
Algorithms Research 2013, 2(2): 50-57
DOI: 10.5923/j.algorithms.20130202.03

Solving Ill Conditioned Linear Systems Using the
Extended Iterative Refinement Algorithm: The Forward

Error Bound

Abdramane Sermé

Department of Mathematics, The City University of New York, New York, NY, 10007, USA

Abstract Th is paper aims to provide a bound of the forward erro r of the extended iterative refinement or improvement
algorithm used to find the solution to an ill conditioned linear system. We use the additive preconditioning for preconditioner
of a smaller rank r and the Schur aggregation to reduce the computation of the solution to an ill conditioned linear system to
the computation of the Schur aggregate S. We find S by computing W the solution of a matrix system using an extension of
Wikinson iterative refinement algorithm. Some steps of the algorithm are computed error free and other steps are computed
with errors that need to be evaluated to determine the accuracy of the algorithm. In this paper we will find the upper bound of
the forward error o f the algorithm and determine if its solution W can be considered accurate enough.

Keywords Forward Error Analysis, Ill Conditioned Linear System, Sherman-Morrison-Woodbury (SMW) Formula,
Preconditioning, Schur Aggregation, Iterat ive Refinement or Improvement, Algorithm, Singular Value Decomposition

1. Introduction
We find the solution bAx 1−= of an ill conditioned linear

system bAx = by t rans forming it us ing the add it ive
precondition ing and the Schur aggregat ion. We use the
S h e r ma n - Mo r r is on -W ood bu r y (S MW) f o r mu la

() ()1 1 1 1 1 1 1A C UV C C U I V C U V CH H Hr= − = + −− − − − − − −

where HUVCA −= is an invertib le square matrix and
UCVIS H

r
1−−= to get new linear s ystems . The

challenge in solving these new linear systems of smaller
sizes with well conditioned coefficients matrices 1−CV H ,

UC 1− and UCVIS H
r

1−−= is the computation of the
Schur aggregate S. The technique of (extended) iterative
refinement o r improvement fo r comput ing the Schur
aggregate[14] and its application for solving linear systems
of equations has been studied in a number of papers[3, 15,
18]. Its variant that we used allows us to compute W with
h igh p recis ion . The h igh p recis ion is ach ieved by
minimizing the errors in the computation. The bound of the
forward error will allow us to determine if the computed
solution is an accurate one. This paper is divided into three
sections. The first section covers the concept of rounding
erro rs , float ing-po in t summat ion , matrix norms and
convergence. The second section is devoted to the additive

* Corresponding author:
aserme@bmcc.cuny.edu (Abdramane Sermé)
Published online at http://journal.sapub.org/algorithms
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

preconditioning, the Schur aggregation and how the
iterative refinement or improvement technique is used with
the SMW formula to transform the orig inal linear system

bAx = into better conditioned linear systems. The third
section analyzes the forward error of the extended iterative
refinement or improvement algorithm and provides a
forward error bound.

2. Rounding Errors, Floating-point
Summation, Matrix Norms and
Convergence

2.1. Rounding Errors
Definition 2.1.1 Let x̂ be an approximation of the scalar

x. The absolute error in x̂ approximating x is the number
xx −= ˆε .

Definition 2.1.2 Let x̂ be an approximation of a scalar x .
The absolute and relative errors of this approximat ion are the

numbers xx −ˆ and
x

xx −
=

ˆ
ρ , respectively. If x̂ is an

approximation to x with relative error ρ , then there is a

number
x

xx −ˆ
 such that 1) ρ=r and 2))1(ˆ rxx += .

Remark 2.1.1 The relative error ρ is independent of
scaling, that is the scaling xx α→ and xx ˆˆ α→ leave ρ
unchanged.

Theorem 2.1[6] Assume that x̂ approximates x with

 Algorithms Research 2013, 2(2): 50-57 51

relative error ρ < 1.

Then x̂ is nonzero and
ρ

ρρ
−

≤
−

=
1

ˆ
x

xx .

Remark 2.1.2 If the relat ive error of x with respect to
is ρ , then x and x̂ agree to roughly)(log 2 ρ− correct
significant dig its. For b inary system, if x and x̂ have

relative error o f approximately 12 −−t , then x and x̂ agree
to about t bits.

Definition 2.1.3 The componentwise relative erro r is

defined as:
i

ii
i x

xx
Max

ˆ−
= for ...),...,,(,2 ix xxxx =

and is widely used in the error analysis and perturbation
theory.

