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Abstract  Nonlinear unmixing of hyperspectral images has shown considerable attention in image and signal processing 
research areas. Hyperspectral unmixing identifies endmembers spectral signatures and the abundance fractions of each 
endmemeber within each pixel of an observed hyperspectral scene. Over the last few years, several nonlinear unmixing 
algorithms have been proposed. This paper presents an empirical comparison of several popular and recent algorithms of 
supervised nonlinear unmixing algorithms. Namely, we compared Kernel-based algorithms, graph Laplacian regularization 
algorithm, and nonlinear unmixing algorithm using a generalized bilinear model (GBM). These unmixing algorithms 
estimate the abundances of linear, bilinear and intimate mixtures of hyperspectral data. We assessed the performance of these 
algorithms using Root Mean SquareError on the same data sets. 
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1. Introduction 
Hyperspectral image is a three-dimensional data cube 

which consists of one spectral and two spatial dimensions. 
Each pixel in the hyperspectral image is represented by a 
vector of reflectance values (also known as the pixel’s 
spectrum) whose length is equal to the number of spectral 
bands considered. Thus, the pixel’s spectrum corresponding 
to a sole material (such as soil, vegetation, or water) 
characterizes the material and it is called endmember.  

Hyperspectral sensors generate high spectral resolution 
images, but they have a low spatial resolution, which causes 
mixed pixels within hyperspectral images. As another cause 
for mixed pixels is a homogeneous combination of different 
materials in one pixel. Therefore, the hyperspectral 
spectrum can be seen a mixture of the spectra of each 
component in the observed scene. This has lead up to linear 
mixing model and nonlinear mixing model. 

In fact, the mixing model related to spectral unmixing 
imagery can be either linear or nonlinear, and that depends 
on the nature of the observed hyperspectral image. As the 
photons hit the detector coming from the source, the 
imaging system bins the observed photons according to 
their spatial location and wavelength [27]. Linear mixtures 
are used in case that the detected photons interact mainly 
with a single component of the observed scene before they  
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reach the sensor. On the contrary, nonlinear mixture models 
are used when the photons interact with multiple 
components [4]. 

There are two types of nonlinear mixing: intimate mixing 
and bilinear mixing. In bilinear mixing, effects of multiple 
light scattering occur, i.e. the solar radiation scattered by a 
given material reflects off other materials prior reaching the 
sensor. In intimate nonlinear mixing, interactions occur at a 
microscopic level and the photons interact with all the 
materials concurrently as they are scattered [5, 6]. 

The mixture problem can be solved by applying an 
appropriate unmixing process. Hyperspectral unmixing is 
an important process in many fields such as agriculture, 
geography and geology. It has different applications such as 
surveillance applications, earth surfaces analysis application, 
pollution monitoring applications. Spectral unmixing is 
widely used for analyzing hyperspectral data. It includes 
two main steps. The first step is determining the pure 
components in the hyperspectral image (Endmembers). The 
second step is finding out these materials’ abundances. 
Spectral unmixing can be either supervised unmixing or 
unsupervised unmixing. In supervised unmixing, the 
number of endmember is known while in unsupervised 
unmixing the number of endmemeber is unknown. 
Depending on the mixing type, the unimixing processes 
could be linear and nonlinear. 

Linear spectral unmixing is to determine the relative 
proportion (abundance) of materials that are presented in 
hyperspectral imagery based on the spectral characteristics 
of materials. The reflectance at each pixel is assumed to be 
a linear combination of the reflectance of each material (or 
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endmember) existing in the pixel. Linear unmixing methods 
are used only with the linear mixing models [1]. 

Linear unmixing models cannot handle nonlinear mixing 
pixels. There are many algorithms and researches regarding 
linear unmixing, which assumes that pixels are linearly 
mixed by material signatures weighted by abundances.  

Recently, nonlinear unmixing for hyperspectral images is 
receiving attention in remote sensing image exploitation [6] 
[20] [4] and [18]. Alternative approximation approaches 
have been proposed for handling the effects of nonlinearity 
leading to utilizing physics-based nonlinear mixing models 
[1]. The bilinear mixture model (BMM), has been studied in 
several researches which is used with second-order 
scattering of photons between two different materials [8]. 

