
American Journal of Signal Processing 2018, 8(1): 20-26 

DOI: 10.5923/j.ajsp.20180801.03 

 

A Fast Fractional-Pixel Search Algorithm Based on 

Linear-Prediction Motion Estimation 

Lung-Jen Wang
*
, Wen-Ming Tai 

Dept. of Computer Science and Information Engineering, National Pingtung University, Taiwan, R.O.C. 

 

Abstract  The fractional-pixel motion estimation is used accurately for motion vector prediction in the H.264/AVC video 

coding. Based on the linear prediction and a small diamond search algorithm, a fast fractional-pixel search algorithm is 

proposed in this paper. The proposed method substantially solves the complexity of the calculation of the fractional-pixel 

motion estimation needed in the H.264/AVC video coding if the image resolution is increased. Finally, experimental results 

show that the proposed algorithm is superior in performance and reduces around 60% computations for the fractional-pixel 

calculations. 

Keywords  Fractional-pixel, Motion estimation, Linear prediction, H.264/AVC 

 

1. Introduction 

The H.264/AVC algorithm is one of the international 

standard of video coding technique [1, 2]. To improve the 

accuracy of motion estimation in the H.264/AVC video 

coding, a fractional-pixel motion estimation algorithm is 

almost mandatory [3, 4]. In addition, it is used the 

interpolation process to estimate the fractional pixel 

(1/2-pel and 1/4-pel) positions between the existing 

positions for the motion vector prediction in the reference 

image which is magnified in image resolution. In the typical 

hierarchical fractional-pixel search (HFPS) algorithm [2] 

shown in Fig.1, at least 8 positions are required for the 

1/2-pel, and 16 positions are required for the 1/4-pel, 

respectively. The disadvantage of the 1/2-pel and 1/4-pel 

fractional pixel search algorithm is that the computations 

required are becoming very large. Furthermore, if the image 

resolution is increased, there are needed for additional 

motion estimation computations that involve considerably 

more fractional pixels. 

Many fast fractional-pixel motion estimation algorithms 

to reduce the computational complexity of the motion 

estimation search process have been proposed [3, 4, 6-9] 

[12-16] such as Center Biased Fractional Pixel Search 

(CBFPS) [3], Fast Fractional Pixel Search (FFPS) [6], and 

Linear Prediction Search (LPS) [7]. The authors in [5] also 

developed a fast fractional-pixel search (FFS) algorithm to 

solve the calculation of the fractional-pixel motion 

estimation  needed in the  H.264/ AVC algorithm. In this  

 

* Corresponding author: 

ljwang@mail.nptu.edu.tw (Lung-Jen Wang) 

Published online at http://journal.sapub.org/ajsp 

Copyright ©  2018 Scientific & Academic Publishing. All Rights Reserved 

paper, the FFS algorithm based on linear-prediction motion 

estimation, called LFFS method, is proposed. That is, the 

more detailed description and derivation of LFFS method 

are presented in this paper. In addition, this LFFS method 
uses the linear prediction and small diamond search 

algorithm, as shown in Fig.2, [3, 6, 9]. It substantially 

reduces the fractional-pixel computations that are based on 

the sum of absolute difference error surface. Furthermore, 

computer simulations show that the proposed method speeds 

up the H.264/AVC standard and still achieves a very good 

quality of reconstructed image for motion vector prediction. 

 

Figure 1.  The hierarchical fractional-pixel search (HFPS) algorithm 

 

Figure 2.  The small diamond search algorithm 



 American Journal of Signal Processing 2018, 8(1): 20-26 21 

 

 

↑2
Wiener 

filter
↑2

Bilinear 

filter

Image 

I

Image 

IBWI

Step 1 Step 2
 

Figure 3.  Two-step interpolation process used in H.264/AVC 

 

A1 A2 A3 A4 A5 A6

B1 B2 B4 B5 B6

C1 C2 C4 C5 C6

D1 D2 D4 D5 D6

E1 E2 E4 E5 E6

F1 F2 F4 F5 F6

aa

B3

C3

D3

E3

F3

bb

cc

dd

ee ff gg hh

ba c

d e f g

h i j k

m n o p

l

q

 

Figure 4.  Example of interpolation relationship for filter size 6×6 

 