Remark 2.1.3 In numerical computation, one has three
main sources of errors.

1. Rounding errors, which are unavoidable consequences
of working in finite p recision arithmet ic.

2. Uncertainty in the input data, which is always a
possibility when we are solving practical problems.

3. Truncation errors, which are constituted and introduced
by omitted terms.

Rounding errors and Truncation errors are closely related
to forward errors.

Definition 2.1.4 Precision is the number of d igits in the
representation of a real number. It defines the accuracy with
which the computations and in particular the basic arithmet ic
operations /,,, ×−+ are performed. For floating point
arithmetic, p recision is measured by the unit roundoff or
mach ine precision, which we denote u in single precision and
ū in double precision. The values of the unit roundoff are
given in Table 1.1 in Section 2.3.

Remark 2.1.4 Accuracy refers to the absolute or relative
error of an approximation.

Definition 2.1.5 Let ŷ be an approximation of)(xfy =
computed with a precision u where f is a real function of a
real scalar variable.

}{)(ˆ:min xxfyx ∆+=∆ is called the (absolute) backward

error, whereas the absolute or relative errors of ŷ are called
forward errors.

Definition 2.1.6 For an approximat ion x̂ to a solution of

a linear system bAx = with nnCA ×∈(and)nCb∈ ,

the forward error is the ratio
x

xx − .

The process of bounding the forward erro r of a computed
solution in terms of u is called fo rward error analysis. x∆
is the perturbation of x .

Definition 2.1.7 An algorithm is called forward stable if it
produces answers with forward errors of similar magnitude
to those produced by backward stable method.

Definition 2.1.8 A mixed forward-backward error is
defined by the equation

)(ˆˆ xxfyy ∆+=∆+ where yy ε≤∆ˆ , xx η=∆
with ε and η are s mall constants.

Remark 2.1.5 This definition implies that the computed
value ŷ d iffers little from the value yy ˆˆ ∆+ that would have
been produced by an input xx ∆+ little d ifferent from the
actual input x . Simpler, ŷ is almost the right answer for
almost the right data.

Definition 2.1.9 An algorithm is called numerically stable
if it is stable in the mixed forward and backward error sense.

Remark 2.1.6 A backward stability implies a forward
stability but the converse is not true.

Remark 2.1.7 One may use the following ru le of thumb;
Forward error ≤ condition number × backward error,

with approximate equality possible. Therefore the computed
solution to an ill conditioned problem can have a large
forward error even if the computed solution has a small
backward error. This erro r can be amplified by the condition
number in the transition to forward error. This is one of our
motivations for reducing the condition number of the matrix
A using the additive preconditioning method.

Definition 2.1.10 For a system of linear equations bAx = ,

()
b Ax

x
A x

ρ
−

= is called the relat ive residual. The relative

residual gives us an indication on how closely Ax
represents b and is scale independent.

2.2. Floating-point Number System
Definition 2.2.1 [6] A floating-point number system F is

a subset of the real numbers whose elements have the form
temy −×±= β . The range of the nonzero floating-point

numbers in F is g iven by maxmin (1)1 tee y ββ β
−−− ≤ ≤ .

Any floating-point number Fy∈ can be written in the form

1 2
1 22 ... () ()e et

tt
dd dY d d dβ β

β β β

 
= + + + × ± = × ± 
 

where each dig it id satisfies 10 −≤≤ βid and

01 ≠d for normalized numbers. 1d is called the most

significant digit and td the least significant digit.

2.3. Error-free Floating-point Summation

Here is a summat ion algorithm due to D.E. Knuth[7].
Algorithm 1. Error-free transformation of the sum o f two
floating point numbers

))())(((
)(
)(

)(],[

zbzxafly
axflz
baflx

baTwosumyxfunction

−+−−=
−=
+=

+=

x̂

52 Abdramane Sermé: Solving Ill Conditioned Linear Systems Using the Extended Iterative
Refinement Algorithm: The Forward Error Bound

The algorithm transforms two input-floating point
numbers a and b into two output floating-point numbers
x and y such that yxba +=+ and)(baflx += . The
same solution is achieved using the Kahan-Babušhka’s[11]
and Dekker’s[12] classical algorithm provided that ba ≥ .

It uses fewer ops but includes branches, which slows down
the code optimization outputs.

