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Solving Ill Conditioned Linear Systems Using the
Extended Iterative Refinement Algorithm: The Forward
Error Bound
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Abstract This paper aims to provide a bound of the forward error of the extended iterative refinement or improvement
algorithmused to find the solution to an ill conditioned linear system. We use the additive preconditioning for preconditioner
ofa smaller rank r and the Schur aggregation to reduce the computation of the solution to an ill conditioned linear systemto
the computation of the Schur aggregate S. We find S by computing W the solution of a matrix systemusing an extension of
Wikinson iterative refinement algorithm. Some steps of the algorithmare computed error free and other steps are computed
with errors thatneed to be evaluated to determine the accuracy of the algorithm. In this paper we will find the upper bound of
the forward error ofthe algorithm and determine if its solution W can be considered accurate enough.
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1. Introduction

We find the solution x = 47'p of an ill conditioned linear
system Ax=p by transforming it using the additive
preconditioning and the Schur aggregation. We use the
Sherman-Morrison-Woodbury (SMW) formula

-1

A :((,tUVH)_1 :c_l +C_1U(Ir 7VHC_1U)_1VHC_1

where A=C —UV" is an invertible square matrix and
S=1, —VHC'U to get new linear systems. The
challenge in solving these new linear systems of smaller
sizes with well conditioned coefficients matrices V7 C™,
C'U and §= I, —V"C™U is the computation of the
Schur aggregate S. The technique of (extended) iterative
refinement or improvement for computing the Schur
aggregate[14] and its application for solving linear systems
of equations has been studied in a number of papers[3, 15,
18]. Its variant that we used allows us to compute W with
high precision. The high precision is achieved by
minimizing the errors in the computation. The bound of the
forward error will allow us to determine if the computed
solution is an accurate one. This paper is divided into three
sections. The first section covers the concept of rounding
errors, floating-point summation, matrix norms and
convergence. The second section is devoted to the additive
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preconditioning, the Schur aggregation and how the
iterative refinement or improvement technique is used with
the SMW formula to transform the original linear system
Ax=5b into better conditioned linear systems. The third
section analyzes the forward error of the extended iterative
refinement or improvement algorithm and provides a
forward error bound.

2. Rounding Errors, Floating-point
Summation, Matrix Norms and
Convergence

2.1. Rounding Errors

Definition 2.1.1 Let 3 be an approximation of the scalar

x. The absolute error in £ approximating xis the number

£= ‘)2 - x‘ .

Definition 2.1.2 Let % be an approximation ofa scalar .
The absolute and relative errors of this approximation are the
~ M, respectively. If # is an

X|

numbers ‘fc—x‘ and -

approximation to x with relative error ,, then there is a
X —
number

X
such that 1) |r| =pand2) 3= x(1+7)-
X
Remark 2.1.1 The relative error , is independent of
scaling, that is the scaling x - axand X - ax leave

unchanged.

Theorem 2.1[6] Assume that £ approximates x with
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relative error p < 1.

B _ p

‘x‘ 1-p

Remark 2.1.2 Ifthe relative error of x with respect to #
is p,then x and % agree to roughly —log,(p) correct

Then 3 is nonzero and p=

significant digits. For binary system, if x and 3 have

. . —t—1
relative errorofapproximately 2 ! ,then x and 3 agree
to about  bits.

Definition 2.1.3 The componentwise relative error is

|xi —X;

|x,.|

defined as: Max, = for x=(x,,X%,,0..,X; ...)
and is widely used in the error analysis and perturbation
theory.

Remark 2.1.3 In numerical computation, one has three
main sources of errors.

1. Rounding errors, which are unavoidable consequences
of working in finite precision arithmetic.

2. Uncertainty in the input data, which is always a
possibility when we are solving practical problems.

3. Truncation errors, which are constituted and introduced
by omitted terms.

Rounding errors and Truncation errors are closely related
to forward errors.

