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Abstract  Owing in part to the increasing importance of pulse width modulation (PWM) as an alternative analog 

communication technique for optical data links there has been a resurgence of interest in both new and traditional methods of 

analysis. Of the latter, the old pseudo-static approach is undoubtedly the simplest, although long considered by many to be 

only an approximation. One principal object of this paper is to prove that pseudo-static analysis is exact and explicit for 

natural ramp-intersective PWM and allows easy derivation of all pertinent time-domain formulas. As shown in detail by 

example, it then may be possible to carry out spectral and modulation-demodulation analysis in a straightforward physically 

insightful quantitative manner. 
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1. Introduction 

The problem of determining the properties of a periodic 

square-wave of period T which has been pulse width 

modulated (PWM) by a bounded deterministic signal x(t) is 

an old one dating back to World War II [1]. In a paper 

published in 2003 [2], Z. Song and D.V. Sarwarte not only 

review some of the relevant literature, but also find explicit 

formulas for the expansions in terms of x(t) of both uniform 

and natural PWM1. Their analysis of the latter presents the 

greatest difficulty and is accomplished with the aid of a 

theorem of Lagrange in the theory of complex variables [3]. 

It appears, however, that use of this theorem is only justified 

when x(t) admits an analytic continuation into the complex 

t-plane, a superfluous technical constraint owed to the 

approach, rather than any fundamental limitation. 

Our main purpose is to demonstrate that all such 

extraneous requirements can be eliminated with the help of a 

key observation whose generality seems to have been 

overlooked in previous studies. Namely, that the classical 

intuitive pseudo-static analysis of natural PWM [1], by far 

one of the most commonly employed, is exact instead of just 

an approximation! It employs two mild assumptions which  
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 Natural PWM is accomplished by means of the ramp-intersective method 

described in section 2. 

are easily imposed in practice: 

A1.     
 

         1;          (1a) 

A2.                µ        ,     (1b) 

µ a real positive constant and (t1, t2) any real pair. 

Although the Lipschitz condition (1b) implies the 

continuity of x(t), it does not imply either its boundedness or 

differentiability. Nevertheless, if the first derivative x’(t) of 

x(t) exists and is uniformly bounded, i.e., if  

c       
 

          ,          (1c) 

it then follows (from Rolle’s theorem) that (1b) holds with 

the choice µ = c. 

2. The Pseudo – Static View of Natural 
PWM 

Implementation of natural PWM by the ramp-intersective 

method is depicted in detail in Figure 1(a). The modulation is 

either single-edge (SE) or double-edge (DE), depending   

on whether one or both edges of the pulse are allowed to shift 

in time. Moreover, SE decomposes into exclusively 

trailing-edge (TE) or exclusively leading-edge (LE). 

As seen from Fig. 1(b), the TE pulse train pm (t; x; TE) is 

generated by comparing x(t) to the ramp r(t) of slope 2/T in 

every interval (kT, (k+1)T). The comparator returns the value 

1 if the difference x(t)-r(t) is positive and the value 0 if not. 

Similarly, the LE pulse train pm (t; x; LE) in Fig. 1(c) is 

obtained by comparing x(t) to the ramp of slope -2/T. Lastly, 

the DE pulse train pm (t; x; DE) in Fig. 1(d). utilizes the two 
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dashed-line ramps rN (t) and rP (t) of slopes -4/T and 4/T to 

fix the location and width dk-ck of the corresponding pulse. 

Quantitatively, the comparator reads 1 iff x(t)-rN (t) and 

x(t)-rP (t) are both positive and reads 0, otherwise. 

 

Figure 1.  The Generation of Natural TE, LE and DE by 

ramp-intersection 

Four facts of interest emerge that are worth singling out: 

1.  Periodicity of the ramps does not imply that of any of 

the three pulse trains; 

2.  For the TE case the leading edge is fixed at kT and the 

trailing edge can move, for the LE case the trailing 

edge is fixed at (k+1)T and the leading edge can move, 

while in the DE case both edges can move and no 

symmetry about the (k+1/2)T line need exist; 

3.  Each of the three pulse trains contributes only one 

pulse to every time slot  

Ik (T)   (kT < t <(k+1)T); 

4.  Examination of Fig. 1(a) reveals that the ramp of slope 

2/T intersects -x(t) at the same instant that the ramp of 

slope -2/T intersects x(t). From this equality one easily 

infers the 1’s complement identity 

              +              = 1,    (2) 

a useful algebraic result2.  