Definition 2.3.1[8] The unit roundoff error u is the

quantity tu −= 1

2
1 β . We write u and u to denote the

operations performed in single precision and in double
precision, respectively.

Table 1.1. The values of the unit roundoff

Machine and
arithmetic β t

mine maxe unit roundoff u

IEEE Single 2 24 -125 128 2−24≈5.96×10−8

IEEE Double 2 53 -1021 1024 2−53≈1.11×10−16

Remark 2.3.1 The fo llowing theorem shows that every
real number x lying in F can be approximated by an
element of F with a relative error no larger than u .

Theorem 2.2 If ℜ∈x lies in F then)1()(δ+= xxfl
with δ < u

Theorem 2.2 says that)(xfl is equal to x mult iplied by a
factor very close to 1.

Definition 2.3.2 From now on (.)fl , for an argument
that is an arithmetic expression, denotes the computed value
of that expression. op represents floating-point operation in
F .

2.4. Matrix Norms

2.4.1. The Singular Value Decomposition (SVD)[3, 15]

Definition 2.4.1 The compact singular value
decomposition or SVD of an nm× matrix A of a rank ρ
is the decomposition:

() ()() ()
1A S T s tH Hj j jj σ

ρ ρρ ρ= =∑ ∑ = where

()
1()j jS sρ ρ
== and ()

1()j jT tρ ρ
== are unitary matrices,

that is, () ()HS S Iρ ρ
ρ= , () ()HT T Iρ ρ

ρ= ,
()

1()j jdiagρ ρσ =∑ is a diagonal matrix, js and jt are m-

and n-dimensional vectors, respectively, and

1 2 ... ρσ σ σ≥ ≥ ≥ > 0. jσ or ()j Aσ for ρ,...,1=j is the
thj largest singular value of the matrix A .
Definition 2.4.2 The condition number, Acond 2

 of a
matrix A of a rank ρ is

1
2 1 2 2

() / ()cond A A A A Aρσ σ −= = . A matrix is said to

be ill conditioned if its condition number is large, that is if
1() ()A Aρσ σ〉〉 , and is called well conditioned otherwise.

Definition 2.4.3 [6] The matrix 2-norm

2
A =

1sup x Ax=
 = 1 max() ()A Aσ σ= , is also called

the spectral norm.)(1 Aσ denotes the largest singular value
of the matrix A .

Remark 2.4.1 The matrix 2-norm satisfies the relation

1.
222

BAABA ≤≤⇒≤ where

,
1, 1()m n

ij i jA a = == , ijji ba ≤, for mi ,...,1= and

nj ,...,1= .

2.
2 1 2A A n A≤ ≤ .

Lemma 2.3 For a vector norm . , suppose that

x
xx

~
~

~ −
=ρ < 1 . Then

ρ
ρ

~1

~
~

~

−
≤

−

x
xx

.

2.5. Numerical Nullity

Definition 2.5.1 The nullity of A , rankAnnulA −= , is the

smallest integer r for which a rank r APC HUV can
define a nonsingular A-modificat ion HUVAC += . The
nullity of A , which is defined as the dimension of the null
space can also be defined as the large integer r for which we
have 01 =− UAC or 01 =− ACV H , provided C is a
nonsingular matrix. In this case, UC 1− and 1−CV H

 are
the right and left null matrix bases for the matrix A .

Definition 2.5.2 The numerical nullity of is the number
of its small singular values.

2.6. Convergence
There is a natural way to extend the notion of limit from

C to nC .

Definition 2.6.1 Let }{ ∞
= 1

)()(
2

)(
1),...,,(Tk

n
kk

k xxxx

be a sequence of vectors in nC and let x ∈ nC . The

sequence }{ ∞
1kx converges componentwise to x and we

write

}{ xxk →∞
1 if i

k
ik

xx =
∞→

)(lim for ni ,...,2,1= .

Here is another way to define convergence in nC .

Definition 2.6.2 Let }{ ∞
= 1

)()(
2

)(
1),...,,(Tk

n
kk

k xxxx
be a sequence of vectors in nC and let x ∈

nC . The

sequence }{ ∞
1kx

 converges normwise to x , that is

xxkk
=

∞→
lim if and only if 0lim =−

∞→
xxkk

There is no compelling reason to expect the two notions of

A

 Algorithms Research 2013, 2(2): 50-57 53

convergence to be equivalent. In fact for infin ite dimensional
vector space, they are not.