Definition 2.1.4 Precision is the number of digits in the
representation of a real number. It defines the accuracy with
which the computations and in particular the basic arithmetic
operations +,—X,/ are performed. For floating point
arithmetic, precision is measured by the unit roundoff or
machine precision, which we denote « in single precision and
0 in double precision. The values of the unit roundoff are
given in Table 1.1 in Section 2.3.

Remark 2.1.4 Accuracy refers to the absolute or relative
error of an appro ximation.

Definition 2.1.5 Let j be an approximation of )= r(x)

computed with a precision  where ¢ is a real function ofa

real scalar variable.
minﬁm‘ :ﬁzf(x+Ax)} is called the (absolute) backward

error, whereas the absolute or relative errors of $ are called

forward errors.
Definition 2.1.6 For an approximation % to a solution of

a linear system 4y=p with (A€ C"" and be c"y,

the forward error is the ratio Hx—)?H.
&

The process of bounding the forward error of a computed
solution in terms of 4 is called forward error analysis. Ax
is the perturbation of x.

Definition 2.1.7 An algorithm is called forward stable if it
produces answers with forward errors of similar magnitude
to those produced by backward stable method.

Definition 2.1.8 A mixed forward-backward error is
defined by the equation

PHAP= f(x+Ax) where |AP[<ély] . |Ax=nlx]
with gand n are small constants.

Remark 2.1.5 This definition implies that the computed
value § differs little fromthe value p + Ap thatwould have

been produced by an input x + Ax little different from the
actual input . Simpler, j> is almost the right answer for

almost the right data.

Definition 2.1.9 An algorithm is called numerically stable
if it is stable in the mixed forward and backward error sense.

Remark 2.1.6 A backward stability implies a forward
stability but the converse is not true.

Remark 2.1.7 One may use the following rule of thumb;

Forward error < condition number x backward error,
with approximate equality possible. There fore the computed
solution to an ill conditioned problem can have a large
forward error even if the computed solution has a small
backward error. This error can be amplified by the condition
number in the transition to forward error. This is one of our
motivations for reducing the condition number of the matrix
A using the additive preconditioning method.

Definition 2.1.10 For a system of linear equations Ax =4,

[o-4x] is called the relative residual. The relative
|4l

residual gives us an indication on how closely 4x
represents p and is scale independent.

plx)=

2.2. Floating-point Number System

Definition 2.2.1[6] A floating-point number system F is
a subset of the real numbers whose elements have the form

y= tm X ,Beit. The range of the nonzero floating-point

—t
numbers in £ is given by Bmin! g| y| < pemax (=57

Any floating-point number j ¢  can be written in the form

d d d
Y= Fl+ﬂ_22+"'+ﬁ_[’ x(£f°) =.d\dy..d, x(£5°)

where each digit di satisfies

0<d,<p-1 and
dl # (0 for normalized numbers. dl is called the most

significant digit and d ; the least significant digit.

2.3. Error-free Floating-point Summation

Here is a summation algorithm due to D.E. Knuth[7].
Algorithm 1. Error-fiee transformation of the sum of two
floating point numbers

function| x, y] = Twosum(a + b)
x= fl(a+b)

z= fl(x—a)
y=f(a—(x—2))+(b-2))
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The algorithm transforms two input-floating point
numbers 4 and p into two output floating-point numbers
x and  such that g+p=x+y and x= fl(a+b). The
same solution is achieved using the Kahan-Babushka’s[11]
and Dekker’s[12] classical algorithm provided that la| > |p|-

It uses fewer ops but includes branches, which slows down
the code optimization outputs.
Definition 2.3.1[8] The unit roundoff error , is the
N e . -
quantity _E'B . We write 4 and ;i to denote the
operations performed in single precision and in double
precision, respectively.

Table 1.1. The values ofthe unit roundoff

Machine and

. . unit roundoff
arithmetic u

Bl t|e. |e

min max

IEEE Single | 2 | 24 | -125 | 128 | 2 2%506x10 8

IEEEDowble | 2 | 53 | -1021 | 1024 | 275321 11x10 10

Remark 2.3.1 The following theorem shows that every
real number x lying in F can be approximated by an
element of F with a relative error no larger than .

