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Abstract  Conventional methods of CFAR detection always use windowing, in the sense that some number of cells are 

investigated and the target present/absent decision is made according to the composition of the cells in that window. The most 

desirable version of CFAR schemes is the CA algorithm, given that the background noise is homogeneous. However, the 

existence of heterogeneities in practical operational environments renders this processor ineffective. In an attempt to 

overcome this drawback, the strong interferers are censored before carrying out the cell-averaging operation. This is the 

fundamental procedure of the double-threshold (DT) algorithm which represents one of the most important detectors that has 

interference immunity against heterogeneous operating environments. It relies on comparing the cells of the reference 

window to an excision threshold so that only the surviving cells are averaged to yield the needed power estimate of the 

unknown noise level. Thus, the trimming operation ensures that the calculation of the detection threshold is based on a set of 

samples which is free of strong interferers and is therefore much more representative of the actual noise level. On the other 

hand, the target fluctuation model plays an important role in the design and performance evaluation of all radar systems. The 

Swerling models bracket the behavior of fluctuating targets of practical interest. The correlation coefficient between two 

consecutive echoes in the dwell-time is equal to unity for SWI & SWIII and is zero for SWII & SWIV models. An important 

class of targets is represented by the so-called moderately fluctuating 2 targets with a correlation coefficient in the range 

01. Here, our intention is to analyze the performance of the DT-CFAR processor in detecting such type of fluctuating 

targets in the absence as well as in the presence of outlying targets. Numerical results demonstrate that it is robust in 

multitarget situations even when more than half of the search region is occupied by spurious target returns.  

Keywords  CFAR detection, 2 fluctuating targets with 2 & 4 degrees of freedom, SWI-SWIV models, 

Partially-Correlated targets, Interference-Saturated environment, Noise and clutter, Post-Detection integration 

 

1. Introduction 

Radars have been used for decades to detect targets for 

traffic control, air defense, and weather prediction. These 

targets may be found on the ground, on the sea, in the air, in 

space, and even below ground. Additionally, radar represents 

a significant part of air-defense system as well as the 

operation of offensive missile and other weapons. In air 

defense, it performs the function of surveillance and weapon 

control. Surveillance includes target detection, target 

tracking and designation to a weapon system. On the other 

hand, the present era of limited warfare demands precision 

strikes for reduced risk and cost efficient operation with 

minimum possible guarantee damage. In order to meet such 

exact challenges, automatic target detection capability is   
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becoming increasingly important to the defense community. 

Practically, radar is an instrument that is used for observing a 

natural environment and detecting physical objects herein. It 

employs electromagnetic waves to illuminate the 

environment, and receives echoes reflected by the objects. 

After reception, the signal is processed before it is displayed 

to the user. The ability to detect objects at long distances, or 

in conditions of poor visibility, is the key feature of the radar. 

This is of particular importance for aircrafts and ships in 

order to navigate safely and avoid collisions. In the 

illuminated environment, numerous objects may introduce 

reflection and scattering of the transmitted radar signal, 

causing difficulties in detecting objects of interest. These 

objects are usually termed as targets, whilst the interfering 

echoes are usually termed as clutter. Clutter echoes are 

random and have thermal noise-like characteristics because 

the individual clutter components have random phases and 

amplitudes. In many cases, the clutter signal level is much 

higher than the receiver noise level. Thus, the radar’s ability 

to detect targets embedded in high clutter background 
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depends on the signal-to-clutter ratio (SCR) rather than the 

SNR. While the white noise normally introduces the same 

amount of noise power across all radar range bins, the clutter 

power may vary within a single range bin. Since clutter 

returns are target-like echoes, the only way of distinguishing 

target returns from clutter echoes is based on the target radar 

cross section (RCS). Therefore, signal detection in noisy or 

clutter environments is a very important part of target 

detection procedure [1-6].  

The detection of signals becomes complex when radar 

returns are from non-stationary background noise (or noise 

plus clutter). The probability of false alarm increases 

intolerably when a detection scheme employing a fixed 

threshold is used. Therefore, adaptive threshold techniques 

are required in order to maintain a nearly constant false alarm 

rate. The key factor of CFAR algorithms lies in setting the 

threshold adaptively by estimating the background noise 

power included in a test cell. Averaging the outputs of the 

reference cells surrounding the test cell forms this estimate in 

the conventional CA detector. This processor is very 

effective in case of stationary and homogeneous interference 

and is effective almost as the ideal, Neyman-Pearson, 

detector when the number of reference cells becomes very 

large. In a non-homogenous environment, on the other hand, 

the detection performance and the false alarm regulation 

properties of CA detector may be seriously degraded. During 

the last few years, a lot of different approaches have been 

suggested to ameliorate the heterogeneous detectability of 

CFAR schemes. The double-threshold (DT) procedure 

constitutes one of such techniques that maintain a constant 

rate of false alarm as well as perform well in 

non-homogeneous environments; especially in 

multiple-target situations. The trimming threshold ensures 

that the calculation of the detection threshold is based on a 

set of samples which is free of strong interferers and is 

therefore much more representative of the noise level. Even 

if the trimmer fails to discard all interferers, it nullifies the 

largest ones amongst them, leaving only those below the 

trimming threshold. If the trimming threshold is properly set, 

the impact of the remaining interferers should be tolerable. 

Owing to the importance of this type of CFAR processors, 

especially in detecting targets in an interference saturated 

environments, its performance was analyzed by El_Mashade 

[7-9] under different cases of operating circumstances.  

The detection capabilities of radars cannot be assessed 

without radar cross section (RCS) data for all their potential 

targets, defined as functions of the target's orientation 

relative to the radar. In general, RCS is a complex function of 

aspect angle, frequency, and polarization even for relatively 

simple targets. Furthermore, received power at the radar 

(target echo only, not including noise or other interference) is 

proportional to the target RCS. Thus, RCS fluctuations result 

in received target power fluctuations. The larger the scatterer 

separation in terms of wavelengths, the more rapidly the 

RCS varies with angle or frequency. Because the exact 

nature of this fluctuation is difficult to predict, a statistical 

description is often adopted to characterize the target radar 

cross section. Amongst the statistical models of RCS 

fluctuation, there are two fundamental density functions: 

χ2-distribution with 2 and 4 degrees of freedom. SWI and 

SWIII target models apply when the cross-section fluctuates 

from scan to scan, where the return signals are highly 

correlated, that is to say, the pulse repetition rate is high with 

respect to the target dynamics. Target models SWII and 

SWIV, on the other hand, stratify when the fluctuation is 

rapid, from one pulse to the next. The return signals are 

de-correlated due either to the low pulse repetition rate, with 

respect to the target dynamics, or to the rapidly changing of 

the target aspect angle with respect to the pulse repetition 

frequency [10-12]. Although the Swerling cases bracket the 

behavior of fluctuating targets of practical interest, recent 

investigations of target cross section fluctuation statistics 

indicate that some targets may have probability of detection 

curves which lie considerably outside the range of cases 

which are satisfactorily bracketed by the Swerling cases. An 

interesting class of those targets is that represented by the 

so-called moderately fluctuating Rayleigh and χ2
 targets, 

which when illuminated by a coherent pulse train, return a 

train of correlated pulses with a correlation coefficient in the 

range 01. The detection of this type of fluctuating targets 

is therefore of significant interest [13-15].  

