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Abstract  This paper proposes an optimization method of transformation matrix for 3D cloud mapping for indoor mobile 
platform localization using fusion of a Kinect camera system and encoder sensors. In this research, RGB and depth images 
obtained from the Kinect system and encoder data are calculated to produce transformation matrices. A Kalman filter 
algorithm is applied to optimize these matrices and then produce a transformation matrix which minimizes cumulative error 
for building 3D cloud mapping. For mobile platform localization in an indoor environment, a SIFT algorithm is employed for 
feature detector and descriptor to determine similar points of two consecutive image frames for RGB-D transformation 
matrix. In addition, another transformation matrix is reconstructed from encoder data and it is combined with the RGB-D 
transformation matrix to produce the optimized transformation matrix using Kalman filter. This matrix allows to minimize 
cumulative error in building 3D point cloud image for robotic localization. Experimental results with mobile platform in door 
environment will show to illustrate the effectiveness of the proposed method. 
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1. Introduction 
An automatic mobile platform designed to automatically 

move based on 3D mapping has attracted researchers in 
recent years. In particular, robotic mapping is one of the most 
vital tasks in automatic robotic applications, in which the 
robot has to be supported the model of the navigational space 
in order to locate itself when moving. Thus, the map is 
essential for path planning processes in proposing the 
roadmap to target positions [1]. 

The robotic mapping is divided into 2D and 3D mappings. 
The 2D mapping has some disadvantages compared with 3D 
mapping. It means that the applications using sonar or laser 
sensors in navigation with 2D mapping has its drawbacks 
[2-4]. One of the great drawbacks of using the 2D mapping 
for accurate robotic locations is the lack of information in the 
third space dimension [5].  

For improving the negative trends of 2D planning methods, 
the 3D mapping algorithms have been continuously 
developing with the supports of famous classical findings. 
Therefore, a Simultaneous Localization and Mapping 
(SLAM) algorithm is applied with 3D mapping methods for 
determination of the 3D model of large scale environments 
[6, 7].  The result is  that the 3D mapping  methods  have  
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effectively employed for building robotic mapping. 
The quality of 2D mapping with obstacles from 

surroundings using sonar or laser sensors [8] is mainly 
determined due to its limitations. In particular, the sonar 
sensors used to obtain the ranges from the robot to 
surrounding obstacles just show obstacle information on the 
beam plane where the sensors are installed. For improvement 
of using the sonar sensor, the stereo camera system were 
used to take advantage of building 3D mapping with 
obstacles [8-11], but the calculation time to reconstruct the 
3D ranging information from stereo images is expensive and 
it price is problem. 

The Kinect RGB-D sensor (Kinect camera system) has 
been used to replace the stereo camera system for robotic 
localization [12]. This kind of the RGB-D sensor has not 
only the suitable accuracy, but also allow to calculate 
processing time with the fast speed. In addition, it is much 
cheaper than the 3D sensor with the same functions and easy 
to install for use. Therefore, algorithms have been applied 
using RGB-D sensors for determining the moving space   
as well as identification and positioning in the space of 
self-propelled robots in recent years [13-15]. One 
disadvantage of this RGB-D sensor is that its depth 
information is often noisy. Therefore, if a robot equipped 
with the Kinect moves long distances, the accumulated  
error for robotic localization gets over time [16]. There have 
been many proposed methods such as considering noise 
characteristics, dependently updating distances to reduce this 
error as well as to improve the accuracy of 3D mapping 
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[17-19].  
In addition, for determination of feature-based image, the 

method of the feature-based image registration includes two 
parts: interest point detection and interest point description. 
Moreover, this method is based on the basis of 
Scale-Invariant Feature Transform (SIFT) algorithm for 
noisy reduction [20-22]. The features extracted also have 
scale and rotation-invariant performance with respect to 
illumination change, affine and perspective transformation. 
In addition to three aspects of repeatability, distinctiveness, 
and robustness, computation cost is not expensive. 

The Kalman filter has many uses in applications of control, 
computer vision, filter and navigation [23-24]. In particular, 
the Kalman filter has been applied to track a vision object, in 
which it can be used to predict a process state. In addition, 
the Kalman filter was used in reconstructing medical images 
for contrast and transparency. In the robotic localization, the 
Kalman filter is employed to optimize the robotic position by 
processing the transformation matrices built from data 
obtained the Kinect camera system and the encoders. 