Theorem 2.2 If x € R lies in F then f](x)=x(1+05)
with ‘5‘ <y

Theorem 2.2says that f(x) isequalto x multipliedbya
factor very close to 1.

Definition 2.3.2 Fromnow on ﬂ() , for an argument

that is an arithmetic expression, denotes the computed value
of that expression. op represents floating-point operation in
F.

2.4. Matrix Norms

2.4.1. The Singular Value Decomposition (SVD)[3, 15]

Definition 2.4.1 The compact singular value
decomposition or SVD of an m*7n matrix 4 ofa rank P
is the decomposmon
A= S(p)z(p)T(p)H Z(p) UJs]t] where
s = (Sj)ﬁ’):l and TV = (t; ) _, are unitary matrices,
that s sWHgP) T(p)HT(p)zlp

b p b

Z(p)dlag(d ) _,is a diagonal matrix, §; and !; are m-

and n-dimensional vectors, respectively, and

0120,2..20,>0. 9; or 0;(4) for j=1,...,p is the
jth largest singular value of the matrix 4.
Definition 2.4.2 The condition number, copg,4 of a

matrix A of a rank Yo is

condyA=0y(4)/0,(4) = ||A||2 “A_l“z . A matrix is said to

be ill conditioned if its condition number is large, that is if
a1 (A)))o ,(A)> and is called well conditioned otherwise.
Definition 2.4.3[6] The matrix 2-norm
|l o1(4)=

the spectralnorm. & (4) denotes the largestsingular value

) Sup‘x‘:l‘Ax‘ = O pax (A) » 18 also called

ofthe matrix 4.
Remark 2.4.1 The matrix 2-norm satisfies the relation

L IIAII <B=dl, <[], <[B], wher

mn
11]1’

‘ai’j‘gbij for j=1,..,m and

j= 1,...,n.
[l <[4l <nal,
Lemma 2.3 For a vector norm H H, suppose that

~

[F-o] 7

~_[F-4

p= < 1. Then

B R
2.5. Numerical Nullity
Definition 2.5.1 The nullity of A, nuld =n—rankd,1s the

smallest integer » for which a rank , APC UVH can

define a nonsingular 4-modification C= A+UV " . The
nullity of 4, which is defined as the dimension of the null
space can also be defined as the large integer » for which we

have AC'U=0 or V¥C"'4=0, provided ¢ is a

nonsingular matrix. In this case, C'U and V?C™' are

the right and left null matrix bases for the matrix 4.
Definition 2.5.2 The numerical nullity of 4 is the number

of'its small singular values.

2.6. Convergence

There is a natural way to extend the notion of limit from
C to C".
Wy }

n
be a sequence of vectors in ¢” and let X € C . The

Definition 2.6.1 Let {xk (x*, x

o0
sequence {X k }1 converges componentwise to y and we
write

{xk} —> X if llmx g

=X; for j=12....n

Here is another way to define convergencein C".
. (k) (k) ()NT |®
Definition 2.6.2 Let {xk (x yeees X, ) }1
be a sequence of vectors in C” and let x e C" . The
o0
sequence {xk }1 converges normwise to x, that is
limx, =x if and only if lim|x, —x]=0
k—x

k—o

There is no compelling reason to expect the two notions of
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convergence to be equivalent. In fact for infinite dimensional
vector space, they are not.