Any one of the pulse trains, be it TE, LE or DE, may be 

viewed as a pulse-coded version of an information bearing 

signal x(t) and knowledge of their spectral content can be 

essential. The pseudo-static approach to deriving this content 

begins by considering the TE, LE and DE trains as created in 

two separate steps. 

In the first, the trailing edge, leading edge and the two 

edges of 50% duty cycle periodic waveforms p(t), p(t-T/2) 

and p(t-T/4) of period T are shifted statically by the 

respective amounts τT/2, τT/2 and τT/4 in the directions 

indicated in Fig. 2. At this stage τ is considered to be a 

constant parameter subject to the sole inequality 

                                                             
2
 1), 2), and 4) require little explanation and 3) holds whenever 1/T > µ/2 (Proof 

postponed). 

       .                (3) 

Pulse widening occurs if τ > 0, narrowing if τ < 0 and the 

numerical changes in width are less than T/2. 

 

Figure 2 

Denote the periodic extensions of period T of these three 

modified pulses by ITE (t; τ), ILE (t; τ) and IDE (t; τ). Each 

possesses a Fourier series expansion in t whose coefficients 

depend on the parameter τ. Substitution of x(t) for τ defines 

corresponding functions of time ITE (t; x(t)), ILE (t; x(t)) and 

IDE (t; x(t)). In the second step it is accepted, often on 

physical grounds, that the “approximations”  

                           ,       (4) 

                                       (5) 

and  

                                     (6) 

are sufficiently accurate to be of engineering significance. It 

perhaps is unexpected to discover that this conjecture is more 

than right on the mark. 

The Pseudo-Static (PS) Theorem: Let x(t) satisfy 

assumptions A1 and A2. Then 

                           ,          (7) 

                                       (8) 

and  

                          .       (9) 

As an excellent illustration of the power of this theorem 

we shall use it to routinely derive series expansions for TE, 

LE, and DE natural PWM. 

In the interval (0, T),  

           =  
           

      

 
 

            
       (10) 

Hence the coefficients cr in its complex Fourier series are 

given by 

co = 
   

 
               (11) 
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and  

 cr = 
 

 
          
      

 
 

 = 
   

     
      

 

    
    (12) 

 = 
            

    
 = 

             

    
           (13) 

where, r =       , and        . Consequently (easy 

details omitted), 

          
   

 
  

       

  
         

            

  
 
   

 
   . 

(14) 

It then follows from (7) and (2) that  

             
      

 
  

       

  
 
             

               

  
 
    (15) 

and 

              
      

 
  

       

  
 
             

               

  
 
   . (16) 

As regards the DE pulse train, observe that in (0,T) 

          =  
   

      

 
       

      

 
 

            
      (17) 

Therefore co = ( 1 + τ )/2 and 

 cr = 
 

 
          
      

 
      

 

 = 
  

   
      

   
   

      
 

    
,   (18) 

where, r =       ,. Accordingly, (some details omitted)3, 

          

   

 
       

          
      

 
            

      

 
  

  
 
    (19) 

  
   

 
        

     
       

 
  

  
 
          ,    (20) 

so that 

              

      

 
        

     
          

 
  

  
 
          . (21) 

Unlike TE and LE, in DEPWM all carrier harmonics   

are suppressed, a possible advantage for some 

telecommunication applications [4]. 

Instead of p(t), p(t-T/2) and p(t-T/4), Song and Sarwarte 

choose to work with the unmodulated carriers 

              =  
           

 

 
 

    
 

 
        

      (22) 

q(t-T/2), and q(t-T/4). Concomitantly, 

                          ,     (23) 

                                (24) 

and 
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. 

                           .     (25) 

A quick check confirms that  

              

        
       

  

 
            

               

  

 
     , (26) 

              

        
       

  
 
            

               

  
 
      (27) 

and 

              

             
     

          

 
  

  
 
              (28) 

agree with Equations (37), (44) and (63) in [2]. 

3. Solution of a Classical Problem 

The availability of time-domain expansions for the various 

pulse trains almost invariably simplifies the derivation of 

their spectral properties. 

Example: Determine the spectrum of the TE pulse-train 

pm(t; x; TE) in (15) under single-tone modulation      
               .  

