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Abstract  Th is paper aims to provide a bound of the forward erro r of the extended iterative refinement or improvement 
algorithm used to find the solution to an ill conditioned linear system. We use the additive preconditioning for preconditioner 
of a smaller rank r and the Schur aggregation to reduce the computation of the solution to an ill conditioned linear system to 
the computation of the Schur aggregate S. We find S by computing W the solution of a matrix system using an extension of 
Wikinson iterative refinement algorithm. Some steps of the algorithm are computed error free and other steps are computed 
with errors that need to be evaluated to determine the accuracy of the algorithm. In this paper we will find the upper bound of 
the forward error o f the algorithm and determine if its solution W can be considered accurate enough.  
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1. Introduction 
We find the solution bAx 1−=  of an ill conditioned linear 

system bAx =  by  t rans forming  it  us ing  the add it ive 
precondition ing and the Schur aggregat ion. We use the 
S h e r ma n - Mo r r is on -W ood bu r y  ( S MW )  f o r mu la 

( ) ( )1 1 1 1 1 1 1A C UV C C U I V C U V CH H Hr= − = + −− − − − − − −
 

where HUVCA −=  is an invertib le square matrix and
UCVIS H

r
1−−=  to  get  new linear  s ystems . The 

challenge in solving these new linear systems of smaller 
sizes with well conditioned coefficients matrices 1−CV H , 

UC 1−  and UCVIS H
r

1−−=  is the computation of the 
Schur aggregate S. The technique of (extended) iterative 
refinement  o r improvement fo r comput ing the Schur 
aggregate[14] and its application for solving linear systems 
of equations has been studied in a number of papers[3, 15, 
18]. Its variant that we used allows us to compute W  with 
h igh  p recis ion . The h igh  p recis ion  is  ach ieved  by 
minimizing the errors in the computation. The bound of the 
forward error will allow us to determine if the computed 
solution is an accurate one. This paper is divided into three 
sections. The first section covers the concept of rounding 
erro rs , float ing-po in t  summat ion , matrix norms  and 
convergence. The second section is devoted to the additive  

 
* Corresponding author: 
aserme@bmcc.cuny.edu (Abdramane Sermé) 
Published online at http://journal.sapub.org/algorithms 
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved 

preconditioning, the Schur aggregation and how the 
iterative refinement or improvement technique is used with 
the SMW formula to transform the orig inal linear system

bAx =  into better conditioned linear systems. The third 
section analyzes the forward error of the extended iterative 
refinement or improvement algorithm and provides a 
forward error bound. 

2. Rounding Errors, Floating-point 
Summation, Matrix Norms and 
Convergence 

2.1. Rounding Errors 
Definition 2.1.1 Let x̂  be an approximation of the scalar 

x. The absolute error in x̂  approximating x is the number 
xx −= ˆε . 

Definition 2.1.2 Let x̂  be an approximation of a scalar x . 
The absolute and relative errors of this approximat ion are the 

numbers xx −ˆ  and 
x

xx −
=

ˆ
ρ , respectively. If x̂  is an 

approximation to x  with relative error ρ , then there is a 

number 
x

xx −ˆ
 such that 1) ρ=r  and 2) )1(ˆ rxx += . 

Remark 2.1.1 The relative error ρ  is independent of 
scaling, that is the scaling xx α→ and xx ˆˆ α→  leave ρ  
unchanged. 

Theorem 2.1[6] Assume that x̂  approximates x  with  
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relative error ρ  < 1.  

Then x̂  is nonzero and
ρ

ρρ
−

≤
−

=
1

ˆ
x

xx . 

Remark 2.1.2 If the relat ive error of x  with respect to  
is ρ , then x  and x̂  agree to roughly )(log 2 ρ−  correct 
significant dig its. For b inary system, if x  and x̂  have 

relative error o f approximately 12 −−t , then x  and x̂  agree 
to about t  bits. 

Definition 2.1.3 The componentwise relative erro r is 

defined as: 
i

ii
i x

xx
Max

ˆ−
=  for ...),...,,( ,2 ix xxxx =  

and is widely used in the error analysis and perturbation 
theory. 