Theorem 2.4[6] Let P ∈
nxnC and suppose that

0lim =
∞→

k

k
P .

Then PI − is nonsingular and 1

0
() k

k
I P P

∞
−

=
− = ∑ (this

sum is called Neumann sum). A sufficient condition for

0→kP is that P < 1 in some consistent norm, in which

case
P

P
PIPPPI

k
k

−
≤−−++++

+

−

1
)()...(

1
12 .

Corollary 2.5 If 0→kP , then 1)(−− PI is nonnegative

and 11)()(−− −≤− PIPI .

Theorem 2.6[6] Let be a matrix norm on
nxnC consistent with a vector norm (also denoted P .) and

let a matrix X ∈
nxnC . Let P be a square matrix such that

P < 1. Then
(i) the matrix PI − is nonsingular,

(ii)
P

X
XPI

−
≤− −

1
)(1 , and

(iii)
P

P
IPI

−
≤−− −

1
)(1 .

The following corollary extends Theorem 2.6.
Corollary 2.7[6]

If 11 ≤− EA , then
EA

A
EA

1

1
1

1
)(

−

−

−

−
≤+ .

Moreover,
1111])[()(−−−− −−=−+ AIEAIAEA ,

so that
EA

EAA
AEA

1

11
11

1
)(

−

−−

−−

−
≤−+ .

The corollary remains valid if all occurrences of EA 1−

are replaced by 1−EA .

Theorem 2.8 [8, 17] Let . denote a matrix norm and a

consistent vector norm. If the matrix A is nonsingular and
bAx = and (i) bxA =~~ , where x~ is an approximated value

of x, then

(ii) EA
x

xx 1
~

~
−≤

−
.

In addition if EA 1− < 1, then EAA +=
~ is

nonsingular and

(iii)
EA

EA

x
xx

1

1

1

~
−

−

−
≤

−
.

3. The Additive Preconditioning Method,
the Schur Aggregation and the
Extended Iterative Refinement or
Improvement Algorithm

3.1. The Additive Preconditioning Method

Definition 3.1.1 For a pair of matrices U of size rm × and V of size rn × , both having full rank r > 0, the matrix
HUV of rank r is an additive preprocessor (APP) of rank

r for any nm × matrix A . The matrix HUVAC += is the
A-modification. The matrices U and V are the generators
of the APP, and the transition CA→ is an A-preprocessing
of rank r for the matrix A . An APP HUV for a matrix A is
an additive preconditioning (APC) and an A-preprocessing is
an A-preconditioning if CcondAcond 22 〉〉 . An APP is an
additive compressor (AC) and an A-preprocessing is an
A-complementation if the matrix A is rank deficient, whereas
the A-modification C has full rank. An APP HUV is
unitary if the matrices U and V are unitary.

Remark 3.1.1 Suppose HUV has rank r. Then[3, 18],
we expect)(/)(12 CCCcond nσσ= to be to the order of

)(/)(1 AA rn−σσ , therefore small if the addit ive

preconditioner HUV is
i) random
ii) well condit ioned, and
iii) properly scaled, that is HUVA / is not large and

not small.
Additive preconditioning consists in adding a matrix

HUV of a small rank to the input matrix A , to decrease its
condition number. The A-modification is supposed to
generate a well conditioned matrix C . In practice, to compute
the A-modification HUVAC += error-free, we fill the
generators U and V with short binary numbers.

3.2. The Schur Aggregation

The aggregation method consists of transforming an
original linear system bAx = into linear systems of smaller
sizes with well conditioned coefficients matrices 1−CV H ,

UC 1− , and UCVIS H
r

1−−= . The aggregation method
is a well known technique[3, 14, 15, 18], but aggregation
used here both decreases the size of the input matrix and
improves its conditioning. One may remark that aggregation
can be applied recursively until no ill conditioned matrix
appears in the computation.

.

54 Abdramane Sermé: Solving Ill Conditioned Linear Systems Using the Extended Iterative
Refinement Algorithm: The Forward Error Bound

Definition 3.2.1 The Schur aggregation is the process of
reducing the linear system bAx = by using the SMW
(Sherman-Morrison-Woodbury) formula

1 1 1 1 1 1 1() ()H H H
rA C UV C C U I V C U V C− − − − − − −= − = + − . The

matrix UCVIS H
r

1−−= , which is the Schur complement
(Gauss transform) of the block C in the block matrix










r
H IV

UC
, is called the Schur aggregate. The

A-modification HUVAC += and the Schur aggregate S
are well conditioned, therefore the numerical problems in the
inversion of the matrix A are confined to the computation of
the Schur aggregate UCVIS H

r
1−−= .