2. Fractional-Pixel Motion Estimation 

The fractional-pixel motion estimation of the H.264/AVC 

video coding can be used to improve the inter-frame 

prediction for video quality [8]. It requires very large 

computations, such as fractional-pixel (1/2-pel and 1/4-pel) 

search algorithm and interpolation process. Furthermore, 

the displacement vector with fractional-pixel resolution can 

be applied for the motion vector prediction in the 

H.264/AVC algorithm [10]. To estimate the fractional-pixel 

displacement, a two-step interpolation process is used as 

shown in Fig. 3. In the H.264/AVC algorithm, the Wiener 

filter with six coefficients: [1, -5, 20, 20, -5, 1]/32 is used to 

interpolate the 1/2-pel positions in first step and an image IW 

is generated after the first interpolation step. In addition, the 

bilinear interpolation filter is used to interpolate the 1/4-pel 

positions and an image IB is generated after the second 

interpolation step. Fig. 4 shows the interpolation 

relationship between the integer-pel positions (black), the 

1/2-pel positions (gray) and the 1/4-pel positions (white) 

[5]. 

In the H.264/AVC algorithm, each image is divided into 

macroblocks of size N×N. By default, N=16 for luminance 

images. For chrominance images, N=8 if 4:2:0 chroma 

subsampling is adopted. The current image frame is referred 

to as target frame. A match is sought between the 

macroblock in the target frame and the most similar 

macroblock in previous and/or future frame(s) (referred to 

as reference frame(s)). The displacement of the reference 

macroblock to the target macroblock is called a motion 

vector MV. The difference between two macroblocks can 

then be measured by their sum of absolute difference 

(SAD): 



22 Lung-Jen Wang et al.:  A Fast Fractional-Pixel Search Algorithm Based on Linear-Prediction Motion Estimation  

 

 

          

                                
   

   
    (1) 

where N is size of the macroblock, k and l are indices for 

pixels in the macroblock, i and j are horizontal and vertical 

displacements, C(x+k,y+l) is pixels in macroblock in target 

frame, R(x+u+k,y+v+l) is pixels in macroblock in 

reference frame and the motion vector MV=(u,v) such that 

SAD(i, j) is minimum. In addition, one observation is that if 

the minimum SAD obtained at fractional-pixel accuracy is 

larger than that at integer-pixel accuracy, the motion vector 

on the integer-pixel is selected as the final result and the 

fractional-pixel search for this block is regarded as 

ineffective. Otherwise, the fractional-pixel search is 

regarded as effective and the motion vector on the 

fractional-pixel is selected as the final result [8, 9]. 

Table 1 shows the effective fractional-pixel search ratio 

for some test video sequences. For the sequences with 

relatively lower motions, such as Paris with 38% and Akiyo 

with 48%, the majority of the fractional-pixel search is 

ineffective. The ineffective fractional-pixel search ratios are 

62% and 52% for Paris and Akiyo, respectively. That is, the 

integer-pixel search is enough for the sequences with lower 

motions. Obviously, in Table 1, the most of fractional-pixel 

searches is ineffective. Therefore, if the integer-pixel 

motion vector is selected as the final motion vector, the 

fractional-pixel search computations can be skipped. In this 

paper, the LFFS method is proposed to determine whether 

the fractional-pixel search should be performed or not    

[8, 9]. 

Table 1.  Effective Fractional-pixel Searsh Ratio 

Test video sequence Effective fractional-pixel search ratio 

Akiyo 48% 

Bus 70% 

Coastguard 58% 

Crew 70% 

Foreman 70% 

Paris 38% 

3. The Proposed LFFS Algorithm 

3.1. Linear Prediction 

In this paper, a linear prediction based the fractional 

-pixel motion estimation and the center-biased 

fractional-pixel search (CBFPS) [3] is developed, first 

estimates horizontal components and next vertical 

components for the fractional-pixel motion vector and its 

sum of absolute difference error surface. Figs. 5 and 6 show 

the linear prediction of fractional-pixel error surface in the 

horizontal and vertical directions, respectively.  

In Fig. 5 for the x-axis (horizontal direction), let   ,   , 

and    be integer-pixel points, and      ,      , and 

      are their corresponding SADs.    is selected point 

between    and    points such that the slopes of two 

lines            and            are equal as follows. 