Solution: It is first necessary to find the frequency content 

of the second sum S2(t) in (15). Evidently4,  

        
     

  

 
                             (29) 

   
     

  

 

                        
                (30) 

   
     

  
                           

    
 
         (31) 

   
       

  

 

                        
     

 
      (32) 

    
 

  
                              

    
 

 
   . 

(33) 

By extracting the n = 0 component of (32) and adding it to 

the sum  

         
       

  
 
               (34) 

In (15) we obtain the complete decomposition 

             
          

 
  

                 

  

 
 
               , (35) 

where 

                
 

  
                       

   
 

 
    

                                    (36) 

The original proof of this result by WR Bennett in 1933 

was accomplished with the aid of a double Fourier series 

technique [7,8]. 

  

                                                             
4
 Jn(z) is the Bessel function of the first kind of order n and argument z [3] 

                 ,  
              

    
     

and Im[z] is the imaginary part of the complex number z. 
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4. Proof of the PS Theorem 

Consider justification of equation (9) and recall that      

I DE (t; τ) represents the periodic extension of the modified 

pulse shown in Fig. 2(d), obtained by shifting the leading and 

trailing edges of p(t-T/4) to the left and right, respectively, by 

the same amount τT/4. The resultant modified pulse has 

width T(1+τ)/2. Write 

                 
      

    .     (37) 

What must be established is that  

                       
      

                 .(38) 

Let kT < t0 < (k+1)T, t0 fixed, but arbitrary, and note that  

                          
       

       (39) 

Is the value of  

                  
      

           (40) 

for t = t0. Since f(t) is a period T periodic function, its 

structure is known. Indeed, in Ik (T)   (kT < t < (k+1)T),  

f(t) is a unit-magnitude rectangular pulse with leading and 

trailing edges located at the respective translates 

 

 
                 

 

 
                (41) 

of the points T(1 - x(t0))/4 and T(3 + x(t0))/4 on the t-axis 

of I0 (T) = (0 < t < T). Accordingly, f(t0) = 1, iff  

 

 
                   

 

 
             (42) 

and equals 0 otherwise. Equivalently, such is true iff 

       
 

 
          and           

 

 
       .(43) 

Or, expressed more compactly, iff x(t0) > rp(t0) and   

x(t0) > rN(t0), where  

       
 

 
          and          

 

 
        (44)  

are the equations in Ik (T) of the positive and negative slope 

dashed-line ramps shown in Fig. 1(a). To sum up, for-t in Ik 

(T), IDE (t; x(t) ) = 1 iff x(t) is greater than both rp(t) and rN(t) 

and is 0 if not, precisely the rule prescribed in section 2 for 

the ramp-intersective formation of the pulse train pm(t; x; DE) 

in Fig. 1(d). The proofs of (7) and (8) proceed along very 

similar lines 5 . Hence, guided by footnote 5 we obtain, 

without difficulty, 

        
                      
                       

     (45) 

where 

     
       

 
             (46) 

is the equation in Ik (T) of the positive-slope solid-line ramp 

shown in Fig. 1(a). Moreover, if > in (45) is changed to <, 1 

is changed to 0, Q.E.D. 

                                                             
5
 For example, in Ik (T) the function f(t) = ILE (t; x(t0)) is a unit-magnitude 

rectangular pulse with leading and trailing edges located at T(1-x(t0))/2+kT and 

(k+1)T, respectively. Hence f(t0)=1 iff t0 > T(1-x(t0))/2+kT, i.e., if f x(to) > 

1-(t0-kt)2/T =-r(t0), etc.. 

5. Overview 

The pulse trains in Figs. 1(a), (b), and (c) are monopulse, 

in the sense that each contributes only a single pulse to every 

interval Ik (T). This need not be true in general, but is always 

achievable by making T sufficiently small, i.e., by choosing 

the sampling rate 1/T large enough. For the proof, assume 

that x(t) makes contact with the ramp r(t) in (46) at distinct 

points t1, t2, in Ik (T). Then x(t1) = r(t1), x(t2) = r(t2) and 

 
 

 
 

           

        
             (47) 

follows. Consequently, in view of assumption A2,  

 

 
 

             

        
 

 

 
.          (48) 

Clearly, when 1/T > µ/2, (48) is contradictory and distinct 

multiple ramp contacts are precluded. 6  But a pulse train 

generated without multiple ramp contacts is necessarily 

mono. 

