear phoneme boundary. 

 

Figure 3.  Illustration of the proposed Gaussian labeling for an utterance 

/ki/ in Japanese 

4. Experimental Evaluation 

4.1. Recognition Results Using a Speaker-independent 

Acoustic Model 

At the beginning, we attempted to recognize utterances 

using a speaker-independent acoustic model for unimpaired 

people (This model is included in Julius 1). The acoustic 

model consists of a triphone HMM set with 25-dimensional 

MFCC features (12-order MFCCs, their delta and energy) 

and 16 mixture components for each state. Each HMM has 

three states and three self-loops. For a person with an 

articulation disorder, a recognition rate of only 24.07% was 

obtained, but for a physically-unimpaired person, a 

recognition rate of 99.54% was obtained for the same task. 

It is clear that the speaking style of a person with an 

articulation disorder differs considerably from that of a 

physically-unimpaired person. Therefore, it is considered 

that a speaker-dependent acoustic model is necessary for 

recognizing speech from a person with an articulation 

disorder. 

4.2. Word Recognition Experiments (Speaker A) 

4.2.1. Experimental Conditions 

In this section, our method was evaluated on a word 

recognition task for one male person (referred to as 

“speaker A”) with an articulation disorder. We recorded 

216 words included in the ATR Japanese speech database 

A-set [18], repeating each word five times. The utterance 

signal was sampled at 16 kHz and windowed with a 

25-msec Hamming window every 10 msec. Then we 

clipped each utterance manually. In our experiments, the 

first utterances of each word were used for evaluation, and 

the other utterances (the 2nd through 5th utterances) were 

used for the training of the CBN and acoustic models. A 

mel-map feature was constructed by merging mel spectra 

into a 2D feature with 13 frames. We used HMMs (54 

context-independent phonemes) with 3 states and 8 

Gaussian mixtures for the acoustic model. We trained and 

evaluated a CBN that has 30 units in the bottleneck (BN) 

layer. 

4.2.2. Evaluation Results and Discussion 

First, we investigated the effectiveness of a 

hyperparameter α in (3) which controls the variance. The 

best performance over the test data was obtained at α = 0.4.  

Fig. 4 depicts the difference between the hard labeling 

and soft labeling, and shows an example of the training 

label, the manual alignment, and the proposed alignment. In 

the proposed alignment, a phone label transitions to another 

one gradually. Fig. 5 shows the experimental results using 

the probabilistic (soft) phoneme labeling method 

(“Gaussian”), comparing with the conventional MFCC 

features and the forced alignment (“forced”). Fig. 5 also 

shows the results in the case of the manual alignment 

(“manual”). In this experiments, α is set to 0:4 in (3). The 

alignment obtained from our method provided a better 

recognition accuracy than both forced alignment and 

manual alignment. We consider that the network is trained 

flexibly by using the soft-labels. 
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Figure 4.  Analysis results of the label for an utterance /ikioi/ of “speaker A”. (top) manual alignment, (bottom) proposed alignment α=0:4 (vertical and 

horizontal axes indicate the phoneme index and the frame of speech, respectively). The color lines indicate the values of teaching signal for CBN. Note: the 

54-th phoneme index is a short pause 

 

Figure 5.  Word recognition accuracy for utterances of “speaker A” using 

each phoneme labeling method and conventional MFCC features 

4.3. Word Recognition Experiments (speaker B) 

We confirmed that the recognition accuracies improved 

by using a probabilistic phoneme labeling method in 

previous experiments. However, the symptoms of 

articulation disorders and the tendency of fluctuations in 

dysarthric speech vary from speaker to speaker. In this 

section, we show experimental results using speech uttered 

by another person (female; “speaker B”) with an 

articulation disorder. 

4.3.1. Experimental Conditions 

We conducted the same word recognition experiments as 

in the previous experiments using speech uttered by 

“speaker B”. The speech data consist of 200 words, each of 

which was repeated three times (600 words in total). In the 

experiments, the first utterances of each word (200 words) 

were used for the test, and the other utterances (400 words) 

were used for the training of a CBN and the acoustic 

models. The other configurations were set to be the same as 

the experiments with the “speaker A”. 

4.3.2. Experimental Conditions 

Again we investigate the effectiveness of a 

hyperparameter α, and the best performance over the test 

data was obtained at α = 0.5. 

Fig. 6 shows experimental results for “speaker B”. When 

using manual alignment, the recognition accuracies were 

not improved as compared with forced alignment. This is 

because the forced alignment was obtained accurately as 

compared with the manual alignment in the case of 

“speaker B”. It might be too difficult to carry out alignment 

manually due to the unclear phoneme boundaries. Also, a 

few mistakes will have a bad influence on the performance 

because of the limited (small amount of training) data. 

Nevertheless, as shown in Fig. 6, the probabilistic labeling 

method could achieve the best accuracy for each condition. 

 

Figure 6.  Word recognition accuracy for utterances of “speaker B” using 

each phoneme labeling method and conventional MFCC features 

5. Conclusions 

In this paper, we proposed a probabilistic (soft) phoneme 

labeling method, for persons with articulation disorders, 
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based on a Gaussian distribution for the training label that is 

used to train a CBN. In our recognition experiments, a CBN 

trained using probabilistic labels demonstrated better 

performance compared with the forced alignment using 

HMMs. In the future, we will study a labeling method that 

uses the forward backward probabilities from the HMMs. 
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