Our goal in the present paper is to analyze the performance 

of DT-CFAR procedure for partially-correlated χ2-targets 

with two and four degrees of freedom in the absence as well 

as in the presence of spurious targets. In section II, we 

formulate the problem and compute the characteristic 

function of the post-detection integrator output for the case 

where the signal fluctuation obeys χ2 statistics with two and 

four degrees of freedom. Section III is devoted to the 

performance analysis of the underlined detector in the 

presence of spurious targets. Section IV deals with the 

presentation of our simulation results in the absence as well 

as in the presence of outlying targets. In section V, we 

present a brief discussion along with our conclusions.  

2. Statistical Background and Detector 
Description  

In an automatic radar detection system, the received signal 

in every range resolution cell is compared with a threshold to 

test for the presence of a target. For the simple case where the 

noise is homogeneous, a fixed threshold is adequate to 

achieve the designed rate of false alarm. In the more realistic 

case, the noise background is non-stationary due to clutter 

and interference. In this situation, the threshold used for 

testing a particular cell is usually set adaptively, using data 

from nearby resolution cells, to keep a pre-assigned false 

alarm rate under variations in the noise level. In actual 

applications, the assumption that no other signals except 

noise are present in the reference cells is often violated. 

Beside the legitimate signals, interfering signals originating 

from wideband jamming noise, jamming pulses and 

unintentional interferences can be expected. The presence of 

strong signals (to which we shall refer as interferences) 



34 Mohamed B. El Mashade:  Performance Amelioration of Adaptive Detection of  

Moderately-Fluctuating Radar Targets in Severe Interference 

 

amongst the contents of reference window may have a 

catastrophic effect on the performance of a conventional CA 

detector; in particular if these interferences are considerably 

stronger than the desired signal. This is frequently the case 

when legitimate signals have a large dynamic range. To 

combat the presence of such unwanted signals, it is naturally 

to exclude them from the implementation of the detection 

threshold. This is actually the function of the trimming 

threshold in DT detector. This processor suffers almost no 

degradation in performance, in comparison with the 

conventional CA detector, when it operates in an 

environment of homogeneous noise such as thermal noise 

with the possible addition of wideband jamming [7].  

In practice, CFAR detection is often implemented after 

non-coherent integration, as illustrated in Fig.(1). The echo 

return of each pulse is detected by a square-law device and 

the sum of M squared envelopes is used to represent the 

output of each reference cell. In analog implementation, 

these cells are obtained from a tapped delay line. The cell 

under test (CUT) is the central cell whose output "Θ0" is also 

the sum of M squared envelopes. The immediate neighbors 

of the CUT are excluded from the CFAR processing due to a 

possible spillover from the CUT. Whenever the cell being 

tested changes, the rightmost sample is shifted out and a new 

sample enters the leftmost side of the register. This updating 

process proceeds until the maximum unambiguous range is 

reached. The output of reference cells (N/2 on each side of 

the CUT) is processed to estimate the unknown noise power 

level. These reference cells are fed to a censoring process in 

order to discard any sample the content of which exceeds a 

predefined threshold "τ". This will ensure that the final 

detection threshold is free of any interferer returns and 

consequently it represents the actual background noise level. 

The surviving samples i's, i=1, ….., n, enter an averaging 

process to estimate the unknown noise level which is used to 

implement the detection threshold after scaling it with a 

constant factor "T". Detection of the desired target, in the 

CUT, is declared if: 
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When a target is present, the amplitude of the signal at the receiver depends on RCS, which is the effective scattering area 

of a target as seen by the radar. In general, the RCS of target fluctuates because targets consist of many scattering elements, 

and returns from each scattering element vary. When simulating target seekers, there is a great need for computationally 

efficient target models. Target RCS fluctuations are often modeled according to the four Swerling target cases. These 

fluctuating models assume that the target RCS fluctuation follows either a Rayleigh or one-dominant-plus Rayleigh 

distribution with scan-to-scan or pulse-to pulse statistical independence. In Swerling case I (SWI), the echoes are part of a 

Rayleigh power distribution, and do not fluctuate during a look but fluctuate between looks. Swerling case II (SWII) is as case 

SWI, with the exception that the echoes fluctuate from pulse to pulse during each look. In SWIII, the echoes are part of a 

χ2-distribution with four degrees of freedom but instead of fluctuating during a look, it fluctuates between looks. On the other 

hand, SWIV is similar to SWIII with the exception that the echoes fluctuate from pulse to pulse during each look. 

Mathematically, these four types of fluctuating targets are based on two RCS distributions and two fluctuation rates according 

to: 
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  symbolizes the average cross section over all target fluctuations. 
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The slow fluctuation case assumes constant RCS during a scan with scan-to-scan variations, while the fast fluctuation case 

represents target whose returns are independent from pulse-to-pulse. 

The exact method of prediction of RCS is very complex even for simple and conventional shaped objects. Therefore, the 

statistical representation is often adopted to characterize it. There are many distribution functions that can be used to depict 

RCS. The more important one is the so-called 2-distribution with 2ν degrees of freedom. This model approximates a target 

with a large reflector and a group of small reflectors, as well as a large reflector over a small range of aspect values. The 

2-family includes the Rayleigh (SWI & SWII) model, the four degrees of freedom model (SWIII & SWIV), the Weinstock 

model (ν <1) and the generalized model (ν is a positive real number). These models have the property that the distribution is 
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more concentrated about the mean as the value of the parameter ν is increased. Mathematically, this distribution can be 

formulated as: 

  11
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U(.) denotes the unit step function. When ν=1, the PDF of Eq.(4) reduces to the exponential or Rayleigh power distribution 

that applies to the SWI. On the other hand, SWII, SWIII, and SWIV correspond to ν=M, 2, and 2M, respectively. When ν 

tends to infinity, the 2-distribution is constricted to the non-fluctuating target model.  