     
      

               (2) 

Let s be the distance between    in a predicted 

minimum point and    in a fractional-pixel point, and     

be a point in           ,                    ,       =       , and 

                   . The distance s can be obtained 

by 

           

 
 

           

      
           (3) 

and 

  
 

 
 
           

           
               (4) 

Following [7], if             , let    , i.e., the 

integer-pixel motion vector is selected as the final motion 

vector.  

Similarly, let t be selected distance between a predicted 

minimum point and a fractional-pixel point in the y-axis 

(vertical direction) for the fractional-pixel motion vector. 

As shown in Fig. 6, the distance t can be given by 

  
 

 
 
           

           
              (5) 

 

Figure 5.  A linear prediction fractional-pixel error surface in x-axis 

 

Figure 6.  A linear prediction fractional-pixel error surface in y-axis 

3.2. LFFS with a Small Diamond Search 

In this paper, the LFFS algorithm combines (4) and (5) as 

the fractional-pixel search direction as follows. 



 American Journal of Signal Processing 2018, 8(1): 20-26 23 

 

 

      
 

 
  

           

           
   

           

           
      (6) 

Using (6), we can calculate the s and t values at the best 

integer-pixel position and determinate the fractional-pixel 

search direction according to a small diamond search with 

their corresponding s and t values.  

Furthermore, some directional selections based on the 

small diamond search algorithm are developed as shown in 

Fig. 7. The detailed flow chart of the proposed LFFS 

algorithm is mentioned in Fig. 8. In addition, Table 2 shows 

the directional selection of the fractional-pixel search.  

 

  

(1) Right Direction (2) Left Direction 

  

(3) Up Direction (4) Down Direction 

integer-pixel

1/4-pixel

 

(5) Origin 

Figure 7.  Directional selections based small diamond search 

Table 2.  Directional Selections for Fractional-Pixel Search 

No. Condition Selected Direction 

1 s > 0 and t > 0 Right 

2 s < 0 and t < 0 Left 

3 s > 0 and t < 0 Up 

4 s < 0 and t > 0 Down 

5 s = 0 and t = 0 Origin 

mbSize = 16, p = 16

IntCost Ñ IntMV(j, i, imageP, imageI4, mbSize, p)

u, v Ñ minSAD(intCost)

LFFS_MotionEstimation(imageP, imageI4)

  imageP: target image;
  imageI4: reference image which is 
                  magnified by a factor of 4;

for j = 0 to r – mbSize + 1 by mbSize

  Search motion vector for each MB

for i = 0 to c - mbSize + 1 by mbSize

  Search integer-pixel motion vector

s Ñ linPred(IntCost(u, v - 1), IntCost(u, v), IntCost(u, v + 1))

t Ñ linPred(IntCost(u – 1, v), IntCost(u, v), IntCost(u + 1, v))

  Linear prediction s and t 

A

B

C

 

(a) The front part of LFFS_MotionEstimaion 

  Select direction and search fracional-
  pixel motion vector with SDS (small 
  diamond search)

  displacement of one pixel to 
  the right position

A

s > 0 and t > 0
vectY Ñ (j + u)*4

vectX Ñ (i + v)*4 + 1

s > 0 and t < 0

  displacement of one pixel to 
  the up position

vectY Ñ (j + u)*4 – 1

vectX Ñ (i + v)*4

s < 0 and t < 0

  displacement of one pixel to 
  the left position

vectY Ñ (j + u)*4

vectX Ñ (i + v)*4 – 1

s < 0 and t > 0

  displacement of one pixel to 
  the down position

vectY Ñ (j + u)*4 + 1

vectX Ñ (i + v)*4

vectY Ñ (j + u)*4

vectX Ñ (i + v)*4

MVY, MVX Ñ SDS(j, i, vectY, vectX, imageP, imageI4, mbSize)

iB

jC

return MVY and MVX

Y

Y

Y

Y

N

N

N

N

 

(b) The following part of LFFS_MotionEstimaion 

Figure 8.  The flow chart of the proposed LFFS algorithm 



24 Lung-Jen Wang et al.:  A Fast Fractional-Pixel Search Algorithm Based on Linear-Prediction Motion Estimation  

 

 

4. Experimental Results 

In this paper, the proposed LFFS method is compared 

with the Hierarchical Fractional Pixel Search (HFPS) [2], 

the Center Biased Fractional Pixel Search (CBFPS) [3], the 

Fast Fractional Pixel Search (FFPS) [6], and the Linear 

Prediction Search (LPS) [7]. Performance comparisons are 

carried out on some standard CIF (Akiyo, Bus, Coastguard, 

Crew, Foreman, Paris) and 4CIF (City, Harbour, Ice, Soccer) 

video sequences shown in Figs. 9 and 10, and based on the 

H.264/AVC JM 18.0 [11].  