3.3. The Iterative Refinement or Improvement
Algorithm

Let HUVAC += . Then, we apply the Sherman-Morrison
-Woodbury (SMW) formula to the original linear system

bAx = and transform it into better conditioned linear
systems of small sizes, with well conditioned matrices

1−CV H , UC 1− and UCVIS H
r

1−−= . We solve the
original linear system bAx = by post-multip lying

111111)(−−−−−− −+= CVUCVIUCCA HH
r by

the vector b. We consider the case where the matrices C and
S are well conditioned, whereas the matrices U and V
have small rank r, so that we can solve the above linear
systems with the matrices C and S faster and more
accurately than the system with the matrix A . In th is case
the original conditioning problems for a linear system

bAx = are restricted to the computation of the Schur
aggregate S .

To compute the Schur aggregate UCVIS H
r

1−−=

with precision, we begin with computing UCW 1−=
using the iterative refinement or improvement algorithm. We
prove that we can get very close to the solution W of the
linear system UCW = . We closely approximate it by
working with numbers rounded to the IEEE standard double
precision and using error-free summation. A ll norms used in
this section are the 2-norm. The iterat ive refinement or
improvement algorithm is a technique for improving the
computed approximate solution x̂ of a linear system bAx = .
Iterative refinement or improvement for the Gaussian
Elimination (GE) was used in the 1940s on desk calculators,
but the first thorough analysis of the method was given by
Wilkinson in 1963. The process consists of three steps
([6],[7],[15]).

Algorithm 2. Basic iterative refinement or improvement
algorithm

Input: An nn× matrix A, a computed solution 1ˆ xx =
to bAx = and a vector b.

Output: A solution vector ix approximating x in

bAx = and an error bound
x

xx i− .

Initialize: 1←i
Computations:
1) Compute the residual ii Axbr −= in double

precision (u)
2) Solve ii rAd = in single precision (u) using the

GEPP
3) Update iii dxx +=+1 in double precision (u)

1+← ii
Repeat stages 1-3 until ix is accurate enough.

Output ix and an error bound.
The iterative refinement or improvement algorithm can be

rewritten as follows[6]. 0g is the error in the computation

of 0r , 0h is the error in the computation of 1x and

00 EAA += , where 0E is the perturbation to the matrix A.

0x is a computed solution of the linear system bAx = .

1) 000 gAxbr +−=

2) 0
1

00 rAd −=

3) 0001 hdxx ++=
Repeat stages 1-3.
The algorithm y ields a sequence of approximate solutions

..., 10 xx which converges to bAx 1−= .
We use the extension of Wilkinson’s iterative refinement

or improvement to compute the matrix UCW 1−= with
extended precision. In its classical form, above the algorithm
is applied to a single system uCw = , where w and u
are 1×n vectors. We applied it to the matrix equation

UCW = , where the solution we are seeking is the matrix W .
In its classical version, also the refinement stops when the
matrix UCW 1−= is computed with at most double
precision. In order to achieve the high precision in
computing W , we apply a variant of the extended iterat ive
refinement or improvement where the residuals dynamically
decrease, which is a must for us. We represent the output
value as the sum of matrices with fixed-precision numbers.

3.4. The Extended Iterative Refinement or Improvement

Suppose A is an ill conditioned non-singular nn×
matrix with rnnulA = where nnulA is the numerical
nullity of the matrix A ,

HUV is a random, well
conditioned and properly scaled APC of rank r < n, and the
well conditioned A-modification HUVAC += . We use
the matrices U and V whose entries can be rounded to a
fixed (s mall) number of bits to control or avoid rounding
errors in computing the matrix HUVAC += .