Remark 2.1.3 In numerical computation, one has three 
main sources of errors. 

1. Rounding errors, which are unavoidable consequences 
of working in finite p recision arithmet ic. 

2. Uncertainty in the input data, which is always a 
possibility when we are solving practical problems. 

3. Truncation errors, which are constituted and introduced 
by omitted terms. 

Rounding errors and Truncation errors are closely related 
to forward errors. 

Definition 2.1.4 Precision is the number of d igits in  the 
representation of a real number. It defines the accuracy with 
which the computations and in particular the basic arithmet ic 
operations /,,, ×−+  are performed. For floating point 
arithmetic, p recision is measured by the unit roundoff or 
mach ine precision, which we denote u in single precision and 
ū in double precision. The values of the unit roundoff are 
given in Table 1.1 in Section 2.3. 

Remark 2.1.4 Accuracy refers to the absolute or relative 
error of an approximation. 

Definition 2.1.5 Let ŷ  be an approximation of )(xfy =  
computed with a precision u  where f  is a real function of a 
real scalar variable.  

}{ )(ˆ:min xxfyx ∆+=∆  is called the (absolute) backward  

error, whereas the absolute or relative errors of ŷ  are called 
forward errors. 

Definition 2.1.6 For an approximat ion x̂  to a solution of 

a linear system bAx =  with nnCA ×∈(  and )nCb∈ , 

the forward error is the ratio 
x

xx − . 

The process of bounding the forward  erro r of a computed 
solution in terms of u  is called fo rward error analysis. x∆  
is the perturbation of x . 

Definition 2.1.7 An algorithm is called forward stable if it  
produces answers with forward errors of similar magnitude 
to those produced by backward stable method. 

Definition 2.1.8 A mixed forward-backward error is 
defined by the equation  

)(ˆˆ xxfyy ∆+=∆+  where yy ε≤∆ˆ , xx η=∆  
with ε and η  are s mall constants. 

Remark 2.1.5 This definition implies that the computed 
value ŷ d iffers little  from the value yy ˆˆ ∆+  that would have 
been produced by an input xx ∆+  little d ifferent from the 
actual input x . Simpler, ŷ  is almost the right answer for 
almost the right data. 

Definition 2.1.9 An algorithm is called numerically stable 
if it is stable in the mixed forward and backward error sense. 

Remark 2.1.6 A backward stability implies a forward  
stability but the converse is not true. 

Remark 2.1.7 One may use the following ru le of thumb; 
Forward error ≤  condition number × backward error, 

with approximate equality possible. Therefore the computed 
solution to an ill conditioned problem can have a large 
forward error even if the computed solution has a small 
backward error. This erro r can be amplified by the condition 
number in  the transition to forward error. This is one of our 
motivations for reducing the condition number of the matrix 
A using the additive preconditioning method. 

Definition 2.1.10 For a system of linear equations bAx = , 

( )
b Ax

x
A x

ρ
−

= is called the relat ive residual. The relative 

residual gives us an indication on how closely Ax  
represents b  and is scale independent. 

2.2. Floating-point Number System 
Definition 2.2.1 [6] A floating-point number system F  is 

a subset of the real numbers whose elements have the form
temy −×±= β . The range of the nonzero floating-point 

numbers in F  is g iven by maxmin (1 )1 tee y ββ β
−−− ≤ ≤ . 

Any floating-point number Fy∈  can be written in the form 

1 2
1 22 ... ( ) . ... ( )e et

tt
dd dY d d dβ β

β β β

 
= + + + × ± = × ± 
 

 

where each dig it id  satisfies 10 −≤≤ βid  and 

01 ≠d  for normalized numbers. 1d  is called the most 

significant digit and td  the least significant digit. 

2.3. Error-free Floating-point Summation 

Here is a summat ion algorithm due to D.E. Knuth[7]. 
Algorithm 1. Error-free transformation of the sum o f two 
floating point numbers  

))())(((
)(
)(

)(],[

zbzxafly
axflz
baflx

baTwosumyxfunction

−+−−=
−=
+=

+=

 

x̂
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The algorithm transforms two  input-floating point 
numbers a  and b  into two output floating-point numbers 
x  and y  such that yxba +=+  and )( baflx += . The 
same solution is achieved using the Kahan-Babušhka’s[11] 
and Dekker’s[12] classical algorithm provided that ba ≥ . 