In this paper, we consider a set of latest and well-known 
algorithms of supervised nonlinear unmixing of 
hyperspectral images. We compare empirically these 
algorithms using the same set of data. The performance is 
assessed in terms of accuracy. 

Namely, we compare kernel-based algorithms [6], 
regularization algorithms [20], and nonlinear unmixing 
using a generalized bilinear model (GBM) [4]. These 
unmixing algorithms estimate the abundances of linear, 
bilinear and intimate mixtures of hyperspectral data.  

More specifically, for Kernel-based methods we used the 
K-Hype [6] and Multiple Kernel Learning (SK-Hype) [6] 
algorithms. For Graph Laplacian Regularization approaches, 
we considered GLUP-Lap [20] (Group Lasso with Unit sum, 
Positivity constraints and graph Laplacian regularization) 
[20].  

The outline of the rest of the paper is as follows: The 
state-of-the-art literature of different general approaches 
used for solving the hyperspectral unmixing problem is 
given in section 2. A description of well-known nonlinear 
unmixing algorithms is provided in section 3. Experimental 
results and discussion are highlighted in section 4. 
Conclusion is reported in section 5. 

2. Nonlinear Unmixing Approaches 
Yoann Altmann et. al. [19] proposed a nonlinear unmixing 

method which is based on the Gaussian process. In [19], the 
abundances of all pixels are identified first, and then the 
endmembers are estimated using Gaussian regression. They 
consider a kernel-based method for unsupervised spectral 
unmixing based on the Gaussian latent variable model 
(GP-LVM) [29] which is a nonlinear dimension reduction 
method that has the ability to accurately model any 
nonlinearity. 

Jie Chen et. al. [6] addressed the abundances estimation 
problem of the nonlinear mixed hyperspectral data. They 
propose a solution to an appropriate kernel-based regression 
problem. They propose the K-Hype mixture model which is 
a kernel-based hyperspectral mixture model. They also 
suggest associated abundance extraction algorithms. The 
disadvantage of k-Hype is that the balance between linear 

and nonlinear interactions is fixed. To manage this limitation 
they propose SK-Hype, which is a natural generalization of 
K-Hype. It depends on the Multiple Kernel Learning concept. 
Also, it can automatically adapt between linear and nonlinear 
contributions.  

Rita Ammanouil et. al. [20] proposed a graph Laplacian 
regularization in the hyperspectral image unmixing. The 
proposed method depends on the construction of a graph 
representation of the hyperspectral image. Similar pixels are 
connected by edges both spectrally and spatially. Convex 
optimization problem is solved using the Alternating 
Direction Method of Multipliers (ADMM). Graph-cut 
methods are proposed in order to reduce the computational 
burden.  

Yoann Altmann et. al. [18] suggested a Bayesian and two 
least squares optimization algorithms for nonlinear unmixing. 
These algorithms assumed that the pixels are mixed by a 
polynomial post-nonlinear mixing model. They also 
proposed in [4] a generalized bilinear Method (GBM) where 
a Bayesian algorithm is proposed to estimate the nonlinearity 
coefficients and the abundances values. 

Chang Li et. al. [30] propose a general sparse unmixing 
method (SU-NLE) that depends on the estimation of noise 
level. They used the weighted approach in order to provide 
the matrix of the noise weighting. The proposed approach 
[30] is robust for different noise levels in different bands of 
the hyper spectral image.  

Xiaoguang Mei et. al. [31] propose two methods for 
nonlinear unmixing of HIS. Robust GBM (RGBM) [32] and 
another new unmixing method with superpixel segmenta- 
tion (SS) and low-rank representation (LRR) unmixing 
approach.  

In this paper, we empirically compare four nonlinear 
unmixing algorithms. Namely, we assess the performance of 
the Kernel-Based Hyperspectral Unmixing Algorithms: the 
K-Hype Algorithm [6], the Super K-Hype (SK-Hype) 
Algorithm [6], the Group Lasso with Unit sum, Positivity 
constraints and graph Laplacian regularization (GLUP-Lap) 
[20], and the Generalized Bilinear Model (GBM) applied [4]. 

2.1. The K-Hype Algorithm 

The K-Hype [6] is designed for both linear and nonlinear 
mixing models. It is based on the model defined in (1). 