 Algorithms Research 2013, 2(2): 50-57 55

Surely, s mall norm perturbations of the generators U and
V , caused by truncation of their entrees, keep the matrix C
well conditioned. We rewrite the iterative refinement or
improvement algorithm to solve the linear system UCW =
with UU =0 and 00

1
0 XUCW == −

 as follows.
Algorithm 3.

kk UCW = (0.1)

kkk CWUU −=+1 (0.2)

kk WWX ++= ...0 for ,...2,1,0=k (0.3)
The solution W of the linear system UCW = is

computed by means of Gaussian Elimination with Part ial
Pivoting (hereafter GEPP), which is a backward stable
process. It is corrupted by rounding errors of the computation
of kW in (0.1), so that the computed matrix kW
(computed in single precision arithmetic u) turns into

kk UEC 1)(−+ . kE is the perturbation to the matrix C .
We can also say equivalently that there exists an error matrix

kE such that

kkk UWEC =+)(where CukcEk)(≤ (0.4)

that is, kW is an exact solution for the approximated
problem.)(kc is a constant function of order k . Another
source of error is the computation in (0.2) which, done using
double precision arithmetic u , turns numerically into

kkkkkk ECWUCWUflU ∆+−=−= −−−− 1111)((0.5)

where)()(111 −− +≤∆ kkk UWCukcE (0.6)

kkkkk WWWWflX +=+= −− 11)(. (0.7)

We recall that the summat ion (0.3) is done error free.
Algorithm 4. Let us solve the linear system UCW = ,

derived from the ill conditioned linear system bAx = , by
applying the following extended iterative refinement or
improvement algorithm.

0
1

00 UCW −= (UU =0 and 00 FCC +=)

kkk UFCW 1)(−+= (0.8)

kkkk ECWUU +−=+1 (0.9)

 kk WWX ++= ...0 , fo r ,...2,1,0=k

Let CCF kk −= .
Theorem 3.1[1]

If ρ≤
− −

−

k

k

FC

FC
1

1

1 < 1 and (0.10)

kγ≤kE for ,...,1,0=k (0.11)
then

1 1
0 1 1(1) (...).k k

k k kX X X X Cρ ρ γ ργ ρ γ− −
−− ≤ − + + + + +

In other words, XX k − is bounded by)(kγΟ for a
certain integer k .

Proposition 3.2 Let
nnCC ×∈

 be nonsingular and
let consider the linear system kk UCW = . If condCukc)(
< ρ < 1, then the matrix)(kEC + is nonsingular and

11)()(−− +=+ CFIEC kk where

condCukc
condCukcFk)(1

)(
−

≤ (0.12)

or equivalently,

)()(11
kk FICEC +=+ −−

.

4. Forward Error Analysis
Our fo rward error analysis of the extended iterative

refinement or improvement algorithm results with the
following proposition.

Proposition 4.1 (Forward error bound) Let UCW = be
a linear system derived from an ill conditioned linear system

bAx = where U is rm × , V is rn × both with full
rank r > 0, and HUVAC += is a well conditioned
A-modification. If UCW = is solved using the extended
iterative refinement or improvement algorithm, Algorithm
(4.) then for sufficiently large k the forward error

X
XX k−

 is bounded by
1

1

1
)(4

α−
ukcondCc

. That is

1

1

1
)(4

α−
≤

− ukcondCc
X

XX k

where)(1 kc and condCukc
condCukc
kc









+

−
=)(4

)(1
)(

11α

are constant functions of order k . Furthermore we have

X
XX k−

 ≤)(uΟ .

The forward error is bounded by a constant in the order of
u which is an important result.

Proof: We obtain from equation (0.4),

kkk UECW 1)(−+= .

Since kkk WWXXX −−=− −1 , we get

kkkk UECWXXX 1
1)(−
− +−−=− by using (0.4).

1
1 1 1() ()k k k k k kX X X W C E U CW E−
− − −− = − − + − + ∆

by using (0.5), 1
1 1 1() ()k k k k k kX X X W I F C U CW E−
− − −− = − − + − + ∆

by using (0.12) in Proposition (3.2),
1 1

1 1 1()()k k k k k kX X X W I F C U W C E− −
− − −− = − − + − + ∆ ,

56 Abdramane Sermé: Solving Ill Conditioned Linear Systems Using the Extended Iterative
Refinement Algorithm: The Forward Error Bound

1 1
1 ()()k k k k kX X X W I F C U C E− −
−− = − − + + ∆ by

using (0.2).
We have,

kkk WWX += −1 ,

kkk UCWX 1
1

−
− += ,

kkk UCWX 1
1

−
− =− , so that

1
1 1()()k k k k k kX X X W I F X W C E−
− −− = − − + − + ∆ ,

1
1 1 1() () ()k k k k k k k k kX X X W X W F X W I F C E−
− − −− = − − − − − − + ∆

Consequently
1

1 1 1() ()k k k k k k k k kX X X W X W F X W I F C E−
− − −− = − + + − − − + ∆

1
1() () ()k k k k k k kX X X X F X W I F C E−
−− = − − − − − + ∆ , so

1
12() () ()k k k k k kX X F X W I F C E−
−− = − − − + ∆ .