Experimental setups are IPPPP… frame structure, 1 

reference frame, four different QP values (28, 32, 36, and 

40), ±16 search range, and 100 frames. All the reported 

results (bit rates (kbps), number of search points (#SP), and 

PSNR (dB) performance) are computed from the 

reconstructed Y components. 
 

   

Akiyo Bus Coastguard 

   

Crew Foreman Paris 

Figure 9.  Some standard video test sequences (CIF) 

  

City Harbour 

  

Ice Soccer 

Figure 10.  Some standard video test sequences (4CIF) 

 

Table 3 shows the performance comparisons for Akiyo 

(CIF) video sequences. In this table:  

(1) At QP=28, for the PSNR which is compared to the 

HFPS method, the proposed LFFS method is -0.01dB (least 

loss); for the average number of search points (#SP), the LPS 

method is 5.35 which is less than the other methods; and for 

bit-rates, the HFPS method is 443.47kbps and less than the 

other methods.  

(2) At QP=32, for the PSNR, the LPS method is -0.01dB 

(least loss); for the average number of search points (#SP) 

and bit-rates, the LPS method is 5.49 and 313.26kbps, 

respectively, which is also less than the other methods.  

(3) At QP=36, for the PSNR, the proposed LFFS method 

is 0dB (no loss); for the average number of search points 

(#SP), the LPS method is 5.64 which is less than the other 

methods; and for bit-rates, the CBFPS method is 245.37kbps 

and less than the other methods.  

(4) At QP=40, for the PSNR, the proposed LFFS method 

is 0dB (no loss) and the CBFPS and LPS methods are 

+0.03dB which are better than HFPS method; for the average 

number of search points (#SP), the LPS method is 5.77 

which is less than the other methods; and for bit-rates, the 

HFPS method is 216.38kbps and less than the other methods. 

Table 3.  Performance Comparisons for Akiyo (CIF) 

 Method HFPS CBFPS FFPS LPS LFFS 

QP28 

△PSNR 41.13 -0.04 -0.20 -0.02 -0.01 

#SP 16 6.16 9.34 5.35 6.37 

Bit-rates 443.47 446.33 478.86 445.55 446.29 

QP32 

△PSNR 38.68 -0.02 -0.28 -0.01 -0.02 

#SP 16 6.25 9.30 5.49 6.38 

Bit-rates 313.27 314.31 337.47 313.26 314.28 

QP36 

△PSNR 36.57 -0.02 -0.26 -0.04 0 

#SP 16 6.32 9.30 5.64 6.48 

Bit-rates 246.04 245.37 255.30 245.66 246.10 

QP40 

△PSNR 34.37 +0.03 -0.16 +0.03 0 

#SP 16 6.34 9.28 5.77 6.46 

Bit-rates 216.38 216.41 220.24 216.54 216.71 

Table 4.  Performance Comparisons for Ice (4CIF) 

 Method HFPS CBFPS FFPS LPS LFFS 

QP28 

△PSNR 40.91 0 -0.19 -0.02 0 

#SP 16 8.83 9.20 9.99 7.65 

Bit-rates 2755.36 2746.30 2966.51 2750.60 2737.14 

QP32 

△PSNR 38.92 +0.02 -0.25 0 +0.01 

#SP 16 8.79 9.22 10.10 7.70 

Bit-rates 1858.18 1834.02 1987.46 1839.66 1834.12 

QP36 

△PSNR 37.06 +0.01 -0.33 0 +0.02 

#SP 16 8.66 9.21 10.01 7.65 

Bit-rates 1348.50 1331.79 1421.08 1334.15 1329.52 

QP40 

△PSNR 35.14 0 -0.33 0 +0.01 

#SP 16 8.52 9.21 9.90 7.56 

Bit-rates 1079.37 1068.40 1114.69 1070.14 1068.10 



 American Journal of Signal Processing 2018, 8(1): 20-26 25 

 

 

In addition, Table 4 shows the performance comparisons 

for Ice (4CIF) video sequences. In this table:  

(1)  At QP=28, for the PSNR which is compared to the 

HFPS method, the proposed LFFS method and 

CBFPS method are 0dB (no loss); for the average 

number of search points (#SP) and bit-rates, the 

proposed LFFS method is 7.65 and 2737.14kbps, 

respectively, which is less than the other methods.  