If the radar target fluctuates obeying 2-distribution with κ=2ν degrees of freedom, it can be mathematically represented by 

a characteristic function (CF) of the form [10]: 
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The symbol E{.} in the above formula denotes the expectation operator, S represents the signal-to-noise ratio (SNR), and 

λi’s symbolize the nonnegative eigenvalues of the correlation matrix "Ω". With review of Eq.(5), it is obvious that the case of 

partially-correlated demands the computation of λi’s for the processor performance to be evaluated. To achieve this 

requirement, it is assumed that the signal is statistically stationary and it can be represented by a first order Markov process. 

Taking these assumptions into consideration, the correlation matrix "Ω" takes the form of definite nonnegative Toeplitz 

which can be mathematically formulated as [13]: 
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It is required to reformat Eq.(5) in a more simpler form for the processor performance to be easily analyzed. This 

attractable version takes another easily processed form as: 
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It is of importance to note that the eigenvalues for the SWIII and SWIV (ν=2) target fluctuation models are the same as that 

for SWI and SWII cases (ν=1), respectively. Eq.(7) is the backbone of our analysis in the current research. For 2-fluctuation 

model, the PDF of the output of the ith test tap is given by the Laplace inverse of Eq.(7) after making some minor 

modifications. If the ith test tap contains noise alone, S must be set to zero (S=0), that is the average noise power at the receiver 

input is "", which we take it as unity in our analysis without loss of generality. If the ith range cell contains a return from the 

primary target, it rests as it is without any modifications, where S represents the strength of the target return at the receiver 

input. On the other hand, if the ith test cell is corrupted by interfering target return, S must be replaced by I, where I denotes the 

interference-to-noise ratio (INR) at the receiver input. 
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Since the unknown noise power level estimate Z is a random variable, the processor performance is determined by 

calculating the average values of false alarm and detection probabilities. The probability of adaptive detecting a fluctuating 

target obeying two degrees of freedom 2 model is [14]: 
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On the other hand, when the fluctuation of the primary target follows 2- distribution with four degrees of freedom, the 

probability of detection becomes [15]: 
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In any situation, the probability of false alarm can be calculated as [8]: 
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From this relation, it is evident that the backbone of our analysis is the evaluation of the nonnegative eigenvalues of Ω that 

corresponds to the cell under test variate along with the determination of the CF of the background noise level. This is indeed 

what we will go to calculate in the next section for the detection performance of the underlined adaptive scheme to be 

completely analyzed.  

3. Heterogeneous Detection Performance of DT Processor  

The problem of detecting target signals in background noise of unknown statistics is a common problem in sensor systems. 

A solution to overcome the problem of noise added to the target signal and to enhance the detectability of targets in these 

situations is to use adaptive digital signal processing techniques. The key assumption in the CFAR scheme is that the 

reference cell variates have the same distribution as that of the CUT variate in the no target present case. Therefore, when the 

reference set variates k’s, k=1, 2,….., N, are taken to be square-law detected and non-coherently integrated Gaussian noise 

variates, they become statistically independent and identically distributed (IID) random variables. These samples pass 

through a censoring process of threshold "τ", the operation of which is mathematically defined as: 

0

if

if
q





  
 

 

                                 (13) 

A sample q that was survived is a random variable with a PDF given by: 
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The content of each reference cell has a CF similar to that given in Eq.(7) after setting S equal to zero (S=0). Therefore, the 

PDF of Θ can be easily obtained by taking the Laplace inverse of the resulting formula. Thus, 
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where L
-1 denotes the Laplace inverse operator. The substitution of Eq.(15) into Eq.(14) yields: 
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It is seen from Eq.(16) that the PDF of "q" is that of "Θ" truncated at the threshold "τ" and properly normalized. The 

probability that a sample was not discarded by the trimming process is: 

 
1

00

1
!

M

s
x dxf eP








                           (17) 

The processor performance is significantly affected when the assumption of homogeneous reference window is violated. 

There are two major problems that require careful investigation in such scheme of adaptive detection in the case where the 

operating environment is heterogeneous: regions of clutter power transitions and multitarget situations. The multiple-target 

case is encountered when there are two or more closely spaced targets in range. This type of environments is frequently 

encountered in practice where the noise estimate includes the interfering signal power leading to an unnecessary increase in 

overall threshold and this in turn results in serious degradation in processor detection performance. Since the homogeneous 

case can be treated as special case of heterogeneous one, we are concerned here with the target multiplicity situation of the 

processor performance.  

To analyze the detector performance in the presence of outlying targets, the amplitudes of all targets are assumed to 

fluctuate according to χ2-model with 2 and 4 degrees of freedom. On the assumption that the sample set contains "ℓ" cells 

from interfering target returns with interference power ψ(1+I) and "m" cells from clear background with noise power ψ. 

Without loss of generality, we assume that ψ is unity. The sample mean computed by the detector is [9]: 
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In the above expression, N denotes the length of the shift register and R represents the number of reference cells that are 

contaminated with outlying target returns, before the censoring process takes place. On the other hand, "m" and "ℓ" denote the 

number of surviving thermal and interferer samples, respectively, after the application of the discarding process. It assumes 

that m1, but allows ℓ=0 (i.e. all interferer samples are discarded). If m=0, this implies that no samples survived the trimming 

process and therefore the detection test is suspended. Since the noise and target samples are statistically independent, the 

sample average Z has a CF given by: 
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A clutter sample qt that was not excised is a random variable with a PDF given by Eq.(16) whilst that belonging to outlying 

target has a PDF of the form: 
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The mathematical treatment of the Laplace inverse transformation will lead to: 

 

 

   
1

1

1

2

exp

exp
i

M

k
k

M

j j
j

for
k

x

for
j

x

f
xx















 

   






              (21) 



38 Mohamed B. El Mashade:  Performance Amelioration of Adaptive Detection of  

Moderately-Fluctuating Radar Targets in Severe Interference 

 

where 

1

M
k

jj
k jk

k




 








                                 (22) 

 
2

2

1

1
MM

k
j j j

k k j
k j


   



 
  
  
 

                        (23) 

and 

1

2

1

M

j j

j j
j

M
    



 
  

  
  

  

                        (24) 

As a function of the PDF of the excisor input, the PDF of its output has a mathematical relation given by: 
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      (25) 

The Laplace transformation of the above formula will result in calculating the CF of the survived cell that associated with 

the spurious target return. Thus,  
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On the other hand, the thermal noise sample has a CF of the form given by: 

 