In this paper, an optimization method by processing the 
transformation matrices built from sensor data for accurately 
reconstructing the 3D mapping. A Kinect (RGB-D) camera 
system is installed with the robot’s cage to continuously 
capture the separate 2D image frames and 3D point clouds. 
All corresponding 2D points between the two consecutive 
image frames are estimated using the SIFT algorithm to 
produce the first transformation matrix. While the encoders 
equipped with the robotic wheels for calculating the second 
transformation matrix. The Kalman filter is applied to 
optimize them and create the most accurate transformation 
matrix. The next section of the paper presents in more 
details with the effectiveness of experimental illustrations. 

2. Description of Mobile Platform 

 

Figure 1.  Block diagram of the hardware system of the mobile platform 

In this research, the hardware system architecture of the 
mobile platform (robot) includes a Kinect RGB-D sensor V2 
connected to a personal computer (PC) and other devices for 

processing data and controlling the robot. After navigation 
tasks for control of the differential robot, the velocity signals 
from the PC through Driver controller are sent to the left and 
right wheels. In addition, two encoders are installed with 
motors to send distance signals to the PC through Driver 
controller as shown in Figure 1. Finally, all mappings and 
localization processes are displayed on the LCD monitor 
during movement of the robot. 

Figure 2 shows the robot model with the size of 
(400×350×365) mm. The height from the ground to the 
camera is 440 mm, each wheel’s radius is 48 mm, the 
baseline between two wheels is 430 mm and two wheels are 
installed with two (12×64) pulses encoders. 

 

Figure 2.  Robot model with the Kinect RGB-D sensor V2 and PC 

3. Methods for Localizing and Mapping 
The description of 3D mapping and methods for 

calculation of robotic localization are represented in the 
paper. The 3D mapping procedure shows conversion of   
2D image into 3D image and solutions for image   
matching, synthesis, concatenation to create the optimized 
transformation matrix. 

3.1. SIFT Algorithm for Detector and Descriptor of 
Features 

For calculation of image features, the SIFT algorithm for 
feature detector and feature descriptor is employed [22]. The 
SIFT algorithm allows to detect features of 2D and 3D 
images, including two main steps: the first step is the feature 
detection and the second step is the feature description. In 
practice, the locations of stable features are detected, and 
then each feature is described so that it can be stable in 
various scale and direction appeared in the detecting images. 
Each keypoint when finishing description has the description 
of multiple direction vectors as shown in Figure 3. 

 

Figure 3.  Image gradients and keypoint descriptor 
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In particular, two key points in image are locally matched 
together if the condition ε<ijd  is satisfied and its equation 
is described as follows: 

( ) ( ) ( )22
22

2
11 ininiiiiij xxxxxxd −++−+−= 

  (1) 

in which dij represents the distance between the ith and jth 
keypoints, and ε is the predefined matching condition. 

In this research, the SIFT algorithm for feature detector 
and descriptor is used in describing and detecting the 
landmark. Each landmark is presented as a set of feature 
points, so it is detected when the total number of the detected 
feature points is larger than the predefined condition. The 
condition number in this project is unchanged throughout the 
landmarks, and it is chosen based on the experimental 
procedure. 

3.2. Calculation of Transformation Matrix 

For reduction of cumulative errors, transformation 
matrices built from data of the Kinect camera and encoders 
are considered. 2D images are calculated to convert into 3D 
images to create the matrices. 

3.2.1. Conversion of 2D Image into 3D Image 

A Kinect camera system with a main structure, consisting 
of a color camera, gives a 2D color image of 640x480 
pixels. Each pixel will contain 3 RGB colors. In addition to 
the Kinect camera, the infrared light allows to captures the 
depth from the camera to the image plane as shown in 
Figure 4. Therefore, with many depth distances in the image, 
one can obtain the set of depths. 

 

Figure 4.  Description of the 3D image 

To convert 2D pixel data k(xk, yk) to 3D pixel data K(Xk, 
Yk, Zk), we can use the following formulas: 
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where (xo, yo) is the coordinate of the O origin of a 2D image, 
(δx, δy) is the distortion parameters of the lens obtained 
during adjusting the Kinect camera system. 