If the convergence of the several infinite series is accepted 

[7], it appears that our proof of the PS theorem is of a truly 

elementary character. It relies almost entirely on the 

realization that the value of IDE (t; x(t)) for any given t=t0 

equals the value of f(t) = IDE (t; x(t0)) for t=t0. Since f(t) is of 

period T and of known rectangular shape fully defined by p(t) 

and x(t0), this value is immediately determined. 

Also, as a matter of practical concern, it is useful to know 

that bandlimited functions x(t) of finite energy are 

automatically bounded and always satisfy assumption A2 [9]. 

In this case it is possible to enforce A1 by ordinary amplitude 

scaling. 

6. Demodulation of Single-Tone 
Modulated TE, LE and DE Pulse 
Trains 

The Bennett decomposition of the TE pulse train       

pm(t; x; TE) generated by single-tone modulation      
         is displayed in equations (35) and (36). Close 

examination under the assumption ωc /ωm > 1 reveals that 

ideal low-pass filtering of radian bandwidth ωm will, when 

applied to pm(t; x; TE) as input, produce an output which in 

addition to the information bearing waveform (1+x(t))/2, 

contains other terms that account for distortion and are 

contributed by the double sum 

                 
              

  
 
   

 

 
   .  (49) 

Introduce the positive parameter     ωc / ωm. Then k is > 

1 and  

                                    (50) 

Consequently, a component (50) in (49) lies in the 

passband of the filter (and therefore adds to the distortion), 

iff |       |   or, iff the integers r and n obey the 

                                                             
6
 Naturally, 1/T > µ/2 

 
 1/T > µ/4 and distinct multiple contacts with the ramps 

rp(t) and rN(t) in (44) are similarly ruled out. 
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inequality  

            ;           (51) 

i.e., iff 

             .         (52) 

Let    ] and      denote, respectively, the largest integer 

    and the smallest integer    . From (52)7 

                  .         (53) 

Evidently, if    is an integer,               and the 

allowed values of n are given by  

               .         (54) 

But if    is not an integer,             and now 

only pairs 

                          (55) 

are permitted. Correspondingly, if k > 1 is prescribed in 

advance and       denotes the distortion produced by term 

r in (49), then for rk an integer,  

      
       

  
                               . 

(56) 

When, however,    is not an integer, it may be rewritten 

as          , where       , so that  

      
       

  
                      

                                    (57) 

is a weighted sum of two complementary subharmonics of 

      .
8 Of course, as is obvious,   an integer implies all 

   integers, whereas   not an integer implies that some   , 

     are not integers. In the first case the total distortion is 

of the form           , where       is the sum over 

   
 
   of the coefficients of        in (56), while in 

the second the sum of the       in (57) always includes 

subharmonics. In fact, with irrational   all distortion is 

subharmonic.9 

It should now be apparent that the normalized quantity 

      
    

  
         

                       

    

 
    (58) 

is an appropriate measure of total distortion when   is an 

integer greater than one.10 Some simplification is possible, 

for replacement of         and   by      in the Bessel 

function identity [11] 

     
                            (59) 

transforms (58) into  

                                                             
7
      

 
       

 
         , and 

       
 
       

 
         . 

8
 Specifically, ϵr ωm +(1- ϵr) ωm = ωm. 

9
 These subharmonics are often partly responsible for unacceptable pulse-train 

jitter at the receiving end of a fiber-optic data link [10] 
10

 With this notation the filter output may be expressed as  

      
      

 
                           (59a) 

Clearly, the use of the estimator  

                                      (59b) 

                            percent error in the estimate of either      
         or   . 

 
 

 
              

   
     

 
 
   ,       (60) 

a series of the Kaptyen type [11], in which the modulation 

index        is    because the modulation depth    

satisfies       . Let       and suppose that 

     . For fixed    and  ,    
      is positive and 

decreases monotonically as  
 
  .11 

Proof. According to Watson [11, Pgs. 253,254] for      
and       , both        and   

     , when viewed as 

functions of    with   held fast, are positive and decrease 

monotonically as   increases. To make use of the second of 

these two properties, write 

    
         

                   (61) 

and observe that an increase of   to     may be 

interpreted as an increase of   from    to        in the 

function   
     , without change in      , Q.E.D. 