   
1

0
1

0

1
!1

1
1

!

t

M

M

M j

j

q

j

e

e

  



  


 


 











 
  

 






              (27) 

Let Pm(m) and Pℓ(ℓ) denote the probabilities of "m" noise samples and "ℓ" interfering samples surviving the discarding 

process, respectively, then 
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where Ps is as previously defined in Eq.(17). On the other hand, the probability that an interfering sample was not excised by 

the trimming process is: 
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         (30) 

The using of Eq.(30) in Eq.(29) results in finding the probability that "ℓ" outlying samples success to escape from the 

discarding process. Finally, the conditioning on "m" and "ℓ" is removed by averaging Eq.(19) which leads to: 
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The substitution of Eqs.(26-29) into the above formula gives the CF of the noise level estimate when the primary as well as 

the secondary outlying targets fluctuate following χ2-distribution with two degrees of freedom. The mathematical processing 

of these equations yields:  
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    (32) 

For fluctuating targets corresponding to χ2-statistics with four degrees of freedom, on the other hand, Eq.(31) becomes: 
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Once the CF of the noise power estimate is obtained, the 

processor detection performance is completely determined 

since this function represents the backbone of its calculation 

either the target under test fluctuates following χ2-statistics 

with two degrees of freedom or its fluctuation obeying 

χ2-distribution with four degrees of freedom as Eqs.(8-9) 

demonstrate.  

Now, we are in a position that enables us to carry out some 

numerical results to obtain an idea about the behavior of the 

double-threshold detector against the presence of 

partially-correlated χ2 fluctuating targets amongst the 

contents of the estimation set when the researching along 

with the secondary interfering targets reflects correlated 

returns, in accordance with χ2-statistics of 2 and 4 degrees of 

freedom, to the radar receiver. The displayed numerical 

values provide some insight into the impact of the various 

parameters on the detector performance and therefore assist 

in the design of proper determination of the processor 

characteristics.  

4. Processor Performance Assessment 

This section is devoted to the numerical evaluation of the 

previously-presented detection expressions of the underlined 

scheme for the Swerling as well as the partially-correlated 

χ2-models. We start our presentation by considering the case 

where the operating environment is ideal seeking for the 

highest detection performance of the DT algorithm and 

searching for the optimum values of the more sensitive 

parameters that directly affect the behavior of such type of 

adaptive schemes. In other words, to better understand the 

reaction of DT against fluctuating targets that belong to 

homogeneous environment, we are going to assess its 

performance to show the role that each parameter can play in 

controlling its detection characteristics. Here, it is assumed 

that there is a train of M pulses and a design false alarm rate 

of 10−6 is demanded. Theoretically, the larger a CFAR 

window is, the better its detection performance is (i.e., closer 

to the performance of the Neymann_Pearson detector), 

provided that the more distant cells still have the same 

statistics as that of the noise in the test cell. Therefore, a 

reference window of size N = 24 cells is adopted in 

processing our calculations to obtain the numerical results 

that are displayed throughout this manuscript.  

Our numerical results will be presented in several 

categories of curves. The first category, including Figs.(2-7), 

is concerned with the detection probability of the underlined 

scheme as a function of the signal strength for different 

values of its parameters. Fig.(2) depicts its behavior against 

fluctuating targets when the censoring threshold is held 

constant (τ= 10dB) and the radar receiver bases its decision 

on 2, 3, or 4 consecutive sweeps given that the target obeys χ2 

model, with four degrees of freedom (κ=4), in its fluctuation 

and the correlation coefficient attains values starting from 

de-correlated and ending at fully-correlated passing by 

partially-correlated situations. For weak signal strength, the 

more correlated target returns give higher performance than 

the less correlated ones and the top case corresponds to 

fully-correlated (ρs=1.0) returns which belong to fluctuating 

targets obeying SWIII model in their fluctuation. This 

behavior is rapidly altered as the signal becomes 

strengthened. This means that there are two distinct regions 

in the detection performance of the DT algorithm depending 

on the strength of the signal returned from the target. In the 
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first one, which is characterized by modest level of signal 

return, the correlation of the target returns plays an important 

part in improving the processor performance and the highest 

case corresponds to SWIII model (ρs=1.0) whilst the worst 

one belongs to SWIV type (ρs= 0). In other words, as the 

target returns become correlated, as the detection reaction 

enhances. This region will be denoted as SWIII-SWIV since 

the SWIII model gives higher detection performance than 

that obtained by SWIV. In the other region, the detector 

behavior is reversed where the correlation strength 

deteriorates the performance of the underlined scheme and 

the top detection is obtained when the target fluctuation 

following SWIV model while the lowest detection is 

achieved when the target follows SWIII type in its 

fluctuation. This region will be labeled as SWIV-SWIII 

where the SWIV model surpasses the other fluctuation case 

in its detection behavior. In any situation, SWIII and SWIV 

models embrace the partially-correlated cases with SWIII as 

the best one in the former region whereas SWIV gives the 

highest performance throughout the latter region. The degree 

of enhancement increases, in the first zone, or decreases, in 

the second zone, gradually as the correlation coefficient 

among the target returns varies from de-correlated to 

fully-correlated. Additionally, the displayed results of this 

figure reveal, in an explicit form, that the pulse integration 

improves the CFAR performance as it combats the deep 

fades and the loss of the signal. Moreover, as M increases, 

the point of transition from the SWIII-SWIV zone to 

SWIV-SWIII one is shifted towards lower signal strengths. 

Fig.(3) illustrates the same thing as the previous scene taking 

into account that all the parameter values are held unchanged 

except that the degrees of freedom is varied from 4 to 2 in 

order to know to what extent the parameter κ can impact the 

behavior of the adaptive procedure. The family of curves of 

this plot behaves as the previous ones with some minor 

degradation and negligible values for the signal strength at 

which the change from the former region to the other region 

occurs. Fig.(4) describes the detection probability, as a 

function of the signal power, when the primary target 

fluctuates in accordance with χ2 model with four degrees of 

freedom (κ=4) and for several values for the correlation 

strength among the target returns given that the radar 

receiver based its decision on integrating 2 and 4 consecutive 

pulses. For the purpose of comparison, the single sweep case 

is included among the curves of this plot to illustrate to what 

extent the technique of pulse integration can ameliorate the 

processor performance. In addition, the excision threshold is 

updated to become τ=17.5dB in order to take an idea about 

the influence of this threshold on the behavior of the 

DT-CFAR scheme in detecting the searched target. An 

insight examination of the behavior of the curves of this 

scene reveals that they follow the same variation as those of 

Fig.(2) with a negligible minor deterioration indicating that 

the trimming threshold has an insignificant impact on the 

processor performance as it increases from 10dB to 17.5dB 

taking into account that the operating environment is free of 

any interferers. Additionally, it is observed that the 

mono-pulse curve is the worst one among the candidates of 

this plot signifying that the integration of successive pulses 

enforce the returned signal and consequently enhance the 

processor performance. 