It uses fewer ops but includes branches, which slows down 
the code optimization outputs. 

Definition 2.3.1[8] The unit roundoff error u  is the 

quantity tu −= 1

2
1 β . We write u  and u  to denote the 

operations performed  in  single precision and in double 
precision, respectively. 

Table  1.1.  The values of the unit roundoff 

Machine and 
arithmetic β  t  

mine  maxe  unit roundoff u  

IEEE Single 2 24 -125 128 2−24≈5.96×10−8 

IEEE Double 2 53 -1021 1024 2−53≈1.11×10−16 

Remark 2.3.1 The fo llowing theorem shows that every 
real number x  lying in F  can be approximated by an 
element of F  with a relative error no larger than u . 

Theorem 2.2 If ℜ∈x lies in F then )1()( δ+= xxfl
with δ  < u  

Theorem 2.2 says that )(xfl  is equal to x  mult iplied by a 
factor very close to 1. 

Definition 2.3.2 From now on (.)fl , for an  argument 
that is an arithmetic expression, denotes the computed value 
of that expression. op represents floating-point operation in 
F . 

2.4. Matrix Norms 

2.4.1. The Singular Value Decomposition (SVD)[3, 15] 

Definition 2.4.1 The compact singular value 
decomposition or SVD of an nm×  matrix A  of a rank ρ  
is the decomposition: 

( ) ( )( ) ( )
1A S T s tH Hj j jj σ

ρ ρρ ρ= =∑ ∑ = where

( )
1( )j jS sρ ρ
==  and ( )

1( )j jT tρ ρ
==  are unitary matrices, 

that is, ( ) ( )HS S Iρ ρ
ρ= , ( ) ( )HT T Iρ ρ

ρ= ,
( )

1( )j jdiagρ ρσ =∑ is a diagonal matrix, js  and jt  are m- 

and n-dimensional vectors, respectively, and 

1 2 ... ρσ σ σ≥ ≥ ≥ > 0. jσ  or ( )j Aσ  for ρ,...,1=j  is the 
thj  largest singular value of the matrix A . 
Definition 2.4.2 The condition number, Acond 2

 of a  
matrix A  of a  rank ρ  is 

1
2 1 2 2

( ) / ( )cond A A A A Aρσ σ −= = . A matrix is said to 

be ill conditioned if its condition number is large, that is if 
1( ) ( )A Aρσ σ〉〉 , and is called well conditioned otherwise. 

Definition 2.4.3 [6] The matrix 2-norm  

2
A  = 

1sup x Ax=
 = 1 max( ) ( )A Aσ σ= , is also called 

the spectral norm. )(1 Aσ  denotes the largest singular value 
of the matrix A . 

Remark 2.4.1 The matrix 2-norm satisfies the relation  

1. 
222

BAABA ≤≤⇒≤  where  

,
1, 1( )m n

ij i jA a = == , ijji ba ≤,  for mi ,...,1=  and

nj ,...,1= . 

2. 
2 1 2A A n A≤ ≤ . 

Lemma 2.3 For a vector norm . , suppose that 

x
xx

~
~

~ −
=ρ < 1 . Then 

ρ
ρ

~1

~
~

~

−
≤

−

x
xx

. 

2.5. Numerical Nullity 

Definition 2.5.1 The nullity of A , rankAnnulA −= , is the 

smallest integer r  for which a rank r  APC HUV  can 
define a nonsingular A-modificat ion HUVAC += . The 
nullity of A , which is defined as the dimension of the null 
space can also be defined as the large integer r for which we 
have 01 =− UAC  or 01 =− ACV H , provided C  is a 
nonsingular matrix. In this case, UC 1−  and 1−CV H

 are 
the right and left null matrix bases for the matrix A . 

Definition 2.5.2  The numerical nullity of  is the number 
of its small singular values. 

2.6. Convergence 
There is a natural way to extend the notion of limit from 

C  to nC . 