Corollary (important): For,        the quantities 
   
     

 
  in (60) are positive and decrease, monotonically,     

to zero as  
 
  . Thus (60) is an alternating series that 

meets the Leibnitz null-monotone requirement. It therefore 

converges [12] and the remainder    after   terms is always 

numerically less than the numerical value of the first term 

neglected, i.e., 

       
   
     

 
      .          (62) 

It seems evident from symmetry considerations that 

equation (60) for      should also be valid for single-tone 

modulated LE pulse trains. A more informative analytic 

proof, however, is had by referring back to (35) and (36) to 

conclude with the help of the 1’s complement identity (2), 

that all LE distortion is contributed by the terms in the 

sine-wave summation12  

    
            

   
                  

    
   (63) 

that get passed by the low-pass filter. Accordingly, addition 

of the particular terms corresponding to        and 

      , etc. leads to (58) and then quickly to (60), 

provided   is an even positive integer.13 Of course      
and           are again necessary constraints.  

To demonstrate the applicability of (60) to single-tone 

modulated DE pulse trains, we set               in 

(21) and then perform spectral analysis in the manner used to 

derive the Bennett partition in equations (35), (36). As a first 

step we ask the reader to verify that the second term in (21) 

may be rewritten in the expanded form 

  
     

  
 
        

 

 
        

  

 
             

    

 sin(  2 (    )   ) .                  (64) 

With the aid of the identity                  , we 

readily see14 that the only sine waves that can contribute to 

distortion are those of radian frequencies     contained 

                                                             
11

    
      

        

  
      

12
                             . 

13
                                          when the integer   is 

even because          and                . 
14

 The n = 0 term lies outside the filter bandwidth and may be ignored. 
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in the sum  

     

 
 

  
 
        

 

 
             

  

 
              

        

             
  

 
                          (65) 

Assume, once again, that   is an even integer    and let 

us compute      for the three permitted values     
         : 

                       
  

 
 

 
     

  
  

  
           

 
      

(66) 

                    
  

 
   

 
   

  
  

  
      

        (67) 

and 

                        
  

 
 

 
     

  
  

  
            

   . 

(68) 

Since       is an irrelevant and removable DC pedestal, 

the sum of the coefficients of        in (66) and (68), 

divided by     is the obviously correct measure of total 

normalized distortion     . 
Hence 

 
 

 
                 

  

 
 

 
   
  

  
  

 
  

   .    (69) 

But cos(rπ/2) = 0 for r odd and equals       for r = 2  
even. Concomitantly,  

 
 

 
              

 
    
     

 
  

           (70) 

This is an alternating series of the Leibnitz null-monotone 

type when     in addition to being an even integer   , also 

meets the requirement         .15 

Demodulation Theorem: The total distortion       
incurred by using ideal low-pass filtering to demodulate the 

three pulse trains created by natural single-tone pulse-width 

modulation is determined from equations (60) and (70). 

Specifically, assume   to be an integer   . Then  

1. for TE use (60)             ; 

2. for LE use (60)                        ; 

3. for DE use (70)                         . 

7. Numerical Results for the Design 
Engineer 

Problem Statement for the Engineer 

The problem statement of interest to the design engineer 

begins with reference to footnote 10, equation (59b), of this 

paper. There,      is seen to quantify the level of distortion 

to be tolerated in the process of demodulation of x(t). 

Equation (60) shows that      is calculated from a series 

whose terms are composed of Bessel function derivatives. 

                                                             
15

     
          

     
 

  
   is an instance of   

      with       and  
 

  
. 

etc. 

Furthermore, (60) also reveals that      is a function of k 

and β. So, the task for the engineer is to determine the 

smallest k for a given β and a given upper bound on |    |. 
Equation (60) applies in the cases of TE and LE PWM, while 

(70) applies to the case of DE PWM. Initially, the discussion 

will center on (60) with the understanding that (70) is 

understood similarly and is appropriately clarified in the 

sequel.  

Computation of Bessel Function Series Coefficients 

Numerical tabulation of the series coefficients makes use 

of (59) combined with the Bessel function tables found in 

[13]. The coefficient data is tabulated and appears in Tab.’s 

1(a) and 2(a). We will need to use this data both to estimate 

     and to estimate the percent error associated with our 

estimate of     . Theoretical underpinnings are developed 

next to make effective use of this numerical data to solve the 

design problem as stated. 