It is of importance to combine the situations of κ=4 and 

κ=2 on the same figure to simultaneously compare the 

reaction of the tested algorithm against that target the 

fluctuation of which follows χ2 statistics with different 

degrees of freedom. This is the object of Fig.(5) which shows 

the same characteristics as the previous figures with different 

parameter values. In this plot, Pd is drawn against SNR for 

several values of the correlation coefficient "ρs" when M=3 

given that the searched target fluctuates following χ2-model 

with κ=2 & 4 and the excision threshold is augmented to 

become 25dB. To visualize the gain that can be achieved 

through the integration of pulses, the single-sweep 

characteristic is merged with the curves of this scene. The 

careful examination of the elements of this figure indicates 

that they follow the same behavior as their corresponding 

ones in the previous plots with minor variations. In these 

circumstances, the first region is characterized by 

SWI-SWIII-SWII-SWIV formulation which means that the 

SWI model has the highest performance whilst the SWIV 

fluctuation model presents the worst reaction in this situation 

of operation. As the returned signal becomes stronger, the 

reverse of this sequence is clearly observed. For the 

mono-pulse operation, the figure shows that the processor 

gives its highest performance when the primary target 

fluctuates in accordance with χ2-distribution with κ=2 when 

operating in the former region whereas this behavior is 

reversed in the other region. 

The next plot in the detection group of figures is devoted 

only to the Swerling cases where the fluctuating target 

returns are de-correlated (ρs=0) and the fluctuation obeys 

χ2-distribution with κ=2 & 4. Under these conditions of 

operation, Fig.(6) displays the detection characteristics of 

DT(17.5) processor for integrated pulses of 4, 3, and 2 along 

with the single-pulse case. The curves of this scene follow 

the same manner in their variations as the previous ones 

confirming the previous concluded remarks that SWII model 

exhibits better performance for weak signal whilst the 

detection reaction of SWIV model surpasses that of SWII 

model when the returned signal becomes stronger. 

Additionally, the gap between the two performances 

decreases as the number of integrated pulses increases. 

Fig.(7) repeats the same thing as that presented in Fig.(6) 

except that the target returns are assumed to be 

fully-correlated (ρs=1). In other words, this figure is 

interested in presenting the processor detection reaction 

against SWI and SWIII models. In this case, the first zone is 

privileged by SWI model which exhibits higher performance 

than the SWIII model. The second zone, on the other hand, is 

distinguished by SWIII model the detection performance of 

which exceeds that of SWI model. The mono-pulse 

processor performances, for κ=2 & 4, behave exactly like the 

corresponding ones in Fig.(6) with some degradation. 

Additionally, the difference between the two performances, 
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for the same number of integrated pulses, rests 

approximately constant independent upon the number of 

integrated consecutive sweeps.   

 

Figure (1).  M-sweeps architecture of double-threshold adaptive algorithm 
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Figure (2).  Ideal M-sweeps detection performance of DT(10.0)-CFAR procedure for partially-correlated 2 targets when N=24, =4, and Pfa=10-6 

 

Figure (3).  Ideal M-sweeps detection performance of DT(10.0)-CFAR procedure for partially-correlated 2 targets when N=24, =2, and Pfa=10-6 
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Figure (4).  Ideal M-sweeps detection performance of DT(17.5)-CFAR procedure for partially-correlated 2 targets when N=24, =4, and Pfa=10-6 

 

Figure (5).  Ideal M-sweeps detection performance of DT(25)-CFAR procedure for partially-correlated 2 targets when N=24, M=3, =2 & 4, and Pfa=10-6 
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Figure (6).  Ideal M-sweeps detection performance of DT(17.5)-CFAR procedure for partially-correlated 2 targets when N=24, =0, and Pfa=10-6 

 

Figure (7).  Ideal M-sweeps detection performance of DT(17.5)-CFAR procedure for partially-correlated 2 targets when N=24, =1, and Pfa=10-6 

The second category of our numerical results, that are 

associated with homogeneous environments, includes Fig.(8) 

which measures the capability of the processor to detect 

fluctuating targets in ideal reference channels. In the radar 

terminology, the characteristics of this figure are known as 

receiver operating characteristics (ROC's). They describe the 
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detection probability against the false alarm rate for a signal 

strength of 5dB when the radar receiver integrates 2, 3, and 4 

consecutive sweeps given that the primary target follows 

χ2-distribution with κ=4 in its fluctuation and its returns are 

either de-correlated or fully-correlated. The optimum 

detector is included among the contents of this figure for the 

purposes of comparison. The ROC's of the DT scheme, with 

numerous values for its censoring threshold, along with 

those representing the optimum system are traced keeping 

into account that the operating conditions are held 

unchanged in the two cases for the comparison to be 

explicitly clear. A label (DT(4), SWIII, 3) on a specified 

curve means that it is associated with the DT processor the 

excision threshold of which is 4dB, the primary target 

complies SWIII in its fluctuation, and the process of 

detection is carried out through the integration of 3 

successive pulses. On the other hand, a label like (opt, SWIII, 

3) on a given curve symbolizes the same things for the 

optimum detector. Since the excision threshold has a 

minimum value below which no one of the reference 

samples is capable to survive after crossing it, the values 2, 4, 

and 6dB for this threshold are selected to obtain the results of 

the current figure where they represent the minimum values 

of the trimming threshold (τmin) for M=2, 3, and 4, 

respectively. The illustrated results of this plot indicate that 

its family of curves behaves like those of the detection 

performance from the strength of correlation point of view. 

For low rate of false alarm, SWIII fluctuation model presents 

higher detection reaction than SWIV model. As the false 

alarm rate augments, this behavior is altered. The inflection 

point moves towards lower probability of false alarm as M 

increases and the performance of the optimum processor is 

always proceeding that of the DT scheme the trimming 

threshold of which doesn't allow any abnormal sample to 

penetrate it. 

The last category in this group of curves is associated with 

the variation of the processor characteristics as a function of 

the strength of correlation among the target returns including 

the partially-correlated along with the two boundaries which 

represent the uncorrelated and the totally correlated. The 

scope of the first plot in this category is to compute the 

required signal strength, to achieve a specified level of 

detection, as a function of the correlation coefficient "ρs" for 

several values of integrated pulses when the fluctuation of 

the primary target complies χ2-distribution with κ=2 & 4. 

