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Abstract  There are multiply approaches to prove Euler's well-known formula, however, none of them is trivial or simple. 
In this paper we utilize Nyquist-Shannon sampling theorem to prove Euler's formula in particular and Riemann's ( )2kζ  in 
general in a straightforward approach. The presented method allows calculating the summation of several other similar series, 
such as ( ) ( ) 3 3

0 1 2 1 / 32∞ −
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n n π , and even more surprising ones such as ( ) ( )( )3
1sin 2 /12∞ −

= = − −∑n pn n p p pπ π . 
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1. Introduction 
Euler is definitely one of the greatest mathematicians of 

all times. His contribution to science is incredible by any 
measure or standard. However, his first contribution that 
made him famous by the age of twenty eight was the 
identity, which is called after him. We are not referring to 
the well-known identity 1 0+ =ie π , which is erroneously 
called Euler’s identity, for it should have been related to 
Cotes, who presented it many years prior to Euler. The real 
Euler’s identity was the solution of, what was termed the 
Basel problem, which was first presented in 1644 by Pietro 
Mengoli and later by the Bernoulli brothers, who could not 
solve the problem.  

The problem was to calculate the sum of the infinite 
series (also known as Riemann's ( )2ζ ) 
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Euler first presented an advanced numerical method to 
calculate the sum, which he later used to validate the exact 
closed-form solution, which came later on. Euler proved 
that this series sums to 2 / 6π  [1]. After the publications 
of the first proof, many equivalent proofs followed, which 
illustrates the fact that this identity appears in many places 
in mathematics and science [2-15]. 

One can find proofs that are based on multiple integrals,  
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trigonometric identities, inverse trigonometric functions, 
complex analysis, Fourier analysis, and even geometric 
reasoning, however, there is none, to the best my 
knowledge, which is based on Signal Processing's Sampling 
theorem.  

The objective of this paper is to show that with the aid of 
Digital Signal Processing (DSP) analysis, using the 
Sampling theorem, the proof of this mathematical identity 
becomes almost straightforward. 

For completeness, we will remind the reader of the 
Sampling theorem and present the original Euler’s 
derivation. 

The Nyquist- Shannon Sampling Theorem: If an 
analog signal ( )x t  is sampled at a rate sf  (which means 

that only ( )/ sx n f  are known), then the original signal 

can be exactly recovered from its sample values ( )/ sx n f  
by the discrete convolution 
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provided ( )x t  is spectrally bounded by the frequency 

max / 2< sf f . 
Euler's Derivation: Euler used the Taylor expansion of 

the sinc function [16] 
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Then, Euler made a brilliant idea, which took him about a 
decade to prove in a more rigorous method, and in fact, it 
took about an additional century to cement the idea with 
Weierstrass factorization theorem [17]. 
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Euler idea was to implement Newton factorization 
method to infinite products, i.e., it was shown by Newton 
that any polynomial can be rewritten as a product of linear 
factors, which vanish at its roots [18]. Euler idea was to 
generalize it even to cases where the number of roots is 
infinite.  

Since the sinc function vanishes for 1, 2, 3,= ± ± ± n  
then Euler assumed, but he had difficulties in proving, that  
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Now, after opening all brackets and collecting all terms,  
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That is, the coefficient of 2x  is the infinite series 
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However, from (2) it is clear that the coefficient of 2x  
is 2 / 3!−π , therefore 
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In the literature  
In what follows we will show that this relation can be 

retrieved easily using Digital Signal Processing analysis. 
Moreover, it will be shown that the derivation is almost 
straightforward. 

2. The Sampling Theorem Approach 

 

Figure 1.  Illustration of Eq.(7). "1" can be rewritten as an infinite sum of 
"sinc" pulses (in the figure only eight are presented) 

It is well-known that any spectrally bounded signal can be 
written as a superposition of delayed sinc functions [19, 20]. 
In particular (see Fig.1), 
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There are many ways to prove this identity, one of which 
is to use Nyquist- Shannon(NS) theorem (mostly known as 
the "sampling theorem", see above) [19, 20], which shows 
that since the constant "1" (left side of Eq.(1)) has a zero 
bandwidth, then if this identity is valid for any =x m , 
where 0, 1, 2,= ± ± m  then it is valid for any x . Another 
option is to recognize the fact that the Fourier transform of 
both sides of the equation are equal to the delta function, i.e. 
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Since Eq.(7) is valid for any x , then clearly all its 
derivatives must vanishes. In particular, the second 
derivative must vanish 
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Now since, 
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then the second derivative at any integer =x m  must be 
equal to 