Knlin �mλℓ , mλp� = ( 1 + 1
R2

(mλℓ − 1/2)T(mλp − 1/2) )2 
(1) 

where  Knlin  is the polynomial kernel of degree 2, m is 
endmember spectra. R is the number of endmembers. mi is 
an endmember spectral signature, mλl  is the ℓ -th (1XR) 
row of M Endmember matrix. The constants 1/R2and 1/2 
serve the purpose of normalization. It optimized using 
quadratic programming. 

Jie Chen et al. [6] define the function in equation (2) to 
extract the mixing ratios of the endmembers. 

𝜓∗ =  𝑎𝑟𝑔ψ∈ℋ min 1
2

||𝜓||ℋ2 + 1
2𝜇
∑ (𝑟ℓ − 𝜓�𝑚λℓ�)2𝐿
ℓ=1  (2) 
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where ℋ  is a given functional space, 𝜇  is a small 
positive parameter that controls the trade-off between 
regularization. 𝜓  is unknown nonlinear function that 
defines the interactions between the endmembers in matrix. 
𝑟ℓ is dominated by a linear function. 

This function is defined by a linear trend parameterized  
by the abundance vector α , combined with a nonlinear 
fluctuation term: 

 𝜓(𝑚λℓ
 ) =  α𝑇𝑚λℓ

 + 𝜓𝑛𝑙𝑖𝑛�𝑚λℓ
 �     (3) 

subjected to α ≥ 0, and 1𝑇 α=1. 
where 𝜓𝑛𝑙𝑖𝑛  can be any real-valued functions on a 

compact ℳ of a reproducing kernel Hilbert space ℋ𝑛𝑙𝑖𝑛. 
The corresponding Gram matrix K is given by: 

K= MM𝑇+𝐾𝑛𝑙𝑖𝑛              (4) 
where 𝐾𝑛𝑙𝑖𝑛is the Gram matrix associated with the nonlinear 
map 𝜓𝑛𝑙𝑖𝑛, with (ℓ,𝜌)-thentry 𝐾𝑛𝑙𝑖𝑛( 𝒎λℓ

  ,𝒎λp
 ) 

The abundance vector can be estimated as follows: 
 α∗= 𝑀𝑇𝛽∗+𝛾∗- λ∗1             (5) 

The K-Hype algorithm [6] is described in algorithm 1. 
 

Algorithm 1 The K-Hype Algorithm [6] 

1: Initialization. 
2: Choose the kernel and the regularization constant 
3: Calculate Gaussian kernel using 

𝐾�𝒎λℓ 
 ,𝒎λp 

 � = 𝑒𝑥𝑝 �
�𝒎λℓ 

 ,𝒎λ𝜌 
 �

2σ2
�  

4: Extract the mixing ratios of the endmembers using the 
function in equation (2)  

5: Solve the optimization problem using generic quadratic 
program (QP) solver.  

6: Estimate the abudance using (5). 

2.2. The SK-Hype Algorithm 
The SK-Hype algorithm [6] is designed for both linear and 

nonlinear mixing models. The model in equation (3) has 
some limitations in that the balance between the linear 
component α𝑇𝑚λℓ  and the nonlinear component 
𝜓𝑛𝑙𝑖𝑛 (𝑚λℓ )  cannot be tuned. As for K-Hype [6], the 
Gaussian kernel and the polynomial kernel were considered. 
Another difficulty in the model of equation (3) is that it 
cannot captures the dynamic of the mixture, which requires 
that r or the 𝑚λℓ  ’sbe locally normalized. Thus Gram 
matrice is considered as in equation (6) 

𝐾𝑢= u M𝑀𝑇+ (1-u) 𝐾𝑛𝑙𝑖𝑛          (6) 
The abundance vector can be estimated as in (7). 

 𝛼∗= 𝑀𝑇𝛽∗+𝛾∗

1𝑇(𝑀𝑇𝛽∗+𝛾∗)
               (7) 

The SK-Hype algorithm [6] is described in Algorithm 2. 
 

Algorithm 2 The SK-Hype Algorithm [6] 
1: Initialization 
2: Choose the kernel and the regularization constant. 
3: Calculate the kernel matrix. 
4: Repeat 
5: Solve the optimization problem using generic QP solver. 
6: Until stopping criteria is satisfied. 
7: Estimate the abundance. 