Definition 2.6.1 Let }{ ∞
= 1

)()(
2

)(
1 ),...,,( Tk

n
kk

k xxxx  

be a sequence of vectors in nC  and let x ∈ nC . The 

sequence }{ ∞
1kx  converges componentwise to x  and we 

write 

}{ xxk →∞
1  if i

k
ik

xx =
∞→

)(lim  for ni ,...,2,1= . 

Here is another way to define convergence in nC . 

Definition 2.6.2  Let }{ ∞
= 1

)()(
2

)(
1 ),...,,( Tk

n
kk

k xxxx
be a sequence of vectors in nC  and let x ∈

nC . The 

sequence }{ ∞
1kx

 converges normwise to x , that is 

xxkk
=

∞→
lim  if and only if 0lim =−

∞→
xxkk

 

There is no compelling reason to expect the two notions of 

A
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convergence to be equivalent. In fact for infin ite dimensional 
vector space, they are not. 

Theorem 2.4[6] Let P ∈
nxnC and suppose that 

0lim =
∞→

k

k
P . 

Then PI −  is nonsingular and 1

0
( ) k

k
I P P

∞
−

=
− = ∑  (this 

sum is called Neumann sum). A sufficient condition for 

0→kP  is that P  < 1 in some consistent norm, in  which 

case 
P

P
PIPPPI

k
k

−
≤−−++++

+

−

1
)()...(

1
12 . 

Corollary 2.5 If 0→kP , then 1)( −− PI  is nonnegative 

and 11 )()( −− −≤− PIPI . 

Theorem 2.6[6] Let  be a matrix norm on 
nxnC  consistent with a vector norm (also denoted P . ) and 

let a matrix X ∈
nxnC . Let P  be a square matrix such that  

P  < 1. Then 
(i)  the matrix PI −  is nonsingular, 

(ii) 
P

X
XPI

−
≤− −

1
)( 1 , and 

(iii) 
P

P
IPI

−
≤−− −

1
)( 1 . 

The following corollary extends Theorem 2.6. 
Corollary 2.7[6]  

If 11 ≤− EA , then 
EA

A
EA

1

1
1

1
)(

−

−

−

−
≤+ . 

Moreover, 
1111 ])[()( −−−− −−=−+ AIEAIAEA , 

so that 
EA

EAA
AEA

1

11
11

1
)(

−

−−

−−

−
≤−+ . 

The corollary  remains valid if all occurrences of EA 1−  

are replaced by 1−EA . 

Theorem 2.8 [8, 17] Let .  denote a matrix norm and a 

consistent vector norm. If the matrix A  is nonsingular and 
bAx =  and (i) bxA =~~ , where x~  is an approximated value 

of x, then 

(ii) EA
x

xx 1
~

~
−≤

−
. 

In addition if EA 1−  < 1, then EAA +=
~  is 

nonsingular and 

(iii) 
EA

EA

x
xx

1

1

1

~
−

−

−
≤

−
. 

3. The Additive Preconditioning Method, 
the Schur Aggregation and the 
Extended Iterative Refinement or 
Improvement Algorithm 

3.1. The Additive Preconditioning Method 

Definition 3.1.1  For a pair of matrices U  of size rm ×  and V  of size rn × , both having full rank r > 0, the matrix  
HUV of rank r  is an additive preprocessor (APP) of rank 

r  for any nm × matrix A . The matrix HUVAC += is the 
A-modification. The matrices U  and V are the generators 
of the APP, and the transition CA→  is an A-preprocessing 
of rank r  for the matrix A . An APP HUV  for a matrix A is 
an additive preconditioning (APC) and an A-preprocessing is 
an A-preconditioning if CcondAcond 22 〉〉 . An APP is an 
additive compressor (AC) and an A-preprocessing is an 
A-complementation if the matrix A is rank deficient, whereas 
the A-modification  C has full rank. An APP HUV  is 
unitary if the matrices U  and V  are unitary. 