Theorem 2.4[6] Let p ¢
limP* =0,

k—o

C™ and suppose that

o0

1_ > Pk (this
k=0

sum is called Neumann sum). A sufficient condition for

Then 7-p is nonsingular and (/- P)~

P* — 0 is that ”P” < 1 in some consistent norm, in which
Ll
1-[7]

Corollary 2.5 If ) 2N 0, then I- ‘P‘)*l is nonnegative
and (J-P)"' <(/-|P)"

case (1 + P+ P+ .+ PH)—(I-P7)|<

Theorem 2.6[6] Let ”” be a matrix norm on
c™ consistent with a vector norm (also denoted p HH) and
let a matrix x ¢ C™. Let p be asquare matrix such that

”P" < 1. Then

(i) the matrix j— p is nonsingular,

|1
=[Pl
A
1A

The following corollary extends Theorem 2.6.
Corollary 2.7[6]

,and

(i) (7 - P)” XH

(i) [ (7-P)° —1“

: oA
I 4 g| <1 then g+ £)7| < .
~|a|
Moreover, (A4+E)"' — 47" =[(I-A"'E)-1]4""
so that H(A+E)-1 _A-ISA_]A_IE.
1-[47E]

The corollary remains valid if all occurrences of HA‘IEH

are replaced by HEA’1 H )
Theorem 2.8 [8, 17] Let m denote a matrix norm and a

consistent vector norm. If the matrix 4 is nonsingular and

Ax =5 and (i) AX =b, where ¥ is an approximated value
ofx, then

i =+
=

In addition if ”A*IE” < 1,

epig)

then A=A+E is

nonsingular and

(iif) Hf_xHS HA_IEH
M

3. The Additive Preconditioning Method,
the Schur Aggregation and the
Extended Iterative Refinement or
Improvement Algorithm

3.1. The Additive Preconditioning Method

Definition 3.1.1 For a pair of matrices {7 of size mx r
and y ofsize pxr,bothhaving full rank > 0, the matrix

UV " ofrank » is an additive preprocessor (APP) of rank
r for any ;; x p matrix 4. The matrix C= 4 + UV *is the
A-modification. The matrices {7 and p are the generators
of the APP, and the transition 4 —s C is an A-preprocessing
ofrank , forthe matrix 4.An APP yp# fora matrix 4 is
an additive preconditioning (APC) and an 4-preprocessing i
an A-preconditioning if cond, AYycond,,C - An APP is an
additive compressor (4C) and an A-preprocessing is an
A-complementation if the matrix 4 is rank deficient, whereas
the A-modification C has full rank. An APP UV is
unitary if the matrices ¢ and p are unitary.

Remark 3.1.1 Suppose UV has rank ». Then[3, 18],
we expect cond,C =0,(C)/o,(C) to be to the order of

o (d)/o, (4) .

preconditioner UV ¥ is
i) random
ii) well conditioned, and

iii) properly scaled, that is "A" /HUV” “ is not large and

therefore small if the additive

not small.

Additive preconditioning consists in adding a matrix
Uy of a small rank to the input matrix 4, to decrease its
condition number. The A-modification is supposed to
generate a well conditioned matrix C . In practice, to compute
the A-modification C=4+UV" error-free, we fill the
generators {/ and p with short binary numbers.

3.2. The Schur Aggregation
The aggregation method consists of transforming an
original linear system 4x=p into linear systems of smaller
sizes with well conditioned coefficients matrices V7 C™! R
-1 .
C U,and S= I, —V*"C™'U . The aggregation method
is a well known technique[3, 14, 15, 18], but aggregation
used here both decreases the size of the input matrix and
improves its conditioning. One may remark that aggregation

can be applied recursively until no ill conditioned matrix
appears in the computation.
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Definition 3.2.1 The Schur aggregation is the process of
reducing the linear system 4x=p4 by using the SMW
(Sherman-Morrison-Woodbury) formula

At =cc-uryt=c'+cluu, -vc'uyvc!. The
matrix S = [ — V' C™'U, which is the Schur complement
(Gauss transform) of the block ¢ in the block matrix

/4 |

r

c U
, is called the Schur aggregate. The

A-modification C = A+ UV " and the Schur aggregate §
are well conditioned, therefore the numerical problems in the
inversion of the matrix 4 are confined to the computation of

the Schur aggregate S'=7, — yicT'u.