3.2.2. SIFT Algorithm for Determination of Image Feature 

After analyzing the features on two 2D images, a set of 
vectors describing the characteristics of the two 2D images 
are obtained. Therefore, the set of the first vectors with the 
features is compared to that of the second vectors for 
determining similar points. If the number of matching points 
satisfies the requirement, it means that two 2D images are 
similar (considered as one object captured at two different 
angles). 

Thus, the process of finding pairs of similar features is 
carried out in three steps: finding the location of the feature 
point on two 2D images; describing the characteristics of 
each location found using the SIFT algorithm; and 
identifying pairs of similarities on the two images captured 
by the camera. After finding the similar point pairs in the two 
2D images, one can determine the coordinates of the similar 
pairs in the two corresponding 3D clouds of the two 2D 
images. 

From the coordinates of the similar points in the two 2D 
images, one can derive the coordinates of the corresponding 
point pairs on the 3D cloud based on (2), (3) and (4). In 
particular, the first 2D image gives a 3D cloud corresponding 
to the 3D coordinate (O0X0Y0Z0) and The second one has the 
corresponding coordinate (O1X1Y1Z1). Thus, after identifying 
the similar points with the 3D coordinates between the two 
3D clouds, it can be paired these similar points. 

3.2.3. Synthesis of Two 3D Point Clouds 

Assume that there are two sets of 3D points which are P0 
with the coordinate (O0X0Y0Z0) and P1 with the coordinate 
(O1X1Y1Z1) acquired from the RGB-D camera. Moreover, 
the rotation and translation matrix E is described as follows: 



















=

1000
34333231

24232221

14131211

eeee
eeee
eeee

E    (5) 

in which the matrix of the point cloud P1 is calculated as 
follows: 

EPP ×= 10     (6) 
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where Mi(xMi, yMi, zMi) is the ith feature point of the cloud P0 
and Nj(xNj, yNj, zNj) denotes the jth feature point of the cloud P1. 
Assume that the points Mi and Nj with (i = j) are the similar 
pairs. Moreover, 12 variances of the matrix E need to be 
determined. Therefore, in order to find these 12 variances, 
one needs to determine at least 4 pairs of similar points. It 
means that using Eq. (7) to solve 12 equations in the matrix E, 
in which e14, e24, e34 are coordinates of the robot at this 
moment. Figure 5 describes two clouds with similar points 
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considered at two different coordinates. 

 

Figure 5.  P1 and P0 are the transformation matrices 

When performing the coordinate transformation 
(O1X1Y1Z1) into the coordinate (O0X0Y0Z0), the similar points 
x of the two clouds will be close to each other (almost 
identical). It means that the cloud P1 approaches the cloud P0 
and it forms the larger cloud as shown in Figure 6. 

 

Figure 6.  Two clouds have the similar point pairs x with red color 

3.2.4. 3D Point Cloud Concatenation 

All 3D point clouds are concatenated together based on 
the pair of the transformation matrices. Thus, for (n+1) 
clouds, the transformation matrix is calculated by the 
following formula: 

0)1()1( −− ×= nnn EEE    (8) 

where E, En(n-1) and E(n-1)0 are the transformation matrices, 
which move the coordinates of the nth cloud to the 
coordination system (O0X0Y0Z0). Therefore, the coordinates 
of the nth cloud after transformed to the coordination system 
(O0X0Y0Z0) are represented as follows: 

( ) ( ) EPP ×= nnnnnn ZYXOZYXO 0000     (9) 

In this case, the calculation of the transformation matrix 
using the recalculation method and it causes the cumulative 
position error of the robot. 

3.2.5. Determination of the Transformation Matrix from 
Encoder Data 

The dynamic equation for the robot describes the 
relationship between the coordinates O(x,y) in the Descartes 
coordinate of the robot and the velocity of two robotic 
wheels. Figure 7 gives the model of a robot, in which the 
robot model will move and navigate by two wheels equipped 
with two encoders. 