2.3. GLUP-Lap Algorithm 

GLUP-Lap [20] stands for Group Lasse with Unit Sum, 
Positivity constraint and Laplacian regularization [20]. 
GLUP-Lap approach [20] is graph based. If two nodes are 
connected, then they are likely to have similar abundances. 
They incorporate this information in the unmixing problem 
using the graph Laplacian regularization. This leads to a 
convex optimization problem as defined in (8). 

𝑚𝑖𝑛𝐴
1
2
�|𝑆 − 𝑅𝐴|� 𝐹2 + λtr(Aℒ𝐴𝑇) + 𝜇 ∑ ||𝑎𝑘𝑁

𝑘=1 || 2 (8) 

Subject to 𝐴𝑖𝑗 ≥ 0 ,∀𝑖, 𝑗, ∑ 𝑨𝒊𝒋𝑵
𝒊=𝟏 , ∀𝒋 

where ℒ  is the graph Laplacian matrix given by      
ℒ = D − W, D is diagonal matrix with 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗

𝑁
𝑗=1 , μ≥0 

and λ≥0 are two regularization parameters. The relevance of 
the regularization are expressed as in (9). 

𝑡𝑟(Aℒ𝐴𝑇) =  ∑ ∑ ∑ 𝑊𝑗𝑘(𝐴𝑖𝑗 − 𝐴𝑖𝑘)2 
𝑘~j

𝑁
𝑗=1

𝑀
𝑖=1     (9) 

where k ~ j indicates that pixels j and k are similar and 
 𝑊𝑗𝑘 ≠ 0 , is the degree of similarity. The regularization 
parameter λ in (8) controls the extent to which similar pixels 
estimate similar abundances. R is a large dictionary of 
endmembers, and only few of these endmembers are present 
in the image. 

 
Algorithm 3. The GLUP-Lap algorithm [20] 

1: Generate W, the affinity matrix of size N x N. 

If pixels i and j are similar then Wij is set to some positive 
value proportional to their degree of similarity as in (5). 

Else Wij = zero. 

2: Partition pixels into k clusters by applying ADMM 
Algorithm. 

3: Solve GLUP-Lap for each cluster (8) 

The first and second term of the cost function in (8) can be 
grouped in a single quadratic form. However the resulting 
Quadratic Problem has N × M non-separable variables. Its 
solution can be obtained using the Alternating Direction 
Method of Multipliers (ADMM) [21]. The GLUP-Lap 
algorithm steps are described in Algorithm 3. 
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2.4. GBM Algorithm 

The GBM in [4] assumes that the mixture problem can be 
expressed as 

 r=M α+ ∑R-1
i=1 ∑R

j=i+1 γijαi
αj mi⨀mj+n    (10) 

under the following parameters constraints: 
α αk ≥ 0, ∀ k∈{1,...,R} and ∑ αkR−1

i=1 =1      (11) 
0 ≤ γi,j ≤1 ∀ i∈{1, . . . ,R − 1} ∀ j∈{i+1, . . . ,R}. 
Where γ𝑖,𝑗 is a coefficient that determines the interactions 

between endmembers #i and #j in the observed pixel. The 
unknown parameter vector θ that associated with the GBM 
[4] includes the nonlinearity coefficient vector γ = [γ1,2, . . . , 
γR−1,R]T, the abundance vector α, and the noise variance σ2. 

 
Algorithm 4 The GBM algorithm [4] 
1: Initialization 
2: Initialize parameters  

𝑘∗ = 𝑅, σ2(0), α𝑘
(0),∀𝑘 ≠ 𝑘8 

3: α𝐾∗
(0) = 1 − ∑ α𝑖

(0)
 

𝑅−1
𝑖=1  

4: Sample Generation 
5: for t=1: 𝑁𝑏𝑖 + 𝑁𝑟 do 
8: sample α𝑘

(𝑡)~𝑓(α𝑘 |σ2(𝑡−1),y, γ,α{𝑘,𝑘∗}
(𝑡)  using Algorithm5 

6: choose a random K* from {1,..R} 
7: for k=1: R and k≠ K* do 
9: end for 
10: α𝑘∗

(𝑡) = 1 − ∑ α
𝑖
(𝑡)

𝑖≠𝑘∗  

11: Sample γ1,2~f(γ1,2|σ2(𝑡−1),𝑦, γ(1,2)
(𝑡) , α  

(𝑡)) 