Remark 3.1.1 Suppose HUV  has rank r. Then[3, 18], 
we expect )(/)(12 CCCcond nσσ=  to be to the order of 

)(/)(1 AA rn−σσ , therefore small if the addit ive 

preconditioner HUV  is 
i) random 
ii) well condit ioned, and 
iii) properly scaled, that is HUVA /  is not large and 

not small. 
Additive preconditioning consists in adding a matrix 

HUV  of a small rank to the input matrix A , to decrease its 
condition number. The A-modification is supposed to 
generate a well conditioned matrix C . In practice, to compute 
the A-modification HUVAC +=  error-free, we fill the 
generators U  and V  with short binary numbers. 

3.2. The Schur Aggregation  

The aggregation method consists of transforming an 
original linear system bAx =  into linear systems of smaller 
sizes with well conditioned coefficients matrices 1−CV H , 

UC 1− , and UCVIS H
r

1−−= . The aggregation method 
is a well known technique[3, 14, 15, 18], but aggregation 
used here both decreases the size of the input matrix and 
improves its conditioning. One may remark that aggregation 
can be applied  recursively  until no ill conditioned matrix 
appears in the computation. 

.
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Definition 3.2.1 The Schur aggregation is the process of 
reducing the linear system bAx = by using the SMW 
(Sherman-Morrison-Woodbury) formula 

1 1 1 1 1 1 1( ) ( )H H H
rA C UV C C U I V C U V C− − − − − − −= − = + − . The 

matrix UCVIS H
r

1−−= , which is the Schur complement 
(Gauss transform) of the block C in the block matrix 










r
H IV

UC
, is called the Schur aggregate. The 

A-modification HUVAC +=  and the Schur aggregate S
are well conditioned, therefore the numerical problems in the 
inversion of the matrix A  are confined to the computation of 
the Schur aggregate UCVIS H

r
1−−= . 

3.3. The Iterative Refinement or Improvement 
Algorithm 

Let HUVAC += . Then, we apply  the Sherman-Morrison 
-Woodbury (SMW) formula to the original linear system 

bAx =  and transform it into better conditioned linear 
systems of small sizes, with well conditioned matrices 

1−CV H , UC 1−  and UCVIS H
r

1−−= . We solve the 
original linear system bAx =  by post-multip lying 

111111 )( −−−−−− −+= CVUCVIUCCA HH
r by 

the vector b. We consider the case where the matrices C and 
S are well conditioned, whereas the matrices U  and V  
have small rank r, so that we can solve the above linear 
systems with the matrices C  and S  faster and more 
accurately than the system with the matrix A . In th is case 
the original conditioning problems for a linear system 

bAx =  are restricted to the computation of the Schur 
aggregate S . 

To compute the Schur aggregate UCVIS H
r

1−−=

with precision, we begin with computing UCW 1−=
using the iterative refinement or improvement algorithm. We 
prove that we can get very close to the solution W  of the 
linear system UCW = . We closely approximate it  by 
working with numbers rounded to the IEEE standard double 
precision and using error-free summation. A ll norms used in 
this section are the 2-norm. The iterat ive refinement or 
improvement algorithm is a technique for improving the 
computed approximate solution x̂  of a linear system bAx = . 
Iterative refinement or improvement for the Gaussian 
Elimination (GE) was used in the 1940s on desk calculators, 
but the first thorough analysis of the method was given by 
Wilkinson in 1963. The process consists of three steps 
([6],[7],[15]). 

Algorithm 2. Basic iterative refinement or improvement 
algorithm 

Input: An nn×  matrix A, a  computed solution 1ˆ xx =  
to bAx =  and a vector b. 

Output: A solution vector ix  approximating x  in 

bAx =  and an error bound 
x

xx i− . 

Initialize: 1←i  
Computations:  
1) Compute the residual ii Axbr −=  in double 

precision ( u )  
2) Solve ii rAd =  in single precision ( u ) using the 

GEPP  
3) Update iii dxx +=+1  in double precision ( u ) 

1+← ii  
Repeat stages 1-3 until ix  is accurate enough. 

Output ix  and an error bound. 
The iterative refinement or improvement algorithm can be 

rewritten as follows[6]. 0g is the error in the computation 

of 0r , 0h  is the error in the computation of 1x  and 

00 EAA += , where 0E  is the perturbation to the matrix A. 

0x  is a computed solution of the linear system bAx = . 