3.3. The Iterative Refinement or Improvement
Algorithm

Let C= A+ UV".Then, we apply the Sherman-Morrison
-Woodbury (SMW) formula to the original linear system
Ax=p and transform it into better conditioned linear
systems of small sizes, with well conditioned matrices

yoc™,c'U and S=1, —VC'U . We solve the
original system  Ax=bh

-1 -1 -1 H ~-1 -1 H ~-1
A =Cc+CUUI —VICTUY TV C by
the vector b. We consider the case where the matrices C and
S are well conditioned, whereas the matrices { and p
have small rank r, so that we can solve the above linear
systems with the matrices ¢ and § faster and more
accurately than the system with the matrix 4. In this case
the original conditioning problems for a linear system
Ax=p are restricted to the computation of the Schur
aggregate §.

To compute the Schur aggregate § =1, —-vicT'u

linear by post-multiplying

with precision, we begin with computing W = c'U
using the iterative refinement or improvement algorithm. We
prove that we can get very close to the solution w of the
linear system Cw =U . We closely approximate it by
working with numbers rounded to the IEEE standard double
precision and using error-free summation. A ll norms used in
this section are the 2-norm. The iterative refinement or
improvement algorithm is a technique for improving the
computed approximate solution 3 ofa linearsystem Ax=4.
Iterative refinement or improvement for the Gaussian
Elimination (GE) was used in the 1940s on desk calculators,
but the first thorough analysis of the method was given by
Wilkinson in 1963. The process consists of three steps
([61.[71.[15]).

Algorithm 2. Basic iterative refinement or improvement
algorithm

Input: An X N matrix 4, a computed solution X = X,
to Ax=>b and a vectorb.

Output: A solution vector X; approximating X in

Ax=b and an error bound Hx -

[+
Initialize: ;<1
Computations:
1) Compute the residual 7, :b—Axl. in double

precision (U )
2) Solve Ad, =r, in single precision (u) using the
GEPP
3) Update x; , =Xx; + dl. in double precision (U )
i<i+1

Repeat stages 1-3 until X, is accurate enough.

Output X; and an error bound.

The iterative refinement or improve ment algorithm can be

rewritten as follows[6]. & is the error in the computation

of ¥y, h, is the error in the computation of x, and

0
A, =A+ E,, where E0 is the perturbation to the matrix 4.
X, is acomputed solution of the linear system Ax =b.

D) ry=b—-Ax, + g,

-1

2) d, =4, r,

3) x,=xy+d, +h

Repeat stages 1-3.

The algorithmyields a sequence of approximate solutions
X,,X,... which convergesto x=A"b.

We use the extension of Wilkinson’s iterative refinement
or improvement to compute the matrix W =C'U with
extended precision. In its classical form, above the algorithm
is applied to a single system Cw=u, where W and u
are nx1 vectors. We applied it to the matrix equation
CW =U, where the solution we are seeking is the matrix w .
In its classical version, also the refinement stops when the

matrix W =C'U is computed with at most double
precision. In order to achieve the high precision in
computing W, we apply a variant of the extended iterative
refinement or improvement where the residuals dynamically
decrease, which is a must for us. We represent the output
value as the sum of matrices with fixed-precision numbers.

3.4. The Extended Iterative Refinement or Improvement

Suppose 4 is an ill conditioned non-singular zxn
matrix with nnuld =r where nnuld is the numerical
nullity of the matrix 4, UV¥ is a random, well
conditioned and properly scaled APC ofrank 7 <n,and the
well conditioned A-modification C= A+ UV . We use
the matrices ¢ and y whose entries can be rounded to a
fixed (small) number of bits to control or avoid rounding
errors in computing the matrix C=A4+Ur".
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Surely, s mall norm perturbations of the generators {7 and
v, caused by truncation of their entrees, keep the matrix C
well conditioned. We rewrite the iterative refinement or
improvement algorithm to solve the linear system cw =U

with U,=U and w, :C’IU0 =X, as follows.
Algorithm 3.