 .. .. … 
 .. .. … 
12: .. .. … 
13: sample  

γ𝑅−1,𝑅~ f(γ𝑅−1,𝑅 |σ2(𝑡−1),𝑦, γ(𝑅−1,𝑅)
(𝑡) , α  

(𝑡)) 

14: sample σ2(𝑡)~ f(σ2|y,γ 
(𝑡), α

  
(𝑡)) 

15: end for 
 
The hierarchical Bayesian model is used to calculate the 

unknown parameter vector θ= (αT , γT, σ2)T that is associated 
with the GBM [4]. Metropolis-within-Gibbs algorithm     
is also used in order to generate sample distribution 
according to the posterior distribution f(θ|y). The generated 
samples are then used to estimate the unknown parameters. 
Metropolis-within-Gibbs algorithm is described in algorithm 
5. 

 
Algorithm 5 The Metropolis-within-Gibbs algorithm [4] 
Sampling 𝛂  

 
𝒌 with “Metropolis-within-Gibbs” 

1: Draw candidate 𝛂  
 
𝒌
(∗) from the proposal 𝝅(𝛂  

 
𝒌
(∗)) in 

𝛂  
 
𝒌
(∗)~𝑵[𝟎𝟏](𝑾𝒌,𝒌∗ ,

𝟐𝛔𝟐

𝒉𝒌𝑻𝒉
) 

2: Compute the acceptance probability 

ρ=min=�1,
𝑓�α𝑘

(∗)|σ2(𝑡−1),𝑦,ϒ,α {𝑘,𝑘∗} 
(𝑡) �𝜋�α𝑘 

(𝑡−1)�

𝑓�α𝑘 
(𝑡−1) | σ2(𝑡−1)𝑦,ϒ,α {𝑘,𝑘∗}

(𝑡) �𝜋�α𝑘 
(∗)�
� 

3: sample w ~ 𝑈[0,1] 
4: if w< ρ  then 
 
5: α𝑘

(𝑡)=α𝑘
(∗) 

 
6: else 
 
7: α𝑘

(𝑡)=α𝑘
(𝑡−1) 

8: end if 

3. Experiments 
In this paper, we compare empirically four supervised 

unmixing algorithms; The K-Hype Algorithm, Super 
K-Hype (SK-Hype) Algorithm [6], GLUP-Lap [20], and the 
GBM Algorithms [4]. We use the same endmemer sets and 
the mixing models that have been used to experiment the 
considered unmixing approaches as reported in [4], [6], [18], 
[20]. and [24]. We should mention that these approaches did 
not use the same data. However, in our experiment, we 
convey the same data as input to all unmixing approaches in 
order to compare their performances. Thus, we used 7 input 
data with different mixture model, number of endmembers, 
number of signatures (spectra), number of pixels, Signal to 
Noise Ratio SNR, and abundances. In the follwing, we 
describe these datasets. 

Data A is a synthetic image data with 900 pixels that are 
mixed by linear mixing model using the endmembers, the 
abundances in [6]. The linear mixing model is defined as:  

𝑌 = 𝑀𝐴 + 𝑛                (12) 
where Y is the pixel vector, M is the endmember matrix, A 
is the abundance one and n is a noise vector. For this data, 
the SNR is set to 30 and the number of pixels N to 900. The 
endmember matrix is 420X5, meaning that number of 
endmembers is 5 with 420 spectral bands. 

Data B is a synthetic image data with 900 pixels that is 
mixed by bilinear mixing model. The bilinear mixture 
model is defined as: 

𝐫 = Mα + ∑  𝑅−1
𝑖=1 ∑  𝑅−1

𝑗=𝑖+1 αj �mi ⨂  mj� + 𝑛    (13) 

where M is the endmember matrix and α is the abundance 
matrix. 

Data C is a synthetic image data with 900 pixels that is 
mixed by intimate mixing model. The mixing model is 
defined as: 

 r = (𝑀𝛼)𝜉 + 𝑛              (14) 
where ξ is set to 0.7, n is the noise, M is the endmember 
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matrix, and α is the abundance matrix. 
Data D is a 75x75 image that is mixed by linear mixing 

model. The endmember matrix size is 224X5 and is 
generated as in [20]. For this data, the SNR is set to 30 and 
number of pixels N is 75*75. The image contains 25 
squares in a 5x5 grid pattern. Each square is a homogeneous 
surface, where all pixels inside the square have the same 
abundances. The first 20 squares are distinct from each 
other; i.e. each one has a different mixture of the 
endmembers, while the last 5 squares are identical [20].  