1) 000 gAxbr +−=  

2) 0
1

00 rAd −=  

3) 0001 hdxx ++=  
Repeat stages 1-3. 
The algorithm y ields a sequence of approximate solutions 

..., 10 xx  which converges to bAx 1−= . 
We use the extension of Wilkinson’s iterative refinement 

or improvement to compute the matrix UCW 1−=  with 
extended precision. In its classical form, above the algorithm 
is applied to a single system uCw = , where w  and u  
are 1×n  vectors. We applied it to the matrix equation 

UCW = , where the solution we are seeking is the matrix W . 
In its classical version, also the refinement stops when the 
matrix UCW 1−=  is computed with at most double 
precision. In order to achieve the high precision in 
computing W , we apply a variant of the extended iterat ive 
refinement or improvement where the residuals dynamically 
decrease, which is a must for us. We represent the output 
value as the sum of matrices with fixed-precision numbers. 

3.4. The Extended Iterative Refinement or Improvement 

Suppose A  is an  ill conditioned non-singular nn×  
matrix with rnnulA =  where nnulA  is the numerical 
nullity of the matrix A , 

HUV  is a random, well 
conditioned and properly scaled APC of rank  r < n, and the 
well conditioned A-modification HUVAC += . We use 
the matrices U  and V  whose entries can be rounded to a 
fixed (s mall) number of bits to control or avoid rounding 
errors in computing the matrix HUVAC += . 
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Surely, s mall norm perturbations of the generators U  and 
V , caused by truncation of their entrees, keep the matrix C  
well conditioned. We rewrite the iterative refinement or 
improvement algorithm to solve the linear system UCW =  
with UU =0  and 00

1
0 XUCW == −

 as follows. 
Algorithm 3. 

kk UCW =                   (0.1) 

kkk CWUU −=+1               (0.2) 

kk WWX ++= ...0 for ,...2,1,0=k      (0.3) 
The solution W  of the linear system UCW =  is 

computed by means of Gaussian Elimination with Part ial 
Pivoting (hereafter GEPP), which is a  backward stable 
process. It is corrupted by rounding errors of the computation 
of kW  in (0.1), so that the computed matrix kW  
(computed in single precision arithmetic u ) turns into 

kk UEC 1)( −+ . kE  is the perturbation to the matrix C . 
We can also say equivalently that there exists an error matrix 

kE  such that   

kkk UWEC =+ )( where CukcEk )(≤      (0.4) 

that is, kW  is an exact  solution for the approximated 
problem. )(kc  is a  constant function of order k . Another 
source of error is the computation in (0.2) which, done using 
double precision arithmetic u , turns numerically into  

kkkkkk ECWUCWUflU ∆+−=−= −−−− 1111 )( (0.5) 

where )()( 111 −− +≤∆ kkk UWCukcE     (0.6) 

kkkkk WWWWflX +=+= −− 11 )( .        (0.7) 

We recall that the summat ion (0.3) is done error free. 
Algorithm 4. Let us solve the linear system UCW = , 

derived from the ill conditioned linear system bAx = , by 
applying the following extended iterative refinement or 
improvement algorithm.  

0
1

00 UCW −=  ( UU =0 and  00 FCC += ) 

kkk UFCW 1)( −+=             (0.8) 

kkkk ECWUU +−=+1           (0.9) 

 kk WWX ++= ...0 , fo r ,...2,1,0=k  

Let CCF kk −= . 
Theorem 3.1[1] 

If ρ≤
− −

−

k

k

FC

FC
1

1

1 < 1 and         (0.10)  

kγ≤kE  for ,...,1,0=k             (0.11) 
then 

1 1
0 1 1(1 ) ( ... ).k k

k k kX X X X Cρ ρ γ ργ ρ γ− −
−− ≤ − + + + + +

In other words, XX k −  is bounded by )( kγΟ  for a  
certain integer k . 