Theoretical Underpinnings for Numerical Procedures 

Absent a closed form solution for the value of      in 

(60), one may then proceed to numerically estimate      . 
We are fortunate that this series is a member of the class of 

alternating series known as the Leibnitz null-monotone class. 

This is the best of all series with many desirable properties, 

convergence among them, that permit numerical estimation 

of     . We begin by writing      as follows. Let  

                   ,          (71) 

where       represents a finite sum obtained by taking the 

first l terms in (60) and the infinite series         is the 

remainder. We will represent the approximation of      by 

      as  

             ,             (72) 

when l is to be large enough to result in a satisfactory 

estimate. The formal solution to this estimation problem [15] 

can be stated as  

                               (73) 

where,      is used designate the real number which is the 

absolute value of the first term of        in (71). 

While (73) provides an answer to the number of decimal 

places of agreement one can expect in (72), an additional 

figure of merit which permits us to estimate the “percent 

error” associated with our estimate of       is useful. This 

“percent error” is designated as         and is formulated16 

as  

        
     

             
.         (74) 

An admissible17      as well as it’s associated           
must converge to a nonzero17 value. Rewriting (74) by 

dividing by       is then well-defined for any l, infinity 

included. If we also make use of the triangle inequality we 

                                                             
16

 The actual percent error is of course obtained after multiplication of        
obtained in (74) by 100. 
17

 We of course assume that                 for the alternating series are 

each nonzero and of like sign. A series constrained in this manner necessarily 

converges to a finite nonzero sum. If such were not true in PWM, say, there 

would be no distortion error to consider in x(t) to begin with.  
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can write an upper bound for         as  

           
      

     
 

 

   
      

     
  

.      (75) 

The properties of alternating series alone [15] permit us to 

bound        in (75) by      and write  

                 .           (76) 

Combining (75) with (76) we recognize that in place of a 

specific series like (60), we have focused our considerations 

on the properties of an entire admissible class of alternating 

series. We have then proven the following  

Theorem: The percent error         is bounded by (77) 

when partial sums       of an admissible alternating series 

      are employed in its approximation. Thus, 

           
    

     
 

 

   
    
     

  
.       (77) 

Table 1(a).  Bessel Function Derivative Coefficients 

 

Table 1(b).  Estimation of  by Sl using coefficients from Table 1(a) 

 

Table 2(a).  Bessel Function Derivative Coefficients 

 

Table 2(b).  Estimation of  by Sl using coefficients from Table 1(a) 
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Observing the null-monotone property of such series, we 

are permitted to state that18 

                        .        (78) 

This result calls attention to the fact that as l increases the 

quantity in (79) holds for any admissible     , namely,  

 | 
      

     
         .          (79) 

As l increases the left side of (79) becomes ever smaller18 

than the numerical bound of 1 located on the right side of 

(79). When l is sufficiently large to satisfy (73), (77) may 

then be simplified using [16, # 748, p. 88]. Upon replacing 

       by     , we have proven the following  

Corollary: For l large enough (80) suffices as an upper 

bound 19  to the percent error for the admissible class of 

alternating series. Thus,  

 |          
     

     
     

    

     
  .      (80) 

Lastly, although      is explicitly unknown, we can 

bound its values above and below with the partial sums 

     . For l odd it is clear [17, p. 371] that the following is 

true,  

                      , l odd & l   1.   (81) 

 

Figure 3.  Summary of distortion vs. β & k from equation (60) for TE & LE  

 

Figure 4.  Summary of distortion vs. β & k from equation (70) for DE 

This property provides numerical results which 

complement (77). Equations (71) to (81) will be applied to 

                                                             
18

 It is clear [15] that          . In general [15]         L, where L is a 

finite limit. It should be clear that in the context of this paper L is required to be 

nonzero for admissibility. 
19

 No claim is made as to the optimality or uniqueness of this bound compared 

to other bounds used herein or elsewhere. 

the Bessel function series coefficients located in Tables 1(a) 

and 2(a). These tables are structured in the following way; 

the rth row along any column represents the value of the    

rth term in (60) excluding the (-1)r-1 factor. Each column 

represents a given choice of the variables β and k. In each 

column as terms decrease monotonically the value of the 

term is taken as zero when at least 7 of the first digits are zero. 