The linear mixing model is expressed as: 
Y = MA + N                (15) 

where N is an additive Gaussian noise. M is the endmember 
matrix, and A is the abundance matrix. 

Data E is 75x75 image that is mixed by linear mixing 
model. Data E is generated similarly to Data D, except that 
it is created using 15 different endmembers, and has 
identical squares in each row. Each pixel has local similar 
neighbors and distant similar ones.  

Data F is a set of pixels that are mixed by bilinear mixing 
model using the endmember matrix and the abundance 
defined in [4]. The endmember matrix size is 826X3. The 
three endmembers are extracted from the ENVI software 
library [28] [18], with 826 spectral bands and SNR=15. The 
bilinear mixture model defined as: 

r = M α + ∑ ∑ γ𝑖, 𝑗 αiαj (mi⨂ mj) + 𝑛𝑅
𝑗=𝑖−1

𝑅−1
𝑖=1    (16) 

Note that γi,j is a coefficient that controls the interactions 
between endmembers #i and #j in the considered pixel, R is 
the number of endmembers, M is the endmember matrix, α is 
the abundance and n is the noise. 

Similarly, Data G is a set of pixels that are mixed by 
polynomial post-nonlinear mixing model using the 
endmember matrix and the abundance defined in [18, 24]. 
The mixture model is PNMM [18, 24] and defined as: 

y = 𝑔𝑏(Ma) +  n = Ma + 𝑏(𝑀𝑎)⨀(𝑀𝑎) +  𝑛    (17) 
where ⨀ denotes the Hadamard (term-by-term) product, 
M is the endmember matrix, a is the abundance and n is the 
noise. Note that the resulting PPNMM includes bilinear 
terms. However, the nonlinear terms are characterized by 
single amplitude parameter b. Table 1 summarises the 
characteristics of the used data sets. 

Table 1.  Data sets Characteristics 

Data A D E B F C G 

Endmembers 5 5 15 5 3  3 

pixels 900 75x75 900 1 900 1 

SNR 30 30 30 15 30 15 

Mixing type linear bilinear Intimate polynomial 
post-nonlinear 

In order to assess the performance of the considered 
non-linear unmixing approach, we use the Root Mean 
Square Error (RMSE). It has been used as an evaluation 
measure in [4], [6] [18] and [20]. It is defined as in (19) 

𝑅𝑀𝑆𝐸 = � 1
𝑁𝑅
∑ ||𝛼𝑛 − 𝛼𝑛∗  ||2𝑁
𝑛=1         (18) 

We should mention that when RMSE is small, it reflects a 
good unmixing result. On the other hand, when it is large, it 
reflects a bad unmixing result. Figure 1, Figure 2, Figure 3, 
Figure 4, Figure 5, Figure 6, and Figure 7, shows the 
performance of the considered approaches when varying the 
experimental parameters on data set A, data set B, data set C, 
data set D, data set E, data set F, and data set G, respectively. 

 
Figure 1.  RMSE of Unmixing Data Awhen varying the number of 
endmembers 

As shown in Figures 2, 3, 4, and 5, for each considered 
data set, one unmixing approach outperforms all the others 
regardless of the different considered parameters. However, 
in figure 1, we notice that although KHype achieves better 
results than the others on Data A when varying the number of 
endmembers, it is slightly worse than GLUP-Lap [20] when 
the number of endmembers is equal to 5. 

 
Figure 2.  RMSE of Unmixing Data Bwhen varying the number of 
endmembers 
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Figure 3.  RMSE of Unmixing Data Cwhen varying the number of 
endmembers 

 
Figure 4.  RMSE of Unmixing Data Dwhen varying the number of 
endmembers 

 
Figure 5.  RMSE of Unmixing Data Ewhen varying the angle between 
any two signature 