The obtained results are illustrated in Fig.(9). The 

investigation of this figure demonstrates that there is a 

negligible increment in the SNR, required to attain a 

detection level of 90%, as the correlation among the target 

returns enforces and this increment becomes noticeable as 

these returns being highly correlated. For κ=4, the processor 

achieves the request level of detection with lower signal 

strength than the case where the degrees of freedom is 2, as 

predicted. Additionally, the rate of increasing near the upper 

limit of ρs, when the target fluctuates with κ=2, is higher than 

that in the case where the target fluctuation follows 

χ2-distribution with κ=4. Furthermore, the DT scheme with 

τ=10dB acquires less SNR in attaining 90% detection level 

in comparison with that the excision threshold of which is 

2dB, given that the number of integrated pulses is 2. The 

same thing occurs for M=3 where τ=10dB for the trimming 

threshold of DT algorithm realizes the pre-assigned level of 

detection with smaller signal strength than that enquired by 

DT(4) scheme, given that the case of fluctuation remains 

unchanged. However, there is approximately no difference 

between the SNR's required by DT(6) and DT(10) 

procedures to arrive at the same previously mentioned level 

of detection in the case of M=4. The behavior of this family 

of curves demonstrates that SWII model, in the case of κ=2, 

and SWIV model, in the case of κ=4, accomplish higher 

detection performance than their corresponding models at 

the upper limit of correlation and for the same degrees of 

freedom. The last scene in this category describes the 

processor detection performance as a function of the 

correlation strength among the target returns for some values 

of SNR and integrated pulses. Fig.(10) displays the results of 

this group for a DT scheme the censoring threshold of which 

is allowed to vary from 2dB to 6dB with a step of 2dB and its 

signal strength takes distinct levels starting from -5dB up to 

10dB with an increment of 5dB, knowing that the primary 

target complies χ2-distribution with κ=4 in its fluctuation. 

For lower values of the censoring threshold, the detection 

reaction of the tested algorithm improves as the correlation 

among the target returns increases given that the signal 

strength is weak. As the SNR increases, the rate of 

improvement decreases gradually and tends to be negligible 

as the target returns become strengthened. For τ = 6dB, on 

the other hand, the processor detection behavior varies in the 

same manner as its corresponding one in lower τ values 

except that it tends to decrease as ρs increases for higher 

values of SNR.    

Now, let us turn our attention to the application of the DT 

algorithm for target detection under severe interference. We 

will present our numerical results in several categories of 

curves. The first category is concerned with the processor 

detection performance in the presence of spurious targets for 

different operating conditions. This category includes 

Figs.(11-12). The first scene in this group, Fig.(11), plots the 

detection probability against SNR for M=2, 3, and 4 along 

with the single sweep case when there are 5 extraneous 

targets of the same fluctuating model as that of the tested 

target (ρi=ρs) and the two target types, primary and 

interfering, return signals of similar strength (INR=SNR). 

The excision threshold of the DT scheme is chosen to have 6 

and 16dB values to show its role in improving the detector 

behavior against outlying targets when their number 

becomes intense. Additionally, the primary and the 

secondary interfering targets are assumed to be fluctuating in 

accordance with χ2-distribution with 4 degrees of freedom 

and the returns of each target are either de-correlated (SWIV 

model) or fully-correlated (SWIII model). An insight into the 

variation of the curves of this figure demonstrates that DT(6) 

algorithm surpasses, in its detection reaction, DT(16) 

processor in any situation of operation even in mono-pulse 
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case. In other words, the processor performance in the case 

of DT with τ=16dB is degraded in comparison with that of 

DT with τ=6dB. This behavior is predicated because as the 

censoring threshold increases, the likelihood of 

contaminated reference channels with spurious target returns 

increases and this in turn results in raising the detection 

threshold and consequently the processor performance 

becomes worsen. On the other hand, the detection 

probability follows the same behavior as in the case of ideal 

environment given that the trimming threshold is kept 

constant. The last plot in this category, Fig.(12), is associated 

with the detection reaction of DT, for several values of the 

trimming threshold, against multitarget environment when 

the tested as well as the undesired targets fluctuate according 

to four degrees of freedom χ2-process and their returns 

present null or fully correlation among them keeping into 

mind that two successive pulses are combined to carry out 

the decision process. It is clear that as τ increases, the target 

returned signal must be strengthened for the detector to 

become capable to decide its presence. For mono-pulse case, 

on the other hand, increasing the censoring threshold makes 

the DT scheme unable to detect the searched target in 

contaminated reference channel especially if the number of 

infected samples augments. The results outlined in this 

category demonstrate the role that the censoring threshold 

can play in the reaction of the double-threshold detector 

against an interference saturated environment and 

consequently, the good selection of which is our scope in this 

research for the detector performance achieves its highest 

allowable reaction when the operating environment is of 

target multiplicity. 

There is another type of characteristics that measure the 

capability of the processor to detect targets in contaminated 

reference channels. It is of primary concern to examine the 

effects of interfering targets on the ability of the underlined 

scheme to maintain the required rate of false alarm fixed, 

where the task of keeping a near-constant probability of false 

alarm represents the fundamental requirement in radar 

detection problems. We present some numerical results that 

demonstrate the performance of DT-CFAR detector when 

the sample set has some of its cells that are contaminated 

with interfering target returns of equal strength. The 

associated figures of this category of plots comprises 

Figs.(13-14). The first candidate of this family illustrates the 

false alarm rate as a function of the strength of interference 

for several values of integrated pulses when the spurious 

targets exhibit, in their fluctuation, χ2-statistics with 4 

degrees of freedom and their returns have zero or unity 

correlation coefficient given that the excision threshold is 

held constant at 6dB or 16dB and the designed rate of false 

alarm is 10-6. As shown in Fig.(13), the rate of false alarm is 

approximately constant when τ=6dB and the correlation 

among the interferer returns has approximately no impact on 

the false alarm rate performance of the tested scheme. 