cw, =U, (0.1)
U, =U,—CW, (0.2)
X, =W, +..+Wfor p=012,.. (0.3

The solution p of the linear system Cw=U is

computed by means of Gaussian Elimination with Partial
Pivoting (hereafter GEPP), which is a backward stable
process. It is corrupted by rounding errors of the computation

of W, in (0.1), so that the computed matrix W,

(computed in single precision arithmetic 5 ) turns into

(C+E,)'U,. E, is the perturbation to the matrix ¢.
We can also say equivalently that there exists an error matrix
E, such that

(C+E W, =U,where |E,||<c(u|C| (0.4

that is, W, is an exact solution for the approximated
problem. (k) is a constant function of order . Another

source of error is the computation in (0.2) which, done using
double precision arithmetic 3, turns numerically into

Uy = ﬂ(Uk—l - CWk—l) =U;, - CWk—l +AE, (0.5)
where [AE, | < ¢, () (|Cl[, | +]U )
Xk = ﬂ(Wk—l + Wk) = Wk—l + Wk’

We recall that the summation (0.3) is done error free.

Algorithm 4. Let us solve the linear system CWw =U,
derived from the ill conditioned linear system Ax=5b, by
applying the following extended iterative refinement or
improvement algorithm.

WOZCO_lUO (UO =U and C0=C+F0)

(0.6)
(0.7)

W, =(C+F,)"'U, (0.8)
U, =U,-CW, +E, (0.9)
X, =W, +..+W, for k=0,1.2,..
et I, =C, -C.
Theorem 3.1[1]
Clenl
l_HclekH =P 1and (0.10)
|E <7, for k=0.,.., (0.11)

then
4 = X[ < o[ = X[+ 0+ P |+ prics 4 270,

55

In other words, ”Xk - X” is bounded by O(y,) fora
certain mteger f.

Proposition 3.2 Let ceCc™ be nonsingular and
let consider the linear system CW, =U, . If c(k)condCu
< p <1, then the matrix (C + E,) is nonsingularand

(C+E) "' =(U+F,)C" where
c(k)condCu
1-c(k)condCu

IF | < (0.12)

or equivalently,

(C+E,)" =C'(I+F,)

4. Forward Error Analysis

Our forward error analysis of the extended iterative
refinement or improvement algorithm results with the
following proposition.

Proposition 4.1 (Forward error bound) Let cw =U be
a linear systemderived froman ill conditioned linear system
Ax=b where Uy is mxr,y is nXr both with full
rank > 0, and C=A4+UV" is a well conditioned
A-modification. If ¢w =y is solved using the extended
iterative refinement or improvement algorithm, Algorithm

(4.) then for sufficiently large k the forward error

M is bounded by M. That is
X I-a

|¥ =X, _ 4condCe, (kyu
R

c(k)
1—-c(k)condCu
are constant functions of order f.Furthermore we have

|x = x|
|1
The forward error is bounded by a constant in the order of

u which is an important result.
Proof: We obtain fromequation (0.4),

W, =(C+E,)"'U,.

Since X —-X,=X-W,_, —W,,we get
X-X,=X-W,_, —(C+Ek)71Uk by using (0.4).
X=X, =X =W ~(C+E) (U ~CW_ +AEy)

by using (0.5),

X=X =X =Wy =+ F)C™ Uy = CWy +AE)

by using (0.12) in Proposition (3.2),

X-X,=X-W,_ —(I+F)C'U,_-W, | +C'AE}),

where ¢, (k) and a, :( +4c, (k)]condCu

< O(u).
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X=X, =X-W_,-(I+F)C U, +C'AE,) by
using (0.2).
We have,

X, =W, _, +W,,
X, =w_+C'U,
Xk —VVk_1 = CilUk,sothat
X-X, =X -W,_ —~(I+F )X, -W,_ +C'AE,),
X=Xp =X =W —(X, =Wy )= F (X, - W, )= (I + F,)C'AE;
Consequently
X=X = X =Wy + Xy + Wy = F (X = W) = (I + F)CTAE,
X =Xy =~(X = Xp) = F(Xy =Wy y) = (L + F)C A 50
2X = Xp) = =F (X = W)= + F)C A,
Without loss of generality we can assume that
X =Xy ==F (X W)~ + F)C'AE -
Recall that Fk < 1, and take the norm on both sides, to
get
-1
[ = Xl <l =il + 2] ag]
Recalling (0.6) and (0.7), we deduce that
| % = X[ <|[Efl|l X6 =i |
—1 —
2 e e+ Ul
We recall the following inequalities (0.12),