 

Figure 7.  Model of the mobile platform 

The robot will change direction based on changing the 
speed of the left wheel vl(t) and the right one vr(t). The 
Instantaneous Center of Curvature (ICC) is the instantaneous 
point that the robot will move in the trajectory of the curve 
around this point with the velocity ω(t). R is the distance 
from the ICC point to the midpoint of the two wheels. L is 
the distance between two wheels. O(x,y) is the coordinate of 
the robot. θ is the angle of the robot chassis with the 
horizontal axis. The ICC has coordinates (x - Rsinθ, y + 
Rcosθ). Therefore, when the left wheel of the robot moves 
around the ICC point with the radius of an orbit (R - L/2), its 
right one will have the radius (R + L/2). Thus, the left and 
right wheels of the robot have the same angular velocity as 
the ICC and it is represented as follows:  
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From (10) and (11), one has: 
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Assume that v(t) is the long velocity of the robot, one can 
calculate as follows: 
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All these above components are considered at 
instantaneous time t, in which the coordinates (x(t), y(t)) and 
the orientation angle θ(t) of the robot at time t are related to 
the angle velocity ω(t) and the long velocity v(t), and it is 
calculated by the following equation: 
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From (12), (14) and (15), the dynamic equation of robot is 
determined as follows: 
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In the case of a 3D coordinate system, the camera is 
always installed at the constant height during moving, the 
equation is calculated at the coordinates x and z as follows: 
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Assume that two robotic wheels are installed with two 
encoders having 768 pulses, this means that when the wheel 
rotates a loop, the encoder gives 768 pulses. In this model, 
the wheel has the radius of R=47.5 mm, its circumference is 
C=2Rπ=298.3 mm, meaning that when the wheel moves 
about 298.3 mm, the wheel exactly rotates a loop and the 
formula can be written as follows: 
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in which dr(n+1) and dl(n+1) are the distances of the right 
and left wheels, respectively moved from the nth point to the 
(n+1)th point. In Eq. (18), it shows that the coordinates of the 
robot at time (n+1) are determined based on the measured 
distance from movement of the left and right wheels from n 
to (n+1) and the coordinates of the robot at the moment n. 

Therefore, reading the encoder pulse and the dynamic 
equation of the two robot wheels, one can know the position 
of the robot moving, as well as the coordinate of the point O'. 
Moreover, the rotation angle θ of the robot as well as the 
coordinate system (O'X'Y'Z') around the axis OY are 
determined. Thus, the matrix M is determined as follows: 
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3.3. Optimization of Transformation Matrix Using 
Kalman Filter 

In this project, the Kalman filter is applied to optimize the 
robot localization for optimizing the transformation matrix 
of two 3D clouds. This robot has two sets of sensors, in 
which the first sensor is a Kinect camera system that collects 
RGB data images with depth and the second one has two 
encoders installed with wheels for collecting data of the 
rotation wheels. 

Assume that the Kinect data provide the estimated 
position 𝑞1 of the robot at time t, data of the encoders show 
the estimated position 𝑞2 of the robot at time (t + 1). These 
data exist Gaussian noises, called the combinational 
variances σ12 and σ22. A least squares technique is applied to 
estimate the robot position, where q  is the best estimated 
position of the robot and 𝑤𝑖 is the weight of the ith 
measurement, the estimated equation is described as follows:  
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To find the smallest error, one considers the derivative of 
S so that q  equals to 0 and its equation is calculated as 
follows: 
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2
1

i
iw

σ
=      (24) 

Substituting (24) into (23), with n = 2, one can rewrite as 
follows: 
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It is obvious that σ2 is always smaller than σ1
2 and σ2

2, this 
means that the best estimated position q  is determined from 
two positions of two sets of the sensors. 

From Eq. (25), the best localization equation is 
represented as follows: 
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The method of determining the transformation matrix 
from the similar points gives the result of the high accuracy. 
This method can apply for calculating the precision matrix 
during the robot movement with short distances. In addition, 
the computation of the transformation matrix from the 
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similar points will minimize the cumulative error. 
In building the transformation matrices, sensors install 

with the robot play an important role. In particular, two 
encoders of the two robot wheels provide pulses about 
speeds and distances during robot movement. The 
positioning block in the robot will convert the received data 
from the encoders into the robot coordinate with the O origin 
and the rotation angle of the robot around the OY axis. 
Therefore, data will be calculated to produce the 
transformation matrix M with fast time. While data of the 
camera Kinect will be calculated to produce the 
transformation matrix E. The combination of two 
transformation matrices will create the optimized 
transformation matrix T, which can improve processing 
speed. 
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From Eq. (28) and Eq. (29), in which ( )qqq zyxq ˆˆˆ ,,ˆ  is the 
most accurate coordinate of the robot and 𝑞1(𝑥𝑞1, 𝑦𝑞1, 𝑧𝑞1) is 
the estimation parameter obtained from the transformation 
matrix E, 𝑞2(𝑥𝑞2, 𝑦𝑞2, 𝑧𝑞2) is the estimation obtained from the 
encoder, σ1