Additionally, the processor performance enhances as the 

number of integrated pulses increases and as the target 

returns become strengthened. This behavior is logic since 

lowering the trimming threshold decreases the chance for the 

interferer sample to escape from the trimming threshold and 

therefore prevents it from participating in establishing the 

detection threshold which becomes representing the 

homogeneous case and consequently the false alarm rate 

tends to its designed value. As the excision threshold 

increases, the appearance of what is known as an 

ineffectiveness zone is noticed. The ineffectiveness zone is 

the range below the censoring threshold in which interferers 

are not eliminated and therefore influence the setting of the 

detection threshold. This zone is characterized by decreasing 

the rate of false alarm whenever the interfering returns are 

modestly strengthened. As the strength of the outlier returns 

becomes stronger, the false alarm rate changes its slope 

towards its design value and holds constant when the 

interferer returns are highly strengthened. The examination 

of the variation of this specified zone indicates that the 

correlation among the extraneous target returns as well as the 

post-detection integration enhance the false alarm rate of DT 

processor. Additionally, the gap between the minimum 

attainable level of false alarm and the required rate decreases 

as M increases, given that the correlation characteristics of 

the interferer returns are held constant. Moreover, the size of 

this gap is minimum in fully-correlated case whilst it 

becomes maximum in the case of de-correlated as long as the 

other parameter values are kept unchanged. It is of 

importance to note that the size of this gap tends to be 

vanished for lower values of the trimming threshold as 

Fig.(13) demonstrates. Fig.(14), on the other hand, illustrates 

the same thing as that presented in the previous figure on the 

exception that the censoring threshold is allowed to have 

larger values to show its role in controlling the false alarm 

rate of DT procedure. Three non-coherently integrated 

pulses (M=3), when the target returns have SWIII or SWIV 

fluctuation model, are taken into account in tracing this plot. 

For low values of the censoring threshold τ, the false alarm 

probability remains approximately constant with small 

deviations from the design value, given that the extraneous 

target returns are weakly strengthened, and these deviations 

are rapidly decreased, as either the interferer's strength or the 

censoring threshold increases, till a specified level of 

interference beyond which the false alarm probability 

increases towards its design value. The interference level at 

which the slope of a given curve is altered increases as the 

excision threshold increases. This behavior is physically 

logic since increasing τ means increasing the signal strength 

of the reference cell for the trimming process to be able to 

prevent it from participating in implementation of the 

detection threshold. This processing is continued till an 

interference level at which all the interfering cells are 

rejected from the cell-averaging operation and consequently, 

the false alarm rate returns to its design value at that level of 

interference. In the limit, as the censoring threshold tends to 

infinity, τ  , Pfa decreases rapidly with INR and the 

interference level that exchanges the slope of the curve tends 

to be infinity owing to the surviving of all the interferers 

which raises the detection threshold and consequently 
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decreases the false alarm probability intolerably. For the 

same censoring threshold, the SWIII model for the 

extraneous target fluctuation gives better false alarm rate 

performance than the case of SWIV fluctuation model. 

Additionally, each group of curves for SWIII or SWIV 

model follows the same slope as the trimming threshold 

varies where SWIV model presents larger slope than that 

followed by SWIII model. In any situation, the slope of 

decreasing increases as τ increases, as shown in the figure. 

Moreover, the point of changing the slope from negative to 

positive is shifted towards heavier interference as the 

excision threshold augments and this is common irrespective 

to the spurious target fluctuation model. In other words, the 

false alarm rate performance improves; i. e. more nearer to 

the required value, as the interferer returns become strongly 

correlated.  

An another important category of curves is that concerned 

with the detection performance as a function of the strength 

of correlation among the target returns, for minimum 

allowable values of the trimming threshold and several 

values of integrated pulses, in the presence of 5 contaminated 

samples among the elements of the reference set when the 

primary as well as the secondary interfering targets fluctuate 

obeying χ2-distribution with 4 degrees of freedom. Fig.(15) 

depicts these characteristics for multi-values of signal 

strength for both kinds of targets (INR=SNR) taking into 

account that their returns have the same strength of 

correlation (ρi=ρs). Since the post-detection integration 

makes the signal strengthened and the rate of strengthened 

increases as M increases, the minimum τ values are 2, 4, and 

6 for M=2, 3, and 4, respectively. The minimum value in this 

text means that value below which there is no detection 

owing to the intolerable value of the threshold. These values 

are the optimum ones for which the DT scheme exhibits its 

optimum detection performance as Fig.(15) demonstrates. 

As we have previously stated, the detection probability 

improves as the correlation among the target returns 

increases when the intensity of the received signal is weak 

and this is explicitly evident from the displayed results. For 

strong signal returns, on the other hand, the processor 

performance returns to its natural case where the correlation 

degrades it and the degree of degradation increases as the 

signal returns become strongly correlated. Also, the 

processor performance enhances as M increases under any 

situation of operation. The next plot in this category is 

devoted to present, in a clear manner, the effect of τ on the 

behavior of the DT algorithm in deciding the presence of the 

searched target in contaminated reference channel. Fig.(16) 

clarifies the required SNR to make the underlined processor 

able to decide the presence of primary fluctuating target with 

a detection level of 90% on the condition that the estimation 

set has 5 cells, among its elements, infected by outlier returns 

of the same strength as well as correlation as the primary 

target. As shown, the needed SNR is approximately constant 

till τ=14dB beyond which it increases in a nearly linear 

manner with increasing τ. It is of importance to note that the 

minimum value of τ, for M=4, is 6dB. Under the same set of 

operating conditions, the fluctuation model follows 4 

degrees of freedom χ2-statistics requires less SNR in 

comparison with that of 2 degrees of freedom χ2-distribution 

and the fluctuation of fully-correlated 4 degrees of freedom 

is coincided with the de-correlated 2 degrees of freedom 

when M=2. In addition, as M increases, the difference 

between the SNR needed for null-correlated χ2-statistics with 

4 & 2 degrees of freedom decreases whilst it remains 

approximately unchanged for unity-correlated χ2-statistics 

with 4 & 2 degrees of freedom, at the same level of the 

censoring threshold.   