(2)  At QP=32, for the PSNR, the CBFPS method is 

+0.02dB and the proposed LFFS method is +0.01dB 

which are better than HFPS method; for the average 

number of search points (#SP), the proposed LFFS 

method is 7.70 which is less than the other methods; 

and for bit-rates, the CBFPS method is 1834.02kbps 

and less than the other methods.  

(3)  At QP=36, for the PSNR, the proposed LFFS 

method is +0.02dB which is better than HFPS and 

other methods; for the average number of search 

points (#SP) and bit-rates, the proposed LFFS method 

is 7.65 and 1329.52kbps, respectively, which is also 

less than the other methods.  

(4)  At QP=40, for the PSNR, the proposed LFFS 

method is +0.01dB which is better than HFPS and 

other methods; for the average number of search 

points (#SP) and bit-rates, the proposed LFFS method 

is 7.56 and 1068.10kbps, respectively, which is also 

less than the other methods.  

Finally, based on the above computer simulations, we can 

summarize the experimental results as follows:  

(1)  For the above standard CIF (Akiyo, Bus, Coastguard, 

Crew, Foreman, Paris) video sequences:  

(a)  The proposed LFFS method is compared with the 

HFPS method, the PSNR is -0.08dB (most loss), 

and however, for the average number of search points 

(#SP), the proposed LFFS method is less 60% than 

the HFPS method.  

(b)  The proposed LFFS method is compared with the 

CBFPS method, the PSNR is similar, and for the 

average number of search points (#SP), the proposed 

LFFS method is less 29% than the CBFPS method.  

(c)  The proposed LFFS method is compared with the 

FFPS method, the PSNR is more than 0.3dB, and 

for the average number of search points (#SP), the 

proposed LFFS method is less 31% than the FFPS 

method.  

(d)  The proposed LFFS method is compared with the 

LPS method, the PSNR is more than 0.01dB than 

the LPS method, and for the average number of 

search points (#SP), the proposed LFFS method is 

less 30% than the LPS method.  

(2)  For the above standard 4CIF (City, Harbour, Ice, 

Soccer) video sequences:  

(a)  The proposed LFFS method is compared with the 

HFPS, CBFPS, and LPS methods, the PSNR is 

similar, and for the average number of search points 

(#SP), the proposed LFFS method is less 52% than 

these methods.  

(b)  The proposed LFFS method is compared with the 

FFPS method, the PSNR is more than 0.37dB than 

the FFPS method, and for the average number of 

search points (#SP), the proposed LFFS method is 

less 16% than the FFPS method.  

5. Conclusions 

In the H.264/AVC standard, the typical HFPS algorithm is 

used to improve the fractional-pixel motion estimation. This 

HFPS method requires at least 8 positions for the 1/2-pel, 

and 16 positions for the 1/4-pel, respectively, in the 

fractional-pixel motion estimation. However, if the image 

resolution is increased, the computations required for the 

fractional-pixel motion estimation are mandatory increased. 

In order to reduce the additional calculations of the 

fractional-pixel motion estimation needed in the H.264/AVC 

algorithm, the linear-prediction fast fractional-pixel search 

algorithm, called LFFS method, is developed in this paper. In 

this method, both linear prediction and small diamond search 

are proposed. Furthermore, the proposed LFFS method 

substantially reduces 60% and 52% computations for the 

fractional-pixel motion estimation in CIF and 4CIF video 

sequences, respectively, and still achieves a better quality of 

reconstructed image. That is, the proposed method for the 

fractional-pixel motion estimation in the H.264/AVC 

standard is that it substantially reduces the computation 

complexity and also increases the precision of motion vector 

prediction. 

ACKNOWLEDGEMENTS 

This work was supported by the Ministry of Science and 

Technology, R.O.C., under Grant MOST 

104-2221-E-153-010, 106-2622-E-153-001-CC2 and 

106-2221-E-153-006. 