Without loss of generality we can assume that
1

1() ()k k k k k kX X F X W I F C E−
−− = − − − + ∆ .

Recall that kF < 1, and take the norm on both sides, to
get

1
1 2k k k k kX X F X W C E−
−− ≤ − + ∆ .

Recalling (0.6) and (0.7), we deduce that

1

1
1 12 () ()

k k k k

k k k

X X F X W

C c k u C W U
−

−
− −

− ≤ −

+ +

We recall the following inequalities (0.12),

condCukc
condCukcFk)(1

)(
−

≤ < 1.

From (0.7) kkk WWX += −1 ,

Therefore 1−−= kkk WXW ,

11 −− +−+−= kkkk XXWXXW
XXXW kk +−≤ −1 .

So XXXWWX kkkk +−≤≤− −− 11 .

We recall (0.6))()(111 −− +≤∆ kkk UWCukcE .
We also have

XXXW kk +−≤ −− 11

kk WCU ≤−1

.11 XCXXCU kk +−≤ −−
()

()11 ()

12 () ()1 1

1

c k condCu
X X X Xk kc k condCu

C c k u C X Xk

C X C X X C Xk

− ≤ − −
−

−+ − −

+ + − +−

1
1 1

1
1

() 2 () .2
1 ()

4 ()

k k
c k uX X C C c k u X X

c k condCu

C C c k u X

−
−

−

 
− ≤ + − − 

+

1 1

1

() 4 ()
1 ()

4 ()

k k
c k condCuX X condCc k u X X

c k condCu
condCc k u X

−
 

− ≤ + − − 
+

11
() 4 ()

1 ()
4 ()1

k
c k condCuX X condCc k uk c k condCu

condCc k u X

X X −
 

− ≤ + − 
+

−

XXXXX kk 211 αα +−≤− − where

condCukc
condCukc
kck 








+

−
=)(4

)(1
)()(11α and

ukcondCck)(4)(12 =α .

)(),(21 kk αα and)(kc are constant functions of

order k .

)(1 kα < 1 and
condCukc

ucondCkc
)(1

)(
−

< 1 since C is well

conditioned, we deduce that
XkXXkXX kk)()(2211 αα +−≤− −− .

Therefore,
2
1 2

1 2 2

()

() () ()
k kX X k X X

k k X k X

α

α α α
−− ≤ −

+ +
.

We also recall that

2 1 3 2() ()k kX X k X X k Xα α− −− ≤ − + ,

so that
3 2
1 3 1 2 2() () () ()k kX X k X X k k X k Xα α α α−− ≤ − + +

and
4 3() () ()4 21 1

() () ()1 2 2

X X k X X k k Xk k
k k X k X

α α α

α α α

− ≤ − +−

+ +

…

1 2() (()11 1
3() ... 1) ()21

k kX X k X X kk
k k k X

α α

α α

− −− ≤ − +

−+ + +

1
1 0 1() (1 () ...k

kX X k X X kα α−− ≤ − + + +

1
1 1

1 0 2
1

1 ()() ()
1 ()

k
k

k
kX X k X X k X

k
αα α
α

−
− −

− ≤ − +
−

.

Therefore, X
k

k
XX kx)(1

)(
lim

1

2

α
α
−

≤−
∞→

X
k

ukcondCc
XX kx)(1

)(4
lim

1

1

α−
≤−

∞→

)(1
)(4

lim
1

1

k
ukcondCc

X
XX k

x α−
≤

−
∞→

.

Therefore for sufficiently large k , we have

)(1
)(4

1

1

k
ukcondCc

X
XX k

α−
≤

−
. Moreover,

u
kk

ukcondCc
X

XX k .
)(1

1
)(1

)(4

11

1

αα −
≤

−
≤

−
. So,

3 2
1 1 2() ()) ()k kk k k Xα α α− −+ +		

 Algorithms Research 2013, 2(2): 50-57 57

uk
X

XX k).(β≤
−

 where
)(1

1)(
1 k

k
α

β
−

= and

)(1 kα are constant functions of order k . Therefore,

)(u
X

XX k Ο≤
−

.