" F " < c(k)condCu <1
1—c(k)condCu
From (0.7) X, =W, , +W,,

Therefore W, =X, =W, |,
W,=X-X,,+W, - X+X,_,
7l <[l =+ ]
So | X, =W <] <)X - x|+ X
We recall (0.6) "AEk " <c, (k)L_t(”C””W,ﬁl ” + "ka1 ") .
We also have
e <X = x|+ X]
[Tl <l
[l <lellx = x| +[cllx]
c(k)condCu
1—c(k)condCu

e wm(clllx - xg ]

RERAE (lx = Xl

+2

+letlixll=Nefllax = e+ lclllx]

x| e
1—c(k)condCu

e et

+2fclele (k)ﬁz}llX Rl

||X _Xk" S{ c(k)condCu
1—c(k)condCu

+4condCe (k)i || X||

||X—Xk " S{ c(k)condCu
1—c(k)condCu

+4condCc| (k)tT"X"

|X - X, |<a|X-X,|+a,|X]| where

(k) = (C(k)

1—-c(k)condCu
o, (k) =4condCc,(k)u .
a,(k),a,(k) and ¢(k) are constant functions of
order K .
|al (k)| < 1 and

+4condCc (k)LT:| ||X -X, ||

+4condCcy (k)ﬁ} "X = X1 "

+4c, (k)]condCu and

c(k)condCu < 1 gince C is well
1—c(k)condCu
conditioned, we deduce that
X - X || < @, ()| X = X,y + e, (K)| X
Therefore, "X — X ” : 0_,12 (k)”X ~ X2 ” .
+ay (k)ery (k)| X+ oy (K) | X |
We also recall that
[X = Xy < a B = X5+ ()]
so that
|X - X[ <05 ()| X = X 3]+ off (K)ary ()| X + ey ()| X |
and|[X — Xi[| < ot 0| X - Xp_a]|+ af (Wyan (o) ] ..
+ay (k)a (k)| X+ az (k)| X||
X — x| <ot o)X - X1+ (ef k)
+al 30 +..+ D ()| X |

|X =X < o 0| X - Xo |+ 1+ oy () + .

Baf (k) +of 2 () (k) X
1- a, k)

- x| sat - i+ T Bl
Therefore, lll’n”X X ||< % (k) " ”
x—>00 - (k)
11m||X ¥ ”_ 4condCc, (k)u ” ”
X0 1(k)
i ||X -X, " < 4c0na’Cc1 (k)yu
SR e
Therefore for sufficiently large f, we have
||X -X, || 4condCc, (k)u
< . Moreover,
BT e
| = X _ 4condCe (it .1 g
< . So,
x| 1-a, (k) 1 a (k)
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Mﬁﬂ(k).u where ﬂ(k)=; and
X1 1=a, (k)
o, (k) are constant functions of order k . Therefore,
x| O(u).-

%]

5. Conclusions

We use the concepts of additive preconditioning and
Schur aggregation along with the extended iterative
refinement or improvement algorithm to reduce the

computation of x= 47'h to the computation of the Schur
aggregate S=Ir —VHC'U . We solve the linear

system W =(C'U with high precision using the extended
iterative refinement or improvement algorithm. We proved
in our forward error analysis that the forward error

4condCc, (k)u
l-¢,

error can further be bounded by Q(y), a constant of order u.

is bounded by . The forward

These results are in line with Higham’s results ([6], page 234,
Theorem 11.1) and constitute another way to prove the
convergence of the extended iterative refinement or
improvement to a more accurate solution

A1
—c-urfy 1y

= i lua, -y luy v el
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