 
Figure 6.  RMSE of Unmixing Data F when varying the Gussian Kernel 
bandwith 

 
Figure 7.  RMSE of Unmixing Data G when varying the Gaussian Kernel 
bandwith 

Table 2.  Performance results of the Considered unmixing approaches 

RMSE± 
STD GBM KHype SKHype GLUP-Lap 

Data A 0.0134 ± 
0.0002 

0.0304 ± 
0.0007 

0.0206 ± 
0.0003 

0.0142 ± 
0.0001 

Data B 0.2134 ± 
0.0217 

0.0284 ± 
0.0006 

0.0294 ± 
0.0006 

0.1518 ± 
0.0070 

Data C 0.1716 ± 
0.0061 

0.0453 ± 
0.0015 

0.0362 ± 
0.0011 

0.1278 ± 
0.0029 

Data D 0.0293 ± 
0.0009 

0.0410 ± 
0.0016 

0.0361 ± 
0.0012 

0.0050 ± 
0.00003 

Data E 0.0284 ± 
0.0009 

0.0495 ± 
0.0014 

0.0405 ± 
0.0011 

0.0091 ± 
0.00002 

Data F 0.0052 0.0288 0.0083 - 

Data G 0.0075 0.0424 0.0299 - 
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Similarly, KHype outperforms SKHype on Data F (refer 
to figure 6) when varying the Gaussian parameters except 
when the bandwidth is equal to 3. Figure 7 displays similar 
results for data G. In fact, KHype achieves better results than 
SKHype regardless of the Gaussian bandwidth expect for a 
slight decrease in the performance when this parameter is 
equal to 2. 

Table 2 reports the abundance RMSE and the standard 
deviation of the considered unmixing approaches on the 
seven data sets. For a better understanding of the reults, table 
3 shows the rank of all four nonlinear unmixing algorithms 
according to the goodness of RMSEs results from the first 
(the best) to the fifth order.  

Table 3.  Ranking Algorithms According to Their Performance 

Mixing Model Data GBM KHype SKHype GLUP-Lap 

Linear Data A 1st 4th 3rd 2nd 

Bilinear Data B 4th 1st 2nd 3rd 

Intimate Data C 4th 2nd 1st 3rd 

Linear Data D 2nd 4th 3rd 1st 

Linear Data E 2nd 4th 3rd 1st 

Non-linear Data F 1st 3rd 2nd - 

Non- linear Data G 1st 3rd 2nd - 

 

Figure 8.  Time Comparison of the Considered Unmixing approaches 

GBM algorithm [4] has the best performance in Data A 
which is linearly mixed image. Moreover, the results show 
that it has the second best performance in case of Data D, E, 
F and G. However, it performs poorly on both Data B and 
Data C which are mixed using bilinear and intimate mixing 
model. On the other hand, K-Hype algorithm has the best 
performance on unmixing Data B and has the second best 
performance on unmixing Data C. However, it performs 
poorly on Data A, D and E, which are mixed by linear 
mixing model. Besides, SK-Hype algorithm has the best 
performance on unmixing Data C which is mixed by intimate 
mixing model. It also has the second best performance on 
unmixing Data B which is mixed by bilinear mixing model. 
Finally, GLUP-Lap [20] algorithm outperforms the other 
considered algorithms on Data D and E which are mixed by 

linear mixing model. It also has the second best performance 
in case of Data A which is mixed by linear mixing model too. 

In summary, we notice that the performance of the 
considered unmixing approaches vary with respect to the 
data. However, we conclude that GBM [4] gives good 
performance on linear and non-linear data, and KHype [6] 
and S-KHype are doing better on bilinear and intimate 
mixing models. 

Figure 8 illustrates the running time in seconds of the 
considered approaches. We notice that the running time 
differs from one data to another, but generally GLUP-Lap 
[20] and KHype have the smallest running times.  

4. Conclusions 
In this paper, we compared empirically a set of non-linear 

unmixing algorithms. Seven input data sets have been mixed 
using different mixing models. The results show that GBM 
[4] is able to unmix linear and non-linear mixed models. 
However, it is not able to unmix bilinear or intimate mixed 
models. On the other hand, KHype [6] and S-KHype [6] give 
better performance results on bilinear and intimate unmixing 
models while they are not unmixing linear and non-linear 
mixing models. Thus, there is no universal unmixing 
approach that is able to unmix all the considered scenarios.  

As the performance varies with respect to the data and 
therfore it is difficult to decide on the unmixing approach to 
adopt, we plan as future work to investigate combining 
fusion techniques on these approaches in order to obtain 
betterunmixing result regardless of the data set. We aim also 
to consider more approaches and other data sets. 
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