( ) 2
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This is the first identity, but it is not Euler's formula yet. 
However, it is very simple to show that Eq.(12) is exactly 
half Eq.(5) since 
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Thus, Eq.(6) is retrieved.  
Similarly, by taking the 4th derivative of Eq.(7) and using 
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One finds 
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which yields 
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then, finally 
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Clearly, this method can be used to derive any summation 
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for any even integer p, i.e., it can be used to calculate 
Riemann's ( )2kζ  for any integer k. 

However, one can use even a simpler approach for this 
problem: 

Eq.(7) is actually 
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Therefore, Eq.(7) can be rewritten 
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Then, by applying the Lauren expansion on the two sides 
of the equation, one obtains 
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By comparing the coefficient of x  Eq.(12) appears, and 
by comparing the coefficient of 3x  Eq.(16) appears. 

The same approach can be applied to other spectrally 
bounded functions, such as (see Fig.2) 
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which is equivalent to  
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Again, Eq.(22) agrees with the Sampling theorem since 
the spectrum of ( )sin / 2xπ  is bounded within the spectral 

regime <ω π . 

 

Figure 2.  Illustration of Eq.(22). ( )sin / 2xπ (solid curve) can be 

rewritten as an infinite sum of "sinc" pulses with alternating signs (in the 
figure only eight are presented) 

Again, one can expand the two sides of the equation to get 
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By comparing the coefficient of the 2x  term on both 
sides of Eq.(24) one gets  

( )
( )

3

3
1

16 2 1

∞

=−∞

−
=

+
∑

n

n n

π              (25) 

0 5 10 15

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

n
(-

1)
n

si
nc

(
x-

2
n-

1
)



4 Er'el Granot:  Derivation of Euler's Formula and ζ(2k) Using the Nyquist-Shannon Sampling Theorem  
 

 

and by comparing the 4x  coefficients 
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(Clearly, the odd terms vanish). Therefore 
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Clearly, this method can be applied to calculate the 
generic summation  
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for any odd p . 

3. Generalization 
One can use the original NS sampling theorem  
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for any function ( )f x , whose spectrum, i.e. its Fourier 

transform is spectrally bounded in <ω π , to derive a 
generic relation 
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where the last equality is simply the Taylor expansion of the 
former. 

By comparing the coefficients of mx  
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In particular, if ( ) ( )( )sin= −f x p xπ  for 0 2< <p π  
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and therefore for even m 
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For example, for 2=m (see Fig.3) 
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Figure 3.  Illustration of Eq.(34). The solid curve represents the left side of 
the equation, while the dashed curve represents its right side. As can be seen 
the two agree provided 0 2< <p π  (confined by the vertical dotted 
lines) 

Note, that when Eq.(34) is divided by p and then the limit 
0→p  is taken, the original Euler formula, i.e. Eq.(6), is 

retrieved  
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Similarly, when / 2=p π  then Eq.(34) reduces to 
Eq.(27). 

4. Conclusions and Summary 
The Sampling theorem, which is one of the cornerstones 

of Digital Signal Processing, can be utilized to prove Euler's 
formula in a straightforward approach. In fact, it is a 
straightforward consequence of the fact that an infinite sum 
of sinc functions is equal to 1. This identity, which is a 
consequence of the sampling theorem, cannot be valid unless 
Euler's formula is. Moreover, by applying this theorem to 
harmonic functions, an abundance of mathematical relations 
appear. In particular, any of the following summations has a 
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simple analytical solution, which can be written as a 
polynomial: 

1
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n n  for any even number m, 

( ) ( )0 1 2 1∞ −
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n n  for any odd number m, 

( )1sin∞ −
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n pn n  for any odd number m, 

( )1cos∞ −
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n pn n  for any even number m 

and others. 
Thus, this paper illustrates the strength of the Sampling 

Theorem to derive the summation of infinite series. 
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