5. Conclusions
We use the concepts of additive preconditioning and

Schur aggregation along with the extended iterative
refinement or improvement algorithm to reduce the
computation of bAx 1−= to the computation of the Schur

aggregate UCVIS H
r

1−−= . We solve the linear
system UCW 1−= with high precision using the extended
iterative refinement or improvement algorithm. We proved
in our forward error analysis that the forward error

kX X
X
− is bounded by

1

1

1
)(4

α−
ukcondCc

. The forward

error can further be bounded by)(uΟ , a constant of order u.
These results are in line with Higham’s results ([6], page 234,
Theorem 11.1) and constitute another way to prove the
convergence of the extended iterative refinement or
improvement to a more accurate solution

1

1()
1 1 1 1 1()

A b
HC UV b

H HC b C U I V C U V C br

−

−= −
− − − − −= + −

.

ACKNOWLEDGEMENTS
The author would like to thank Professor Victor Pan,

Distinguished professor of The City University of New York
for his support and advice. The author would also like to
thank his wife Lisa C. Serme for her support.

REFERENCES
[1] A. Serme, J. W. Richard, The Schur Aggregation and Solving

Ill Conditioned Linear Systems: The convergence theorem,
Afrika Matematika DOI: 10.1007/s13370-012-0066-x, March
2012.

[2] A. Serme, On Iterative Refinement/Improvement of the
Solution to an Ill Conditioned Linear System, Ph.D. thesis
under the surpervision of Professor Victor Y. Pan, CUNY

Ph.D. Program in Mathematics, Graduate Center, The City
University of New York, 2008.

[3] V. Y. Pan et al., Additive preconditioning and aggregation in
matrix computations, Computers and mathematics with
applications, 55(8), 1870-1886, 2008.

[4] V. Y. Pan, Structured Matrices and Polynomials: Unified
Superfast Algorithms, Boston/New York: Birkhäuser/
Springer, 2001.

[5] V. Y. Pan, Y. Yu, Certification of Numerical Computation of
the Sign of the Determinant of a Matrix, Algorithmica, vol. 30,
708-724, 2001.

[6] G. W. Stewart, Matrix Algorithms, Vol. I: Basic
Decompositions, Philadelphia: SIAM, 1998.

[7] D. E. Knuth, The Art of Computer Programming: Volume 2,
Seminumerical Algorithms, Reading, Massachusetts:
Addison-Wesley, 1969 (first edition), 1981 (second edition),
1998 (third edition).

[8] N. J. Higham, Accuracy and Stability in Numerical Analysis,
Philadelphia: SIAM, 2002 (second edition).

[9] T. Ogita, S. M. Rump, S. Oishi, Accurate Sum and Dot
Product, SIAM Journal on Scientific Computing, 26(6),
1955-1988, 2005.

[10] S. M. Rump, T. Ogita, S. Oishi, Accurate Floating-Point
Summation, Tech. Report 05.12, Faculty for Information and
Communication Sciences, Hamburg University of
Technology, November 2005.

[11] J I. Babuška, Numerical Stability in Mathematical Analysis,
Information Processing, 68 (Proc. of IFIP Congress),
North-Holland, Amsterdam, pp. 11-23, 1969.

[12] T. J. Dekker, A Floating-Point Technique for Extending the
Available Precision, Numerische Math., vol. 18, pp. 224-242,
1971.

[13] N. J. Higham, The Accuracy of Floating Point Summation,
SIAM Journal on Scientific Computing, vol. 14, pp. 783-799,
1993.

[14] J. Demmel, Y. Hida, W. Kahan, X. S. Li, Soni Mukherjee, E.
J. Riedy, Error Bound from Extra Precise Iterative
Refinement, Computer Science Division, Technical Report
UCB//CSD-04-1344, University of California, Berkeley,
February 2005.

[15] W. L. Miranker, V. Y. Pan, Methods of Aggregations, Linear
Algebra and Its Application, vol. 29, pp. 231-257, 1980.

[16] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd
edition, Baltimore, Maryland: The Johns Hopkins University
Press, 1996.

[17] G. W. Stewart, Matrix Algoritms, Vol II: Eigensystems,
Philadelphia: SIAM, 1998.

[18] V. Y. Pan, D. Ivolgin, B. Murphy, R. E. Rosholt, M. Tabanjeh,
The Schur aggregation for solving linear systems of equations,
SNC’07, July 25-27, 2007.