2 and σ2
2 are the variances representing the 

Gaussian signals for two positions 𝑞1 and 𝑞2. Thus, equations 
are determined as follows: 
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3.4. Point Cloud Transformation 

The transformation method in 3D spaces is mainly used in 
this project due to its suitableness and effectiveness for the 
transformation of the 3D point cloud. In practice, a set of 3D 
point cloud is transformed to other positions in the same 
coordinate and its equation of a single 3D point is 
represented as follows: 

ii PTP ×=+1      (33) 

in which iP  is the input point cloud, 1+iP  is the ouput 
point cloud and T is the transformation matrix obtained from 
Eq. (29). 

4. Results and Discussion 
4.1. Image and Point Cloud Acquisition 

The Kinect camera sensor (RGB-D camera) used in the 

paper produces image data comprising of RGB images with 
depth. Moreover, the depth image data is often 
pre-processed by the Kinect hardware as shown in Figure 8. 
In two consecutive images captured from the Kinect, point 
clouds contain both new and old information; consequently, 
the combination of them is expected to cover more 
additional data. The next step of concatenating process is to 
estimate the pixel locations of key points from the two 
images. Figure 9 shows two 3D clouds of one image frame 
at the room angle processed based on the RGB image data 
and depth information.  

 

  
(a) (b) 

Figure 8.  Two consecutive RGB images captured from the Kinect sensor 

 

Figure 9.  3D cloud images combined by RGB and depth images of the 
room space 

4.2. Key Point Estimation 

The SIFT algorithm was applied to locate the key points 
in the first and second images and their characteristics are 
independent from scales and rotations. Figure 10 shows the 
key points marked in the white points. The key points are 
mainly focused on the areas where the difference is in high 
gray level. Next, each detected key point is described by a 
128-dimensions vector to be able to recognize easily by 
using Euclid’s distance Eq. (1). The two key points are 
considered to be matched if the distance between their 
vectors is less than a pre-defined constant. 

 

  
(a) (b) 

Figure 10.  Feature points of the first and second RGB images 
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4.3. 3D Key Point Matching 

After estimated and described by using the SIFT 
algorithm, the key points on the second image are matched 
to their corresponding points and Figure 11 shows all 
corresponding key points on the first and second images. In 
this figure, each matching is presented by a green line 
connected between two key points.  

 

Figure 11.  Pairs of similar points of two consecutive RGB images 
connected in green color 

Figure 12 shows matching red lines which are projected 
to the 3D space.  

 

Figure 12.  Matching keypoints between the first and second 3D point 
clouds 

4.4. Pair Concatenation 

In Eq. (5), the transformation matrix has the size of (4×4), 
in which 12 parameters are unknown. Therefore, it has at 
least 12 pairs of corresponding points in the 3D cloud in 
order to infer the correct values. However, the number of 
corresponding points is often more than 12 due to the errors 
can happen when matching between two point clouds. After 
the transformation matrix is determined, the matrix is 
applied to calculate for the second point cloud in order to 
have the same coordinate system as the first point cloud. 
The experimental result of the concatenating point cloud is 
described in the Figure 13. 

 

Figure 13.  The concatenated point cloud 

4.5. Optimization of 3D Mapping Using Kalman Filter 

4.5.1. 3D Clouds with Less Similar Points in the 
Transformation Matrix 

Figure 14 is a 3D map of the robotic path in the room 
environment without the Kalman filter. It is obvious that the 
rotating robot parts of the map occur during the grafting 
process, in which the right wall was broken and the left part 
of the room was misplaced. The cause of this error is that the 
number of similar points of two consecutive clouds at the 
location of the error is not sufficient to compute the 
transformation matrix. Therefore, the value of the matrix 
element is defined as zero corresponding to pairs of two 
clouds not being close together. The error value of this 
transformation matrix will affect all other transformation 
matrices in calculating.  