 

REFERENCES 

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard, and A. Luthra, 
“Overview of the H.264/AVC video coding standard,” IEEE 
Trans. on Circuits and Systems for Video Technology, vol. 13, 
no. 7, pp. 560-576, July 2003. 

[2] T. Wiegand and G. J. Sullivan, “The H.264/AVC video 
coding standard [Standards in a Nutshell],” IEEE Signal 
Processing Magazine, vol.24, no.2, pp.148-153, March 2007. 

[3] Z. Chen, P. Zhou, and Y. He, “Fast integer pel and fractional 
pel motion estimation for JVT,” JVT-F017, Awaji Japan, Dec. 
2002. 

[4] Z. Wei and Z. Xin, “A fast hierarchical 1/4-pel fractional 
pixel motion estimation algorithm of H.264/AVC video 



26 Lung-Jen Wang et al.:  A Fast Fractional-Pixel Search Algorithm Based on Linear-Prediction Motion Estimation  

 

 

coding,” in Proc. 8th IEEE Conference on Industrial 
Electronics and Applications, pp. 891-895, 2013. 

[5] L. J. Wang and W. M. Tai, “A fast linear-prediction 
fractional-pixel search algorithm,” in Proc. of the 30th IEEE 
International Conference on Advanced Information 
Networking and Applications (IEEE AINA-2016), Le Régent 
Congress Centre, Crans-Montana, Switzerland, March 23-25, 
2016. 

[6] H. Nisar and T. S. Choi, “Fast and efficient fractional pixel 
motion estimation for H.264/AVC video coding,” in Proc. 
16th IEEE International Conference on Image Processing, pp. 
1561-1564, 2009. 

[7] K. H. Ng, L. M. Po, S. Y. Li, K. M. Wong and L. P. Wang, “A 
Linear prediction based fractional-pixel motion estimation 
algorithm,” in Proc. 4th International Conference on 
Multimedia and Ubiquitous Engineering, pp. 1-6, 2010. 

[8] J. S. Kim, K. W. Lee and M. H. Sunwoo, “Novel fractional 
pixel motion estimation algorithm using motion prediction 
and fast search pattern,” in Proc. IEEE International 
Conference on Multimedia and Expo, pp.821-824, 2008. 

[9] L. Shen, Z. Zhang, Z. Liu and W. Zhang, “An adaptive 
fractional pixel search algorithm,” in Proc. Fourth 
International Conference on Intelligent Sensing and 
Information Processing, pp. 153-156, 2006. 

[10] L. J. Wang and C. T. Shu, “An efficient fractional-pixel 
motion compensation based on cubic convolution 

interpolation,” Journal of Electrical and Electronic 
Engineering, vol. 2, no. 4, pp. 52-59, Sept. 2014. 

[11] H.264/AVC Reference Software Version JM18.0, [Online]. 
Available: 
http://iphome.hhi.de/suehring/tml/download/old_jm/. 

[12] J. F. Chang and J. J. Leou, “A quadratic prediction based 
fractional-pixel motion estimation algorithm for H.264,” in 
Proc. Seventh IEEE International Symposium on Multimedia, 
2005. 

[13] J. Fang, W. Zheng, D. Zhang, and K. Wang, “A mode 
correlation-based fractional pixel motion estimation for 
H.264 video coding,” in Proc. 7th International Conference 
on ASIC, pp. 938- 941, 2007. 

[14] S. G. Deshpande and J. N. Hwang, “A new fast motion 
estimation method based on total least squares for video 
encoding,” in Proc. IEEE International Conference on 
Acoustics, Speech and Signal Processing, pp. 2797-2800, 
1998. 

[15] R. Husemann, V. Roesler, R. Kintschner, H. Fröhlich, and A. 
A. Susin, “High performance H.264/AVC encoding motion 
prediction algorithm,” in Proc. 18th IEEE International 
Conference on Image Processing, pp. 957-960, 2011. 

[16] T. S. Kim, C. E. Rhee, H. J. Lee, and S. I. Chae, “Fast integer 
motion estimation with bottom-up motion vector prediction 
for an HEVC encoder,” IEEE Transactions on Circuits and 
Systems for Video Technology, 2017. 

 