Proposition 3.2 Let 
nnCC ×∈

 be nonsingular and 
let consider the linear system kk UCW = . If condCukc )(  
< ρ  < 1, then the matrix )( kEC +  is nonsingular and 

11 )()( −− +=+ CFIEC kk  where 

condCukc
condCukcFk )(1

)(
−

≤           (0.12) 

or equivalently, 

)()( 11
kk FICEC +=+ −−

. 

4. Forward Error Analysis  
Our fo rward error analysis of the extended iterative 

refinement or improvement algorithm results with the 
following proposition. 

Proposition 4.1 (Forward error bound) Let UCW =  be 
a linear system derived from an ill conditioned linear system 

bAx =  where U  is rm × , V  is rn ×  both with full 
rank r > 0, and HUVAC +=  is a well conditioned 
A-modification. If UCW =  is solved using the extended 
iterative refinement or improvement algorithm, Algorithm 
(4.) then for sufficiently large k  the forward error 

X
XX k−

 is bounded by 
1

1

1
)(4

α−
ukcondCc

. That is 

1

1

1
)(4

α−
≤

− ukcondCc
X

XX k  

where )(1 kc and condCukc
condCukc
kc









+

−
= )(4

)(1
)(

11α  

are constant functions of order k . Furthermore we have 

X
XX k−

 ≤ )(uΟ . 

The forward error is bounded by a constant in the order of 
u which is an important result. 

Proof: We obtain from equation (0.4), 

kkk UECW 1)( −+= .   

Since kkk WWXXX −−=− −1 , we get  

kkkk UECWXXX 1
1 )( −
− +−−=−  by using (0.4).  

1
1 1 1( ) ( )k k k k k kX X X W C E U CW E−
− − −− = − − + − + ∆  

by using (0.5), 1
1 1 1( ) ( )k k k k k kX X X W I F C U CW E−
− − −− = − − + − + ∆  

by using (0.12) in Proposition (3.2), 
1 1

1 1 1( )( )k k k k k kX X X W I F C U W C E− −
− − −− = − − + − + ∆ , 
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1 1
1 ( )( )k k k k kX X X W I F C U C E− −
−− = − − + + ∆ by 

using (0.2).  
We have,  

kkk WWX += −1 , 

kkk UCWX 1
1

−
− += , 

kkk UCWX 1
1

−
− =− , so that 

1
1 1( )( )k k k k k kX X X W I F X W C E−
− −− = − − + − + ∆ , 

1
1 1 1( ) ( ) ( )k k k k k k k k kX X X W X W F X W I F C E−
− − −− = − − − − − − + ∆  

Consequently  
1

1 1 1( ) ( )k k k k k k k k kX X X W X W F X W I F C E−
− − −− = − + + − − − + ∆  

1
1( ) ( ) ( )k k k k k k kX X X X F X W I F C E−
−− = − − − − − + ∆ , so 

1
12( ) ( ) ( )k k k k k kX X F X W I F C E−
−− = − − − + ∆ . 

Without loss of generality we can assume that 
1

1( ) ( )k k k k k kX X F X W I F C E−
−− = − − − + ∆ . 

Recall that kF  < 1, and take the norm on both sides, to 
get   

1
1 2k k k k kX X F X W C E−
−− ≤ − + ∆ . 

Recalling (0.6) and (0.7), we deduce that  

1

1
1 12 ( ) ( )

k k k k

k k k

X X F X W

C c k u C W U
−

−
− −

− ≤ −

+ +
 

We recall the following inequalities (0.12),  

condCukc
condCukcFk )(1

)(
−

≤  < 1.  

From (0.7) kkk WWX += −1 ,  

Therefore 1−−= kkk WXW ,  

11 −− +−+−= kkkk XXWXXW  
XXXW kk +−≤ −1 .  

So XXXWWX kkkk +−≤≤− −− 11 . 