Partial sums       and bounds on the error         for 

various choices of the integer l are displayed in Tab.’s 1(b) 

and 2(b) for selected values of k and β.  

The information in Tab.’s 1(b) and 2(b) permits us to 

calculate       from its corresponding estimate      .   

To do this simply multiply the appropriate       by “2”   

(i.e.; see “2” in footnote 10, (59b)). Further multiplication  

of       by “100” calculates the percent error in the 

demodulation of x(t). Information gathered in this way was 

used to construct a design graph for TE and LE PWM in Fig. 

3. Fig. 3 displays percent distortion error vs β for various k 

values. Thus, the engineer may readily choose the smallest 

sampling rate k consistent with performance requirements 

for such links. An entirely analogous development applies to 

equation (70) for DE PWM whose results appear in Fig. 4.  

8. Application of the Demodulation 
Theorem 

An application of the demodulation theorem is in order 

and demonstrates the utility of the results of the previous 

section.  

Application Example: Consider TEPWM and determine 

the sampling rate k required for β = 2 in order to achieve at 

most 3% total harmonic distortion. Explore similar design 

choices for LEPWM and DEPWM. 

Solution: For TEPWM the requirements stated in part 1 of 

the demodulation theorem for (60) allow for an otherwise 

unrestricted choice of k. The results contained in Fig. 3 

suggest that an appropriate choice for k is k = 5. For LEPWM 

the requirements of part 2 of the theorem require the 

additional constraint that k be an even number if (60) is to 

describe the distortion. Again, referring to Fig. 3 we see that 

k = 6 suffices in order to meet (and in fact exceed) the 

required distortion level. For DEPWM the requirements of 

part 3 of the theorem suggest that upon replacing (60) by (70) 

and referring, now, to Fig. 4 the choice of k = 3 exceeds the 

requirements and is smaller than the value of k for the TE and 

the LE cases just considered. So, an added bonus is achieved 

with DE since we only require half of the k! Thus, DE is 

superior to TE and LE. Physically, DE uses double the 

number of samples per interval explaining why only half the 

k is required. 

9. Comparison with the Work of Others 

Holmes, et. al., [10], use a double Fourier series method to 

develop a time domain equation (p. 111, eq. 3.26) for the 

modulated signal which is similar to either (15), (16), or (21) 
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as developed in the present work using the pseudo-static 

methodology. Distortion is defined differently for their 

application. Higher k values were required to lessen the 

effects of distortion as compared to the work described 

herein. This exhibits a certain consistency with the present 

work; Holmes work, however, is otherwise very distinct 

from the present work.  

The work summarized in Wilson, et. al. [14] provides a 

more interesting comparison as there is greater overlap in the 

work. Equation 4.1 in chapter 4.0, [p. 96, 14] is also similar 

to (15), (16), or (21) in the present. Wilson, et. al. use 

Equation 4.8, [p. 112, 14] is to estimate distortion error. 

Equation 4.8 [p. 112, 14] is a truncated version of equation 

4.1, [p.96, 14]. This is similar in manner to the way the 

present authors have analyzed the distortion error with the 

exception that l is limited to 1 in [14]. The contrast between 

the procedure used by Wilson, et. al., [14] and the present 

authors is that the present authors have the benefit of 

knowing that (60) is an alternating series with many 

properties. It seems logical to assume that absent this 

information, Wilson, et. al. would likely do the next best 

thing which is to engage in experimentation to lend 

independent validity to their process of truncation. This is 

illustrated in results displayed in Fig. 4.15 [p. 112,14]. The 

work of Wilson, et. al. and the present work are somewhat 

complementary in this regard.  

10. Conclusions 

A proof is provided herein for the Pseudo-Static theorem. 

This proof is elementary in nature. The Pseudo-Static 

theorem establishes the exactness of Pseudo-Static spectral 

analysis, without the need to introduce superfluous 

constraints. This is physically significant and is in complete 

agreement with the work of Bennett, op. cit.. The distortion 

is understood for three types of natural PWM and is 

quantified in terms of a pair of alternating series each of 

which exhibits the Leibnitz null-monotone property. The 

benefit of such series is used to great advantage in numerical 

work, especially when presented in a tabular and graphical 

form which permits the design engineer to easily understand 

the distortion in terms of the parameters β and k. 
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