 

a. 2D image of the room angle 

 
b. 3D mapping after combining point clouds 

Figure 14.  3D mapping with the robot path when moving around the 
room without Kalman filter 

Figure 15 describes the 3D point cloud concatenation at 
the room space. We can see the quality of the initial grafting 
of the clouds very well, describing the relatively straight 
space of the room. But when near the corner of the room, 
there is a difference. The wall of the room was not straight 
and was broken. With the algorithms presented in the 
previous section, we can see that clustering of clouds in 
small numbers gives us very good results, but when the 
number of clouds increases, errors occur. The cause of this 
deviation lies in calculating the transformation matrix to 
multiply the clouds together. 

Figure 16 is the result of clustering the clouds after 
optimizing the data using the Kalman filter. We can see that 
the location of the error due to the cumulative error has been 
corrected. The wall of the room was straight and the map of 
the room was more accurate. The positional signals 
measured from the encoder can be calculated via the kinetic 
equations as described in the next section. 
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Figure 15.  3D map of a part of the room is faulty due to cumulative error 

 

Figure 16.  3D map of a part of the room after eliminating the cumulative 
error with Kalman filter 

4.5.2. Improvement of the Cumulative Error for Calculating 
the Transformation Matrix  

In addition, the Kalman filter improves the cumulative 
error in the transformation matrix calculation. Figure 17 
shows the X coordinate of the robot moving a straight 
distance of 30cm toward the front of the Kinect camera. With 
21 RGB images and depth images, we can identify 21 
different coordinates of the robot to different positions. The 
brown line is the standard coordinates of the robot when 
traveling in a straight line defined in advance.  

When the robot moves straight in front of the Kinect 
camera in the direction of the Z axis, its X coordinate is zero 
at all positions. The green line is the value of the X 
coordinate of the robot measured from the encoders and it is 
calculated from the coordinates of the similar points. It 
means that the blue line tends to be far from the brown line 
due to the cumulative error. While the purple line determined 
using the Kalman filter is optimized more than the blue and 
green lines, so it is closer to the brown line. The 
demonstration result of the robot position error shows that it 
has been minimized using the Kalman filter and the encoder 
signals. 

In similarity, the graphs with the Y coordinates of the 
robots at other positions were calculated, in which the blue 
line is determined the coordinate from the similar points, the 
green line is calculated based on the encoder signals and the 
purple one is determined using the Kalman filter as shown in 

Figure 18. Because the robot moves on the flat surface of the 
room, its height during moving is constant and the Y 
coordinate value of the robot is zero at the measuring 
locations. While the purple line is closest to the brown line 
and it is the best position of the robot. 

In Figure 19, the Z-coordinate statistics of the robot are 
transmitted straight through 21 positions in the direction of 
the Z axis, two consecutive position are set to be 30cm, so 
the Z coordinate value of the robot is statistically continuous 
as the brown line. In addition, the blue line is far from the 
brown line compared to the purple line. From three graphs of 
Figs. 17, 18 and 19, the Kalman filter applied in this research 
minimizes the cumulative error when calculating the 
transformation matrices between 3D clouds. 

 

Figure 17.  Statistic of the coordinate values X of the robot 

 

Figure 18.  Statistic of the coordinate values Y of the robot 

 

Figure 19.  Statistic of the coordinate values Z of the robot 
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4.5.3. Experimental Results of Improved 3D Clouds at 
Different Room Angles during Robotic Movements 

Figure 20 describes 2D images captured on the robotic 
pathway in the room environment. The robot moves along 
the paths to the left and to the right of the room. Therefore, 
these 2D images of the environment are converted into 3D 
clouds and then they are grafted to create the 3D spatial 
images as shown Figure 21, Figure 22 and Figure 23, which 
show three 3D cloud maps with the paths at different 
angles. 

3D cloud mappings with the high accuracy at different 
room angles are shown using the optimized transformation 
matrix when the robot moves around.  