We recall (0.6) )()( 111 −− +≤∆ kkk UWCukcE .  
We also have  

XXXW kk +−≤ −− 11   

kk WCU ≤−1  

.11 XCXXCU kk +−≤ −−  
( )

( )11 ( )

12 ( ) ( )1 1

1

c k condCu
X X X Xk kc k condCu

C c k u C X Xk

C X C X X C Xk

− ≤ − −
−

−+ − −

+ + − +−  

1
1 1

1
1

( ) 2 ( ) .2
1 ( )

4 ( )

k k
c k uX X C C c k u X X

c k condCu

C C c k u X

−
−

−

 
− ≤ + − − 

+  

1 1

1

( ) 4 ( )
1 ( )

4 ( )

k k
c k condCuX X condCc k u X X

c k condCu
condCc k u X

−
 

− ≤ + − − 
+

 

11
( ) 4 ( )

1 ( )
4 ( )1

k
c k condCuX X condCc k uk c k condCu

condCc k u X

X X −
 

− ≤ + − 
+

−
 

XXXXX kk 211 αα +−≤− −  where 

condCukc
condCukc
kck 








+

−
= )(4

)(1
)()( 11α   and 

ukcondCck )(4)( 12 =α .  

)(),( 21 kk αα  and )(kc  are constant functions of 

order k . 

)(1 kα  < 1 and 
condCukc

ucondCkc
)(1

)(
−

< 1 since C  is well  

conditioned, we deduce that  
XkXXkXX kk )()( 2211 αα +−≤− −− .        

Therefore, 
2
1 2

1 2 2

( )

( ) ( ) ( )
k kX X k X X

k k X k X

α

α α α
−− ≤ −

+ +
. 

We also recall that  

2 1 3 2( ) ( )k kX X k X X k Xα α− −− ≤ − + , 

so that  
3 2
1 3 1 2 2( ) ( ) ( ) ( )k kX X k X X k k X k Xα α α α−− ≤ − + +  

and
4 3( ) ( ) ( )4 21 1

( ) ( ) ( )1 2 2

X X k X X k k Xk k
k k X k X

α α α

α α α

− ≤ − +−

+ +

… 

1 2( ) ( ( )11 1
3( ) ... 1) ( )21

k kX X k X X kk
k k k X

α α

α α

− −− ≤ − +

−+ + +

 

1
1 0 1( ) (1 ( ) ...k

kX X k X X kα α−− ≤ − + + +  
 

1
1 1

1 0 2
1

1 ( )( ) ( )
1 ( )

k
k

k
kX X k X X k X

k
αα α
α

−
− −

− ≤ − +
−

. 

Therefore, X
k

k
XX kx )(1

)(
lim

1

2

α
α
−

≤−
∞→

  

X
k

ukcondCc
XX kx )(1

)(4
lim

1

1

α−
≤−

∞→  

)(1
)(4

lim
1

1

k
ukcondCc

X
XX k

x α−
≤

−
∞→

. 

Therefore for sufficiently large k , we have 

)(1
)(4

1

1

k
ukcondCc

X
XX k

α−
≤

−
. Moreover, 

u
kk

ukcondCc
X

XX k .
)(1

1
)(1

)(4

11

1

αα −
≤

−
≤

−
. So,  

3 2
1 1 2( ) ( )) ( )k kk k k Xα α α− −+ +		
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uk
X

XX k ).(β≤
−

 where 
)(1

1)(
1 k

k
α

β
−

=  and 

)(1 kα  are constant functions of order k . Therefore, 

)(u
X

XX k Ο≤
−

. 

5. Conclusions 
We use the concepts of additive preconditioning and 

Schur aggregation along with the extended iterative 
refinement or improvement algorithm to reduce the 
computation of bAx 1−=  to the computation of the Schur 

aggregate UCVIS H
r

1−−= . We solve the linear 
system UCW 1−=  with high precision using the extended 
iterative refinement or improvement algorithm. We proved 
in our forward error analysis that the forward error 

kX X
X
−  is bounded by 

1

1

1
)(4

α−
ukcondCc

. The forward 

error can further be bounded by )(uΟ , a constant of order u. 
These results are in line with Higham’s results ([6], page 234, 
Theorem 11.1) and constitute another way to prove the 
convergence of the extended iterative refinement or 
improvement to a more accurate solution  

1

1( )
1 1 1 1 1( )

A b
HC UV b

H HC b C U I V C U V C br

−

−= −
− − − − −= + −

. 
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