In the last category of curves, we are interested in showing 

the variation of the processor detection performance with the 

number of spurious target returns that may exist amongst the 

candidates of estimation channels. The elements of this 

family of curves are two figures, Figs.(17-18). Each one of 

this family illustrates the variation of the detection 

probability as a function of the number of extraneous targets, 

parametric in the degrees of freedom and the number of 

integrated pulses. Fig.(17) shows the DT detection reaction 

against the density of interferers that may exist in the 

operating environment for several values of the excision 

threshold in the case where the target under test along with 

the spurious ones fluctuate according to χ2-model with 4 

degrees of freedom and their returns are either de-correlated 

or fully-correlated when the CFAR circuit collects its data 

from two consecutive sweeps to tackle its detection. Both 

types of targets generate the same signal strength 

(SNR=INR=10dB) at the decision circuit. For the purpose of 

comparison, the single-sweep results are incorporated 

amongst the elements of this plot. The examination of this 

drawn reveals that the DT scheme has immunity to the 

presence of outliers, even if the number of contaminated 

samples excesses half the size of the reference set when its 

censoring threshold is chosen to be low. This behavior is 

general even for mono-pulse operation. This immunity is due 

to excising the outlying returns and prohibiting them from 

the construction of the detection threshold. As the trimming 

threshold increases, the processor tends to deprive this 

important property; especially when the number of 

extraneous targets is large. In the limit, the DT algorithm 

tends to behave like the conventional CA scheme in tackling 

the operation of target multiplicity. In other words, as τ → ∞, 

the underlined detector becomes un-capable in deciding, 

with high probability, the presence of the searched target in 

the case where the operating environment contains outliers 

other than the target under test. As a final remark about 

Fig.(17) is that there are two groups of curves: one 

representing the single-sweep case and the other denotes the 

double-sweep case with special gain owing to post-detection 

integration. Each group starts from the same point which 

belongs to homogeneous situation (R=0) and remains 

unchanged, when τ is low, or degrades as R increases, when τ 

becomes large. The next plot in this category is interested in 

showing the impact of the degrees of freedom on multi-target 

performance of the DT detector. Fig.(18) traces the 

probability of detection as a function of the number of 
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fluctuating interferers when the radar receiver seeks for the 

desired fluctuating target given that the two types of targets 

excite the same signal strength at the input of the CFAR 

circuit the excision threshold of which is selected to be 16dB. 

The candidates of this trace are parametric in M, ρ, and κ. An 

insight into the displayed results indicates that there are four 

families of curves: one for each value of M. For small values 

of outliers, the fluctuating targets with 4 degrees of freedom 

give better performance than those fluctuating with 2 degrees 

of freedom and the de-correlated case exceeds in its 

detection probability the full-correlated case. As the number 

of interferers increases, the behavior is completely reversed 

making SWI model in the top and SWIV model in the bottom 

of this family. This behavior is common for any number of 

integrated pulses taking into account that the point of altering 

is shifted towards upper number of spurious targets as M 

increases. In the single sweep case, the fluctuation with 2 

degrees of freedom surpasses in its detection that obtained 

from fluctuation with 4 degrees of freedom since the signal 

strength is modest (SNR=INR=10dB). It is of interest to note 

that the detector performance improves as either the 

correlation among the fluctuating target returns weakens, as 

the number of post-detection integrated pulses increases, or 

as the degrees of freedom of the χ2-distribution increases 

given that the signal strength is strong and the remaining 

parameters are held unchanged. 

5. Conclusions 

This paper has addressed the problem of CFAR detectors 

designed to operate in an interference saturated environment. 

In such an environment the performance of the conventional 

cell-averaging detectors can be drastically degraded, owing 

to the inevitable influence of the outlying samples on the 

sample average that is used for implementation of the 

detection threshold. The analytical results have been 

associated with an application in which the DT detector is 

supplemented by a post-detection integrator. The purpose of 

the integrator is to diminish the effect of strong random 

interfering signals while enhancing the detection probability 

of a periodic sequence of pulses. The numerical results 

should provide an important insight into the effect of the 

system’s parameters on its performance. 

We have given a detailed derivation of the detection 

performance of the DT-CFAR processor in multi-target 

situations. This type of radar detectors combats the effect of 

variations in the noise level and interferences by adapting the 

detection threshold to the sample average and by neutralizing 

the effect of strong interfering signals by discarding them 

prior to the cell averaging operation. Even if not all 

interferers are removed, the elimination of the strongest ones 

among them and therefore the most damaging to processor 

performance, is assured.  

 

 

Figure (8).  Ideal M-sweeps Receiver Operating Characteristics (ROC's) of DT()-CFAR scheme for partially-correlated 2 targets when N=24, =5dB 
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Figure (9).  Ideal M-sweeps required SNR to attain a detection level of 90% of DT()-CFAR scheme for partially-correlated 2 targets when N=24, =2 & 

4, and Pfa=10-6 

 

Figure (10).  Ideal M-sweeps detection performance of DT()-CFAR scheme for partially-correlated 2 targets when N=24, =4, and Pfa=10-6 
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Figure (11).  Multitarget M-sweeps detection performance of DT()-CFAR scheme for partially-correlated 2 targets when N=24, R=5, =4, s=i, 

INR=SNR, and Pfa=10-6 

 

Figure (12).  Multitarget M-sweeps detection performance of DT()-CFAR procedure for partially-correlated 2 targets when N=24, M=2, =4, R=5, i=s, 

and Pfa=10-6 



52 Mohamed B. El Mashade:  Performance Amelioration of Adaptive Detection of  

Moderately-Fluctuating Radar Targets in Severe Interference 

 

 

Figure (13).  Multitarget M-sweeps false alarm rate performance of DT()-CFAR scheme for partially-correlated 2 targets when N=24, =4, R=5, and 

design Pfa=10-6 

 

Figure (14).  Multitarget M-sweeps false alarm rate performance of DT()-CFAR scheme for partially-correlated 2 targets when N=24, =4, M=3, R=5, 

and design Pfa=10-6 
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Figure (15).  Multitarget M-sweeps detection performance of DT()-CFAR scheme for partially-correlated 2 targets when N=24, R=5, =4, and Pfa=10-6 

 

Figure (16).  Multitarget M-sweeps required SNR, to attain a detection level of 90%, of DT()-CFAR scheme for partially correlated 2 targets when N=24, 

=2 & 4, R=5, and Pfa=10-6 
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Figure (17).  Multitarget M-sweeps detection performance of DT()-CFAR scheme for partially-correlated 2 targets when N=24, M=2, =4, s=i, 

INR=SNR=10dB, and Pfa=10-6 

 

Figure (18).  Multitarget M-sweeps detection performance of DT(16.0)-CFAR scheme for partially-correlated 2 targets when N=24, =2 & 4, s=i, 

INR=SNR=10dB, and Pfa=10-6 
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The determination of the DT parameters will be outlined. 

For this detector to be effective, τ should be set as low as 

possible for preventing any sample, that is not belong to 

noise, from participating in the construction of the detection 

threshold; but if the input signal is infected by a wideband 

jamming signal, a low τ can result in trimming most of the 

noise samples, and therefore cause a drastic degradation in 

performance. On the other hand, if the excision threshold is 

set too high, an ineffectiveness zone, the width of which is 

the ratio between the censoring threshold and the mean value 

of the actual noise level, is created. The samples in this zone 

which originate from various spurious transmissions are not 

trimmed. 
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