 

  
(a)  (b)  

 
(c)  

Figure 20.  2D maps during robotic movements for 3D loud mapping: 
(a)-Robot moving straight at the room left; (b)- Robot moving straight at 
the room right; (c)-A room angle 

 

Figure 21.  3D map of the robot path with the first angle using Kalman 
filter  

 

Figure 22.  3D map of the robot path with the second angle using Kalman 
filter 

 

Figure 23.  3D map of the robot path with the third angle using Kalman 
filter 

In recent years, 3D maps in indoor environment were built 
from the RGB-D data of the Kinect sensor for mobile 
vehicles. In order to build the 3D maps with the proposed 
RGB-D SLAM algorithm, data (Depth image and RGB 
image) from the Kinect camera are processed to produce 
RE-RANSAC-ICP and 8point-RANSAC [25]. In addition, 
some methods for feature extraction were applied and then 
matching among features was performed [26]. In particular, 
a new cloud-coupled optimization algorithm for presenting a 
full 3D mapping was worked out by combining image-based 
and shape-based alignment. Moreover, image information 
and its depth was combined to detect similarities of frames 
and then it was optimized to achieve consistent maps. To 
align the current frame and the previous frame, the alignment 
step was applied using the Iterative Closest Points (ICP) 
RGB-D algorithm based on the combination between RGB 
and depth information. It means that a detection of the 
similar points was performed using discrete points for 
matching the current frame and the previous frame. If a 
similar pair is detected, it is added to the model graph and a 
combining process is performed. After this alignment step, a 
new frame is added to the 3D model [15]. Furthermore, due 
to the accuracy related to the initial position of the features in 
the ICP algorithm, the RANSAC algorithm was utilized for 
optimizing the initial position of the features and then the 
exception points can be eliminated [18]. 



18 Hai T. Nguyen et al.:  Optimization of Transformation Matrix for 3D Cloud Mapping Using Sensor Fusion  
 

 

Methods of the Iterative Closest Points (ICP) and Random 
Sample Consensus (RANSAC) have been applied to 
optimize the initial position of features and then to remove 
the peripheral points based on the combination between 
RGB and depth information in recent years. It is obvious that 
these methods have the advantages of the simplicity, fast 
calculation and increased accuracy during a full 3D mapping. 
In addition, the Loop Closure technique to match similarities 
between two consecutive frames was employed for 
optimization of building 3D map and for merging point 
clouds between frames [15, 18, 25]. However, it has some 
problems related to accuracy of making 3D mapping. In 
practice, the combination of typical visual features is more 
accurate than that of thick-spot cloud, but this makes 
misleading in areas of image due to lacking visual 
information, such as very dark rooms. Moreover, the RGB-D 
maps only use two successive frames for estimating camera 
movements and the Loop Closure algorithm is applied for 
matching image features between frames, but it is not enough 
to create full 3D maps. 

In order to improve exactly 3D map using the Kinect 
camera, in this paper, the proposed method is to optimize the 
transformation matrix which combined between the RGB 
data-based transformation matrix and the encoder data-based 
one using Kalman filter. In addition, the SIFT was employed 
for feature detector and feature descriptor. With this method, 
this transformation matrix will minimize the cumulative 
error in building 3D point cloud based on multiple 
consecutive cloud image frames. From this 3D point cloud, 
the coordinates of the robot are most accurately determined 
for the robotic localization. In addition to the proposed 
method for the optimized transformation matrix, the RGB-D 
camera sensor used in this research is much cheaper than 
other 3D stereo camera which was used to build 3D point 
cloud mapping for the robotic localization. of the same type. 
Therefore, the algorithm of combining the RGB-D camera 
and encoder sensors to determine the movement space that 
can be widely used in the field of identification and 
localization of mobile platform. 

5. Conclusions 
In the paper, the model of mobile platform (robot) in the 

indoor environment was represented and 3D point clouds 
were completely reconstructed based on RGB-D image 
frames obtained from the Kinect camera system. A SIFT 
algorithm was employed to detect and to describe image 
features. In addition, encoder data were used to combine to 
RGB image data and the Kalman filter was utilized to 
produce the optimized transformation matrix for minimize 
the cumulative error for robot localization. Experimental 
results prove that the effectiveness of combining between the 
Kinect camera system and the encoder sensors on the robot. 
Moreover, the Kinect can be cheaper cost computation 
compared to other stereo cameras for indoor applications. 
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