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Abstract  Stochastic systems are often overwhelmed by incompatible performance requirements and inconsistent 

performance specifications that can be difficult to identify when supporting decision models must be constructed. 

Consequently, it is often advantageous to create a set of dissimilar options that afford distinctive approaches to the problem. 

These alternatives should satisfy the required system performance criteria and yet be maximally different from each other in 

their decision spaces. This paper describes a stochastic bicriteria procedure that can generate sets of maximally different 

alternatives. This stochastic algorithmic approach is both computationally efficient and simultaneously produces the 

prescribed number of maximally different solution alternatives in a single computational run of the procedure. 
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1. Introduction 

Stochastic systems frequently possess structural 

specifications that are hard to represent mathematically  

[1-5]. While “optimal” conditions can be calculated for the 

mathematical formulations, whether these solutions are 

actually the best for the original “real” system design 

conditions is far less certain [1], [2], [6]. To improve the 

decision-making process when faced with such ambiguities, 

it often proves preferable to propose a few dissimilar 

options that represent different system perspectives [3], [7]. 

To be beneficial to the system designers, these distinct 

options need to be close-to-optimal with respect to their 

mathematically modelled objective(s), but maximally 

different from each other within the solution space [6-8]. 

The primary purpose behind this alternative generation 

approach is to construct a set of dissimilar options that are 

“good” when evaluated with respect to the specified system 

objective(s), but which are fundamentally different from 

each other in the decision domain. The system designers 

then need to perform a subsequent assessment of this set of 

alternatives to determine which specific option(s) most 

closely satisfy their situation. Consequently, this approach 

is considered as a decision support method rather than as 

the solution creation process assumed in “normal” 

mathematical optimization. 
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Earlier option formulation approaches employed a 

straightforward process in which each alternative was 

incrementally constructed by re-running the solution 

creation algorithm whenever a new option needed to be 

produced [6-10]. These iterative procedures mimicked the 

seminal approach in [8] where, after the initial 

mathematical model had been optimized, all supplementary 

alternatives were produced one-at-a-time. These 

incremental approaches all employed n+1 computational 

iterations – initially to optimize the original problem, then 

to produce each of the subsequent n alternatives [7], [11-18]. 

Subsequently, it was demonstrated how a set of maximally 

different alternatives could be efficiently generated using 

any population-based algorithm by permitting the 

generation of the overall optimal solution together with n 

distinct alternatives in a single computational run 

irrespective of the value of n [19-23]. In [24] a data 

structure was created that permits alternatives to be 

constructed simultaneously by population-based solution 

methods. 

In this paper, it is demonstrated how a set of maximally 

different system design options can be produced by 

extending several earlier techniques into stochastic 

optimization ([12-18]). This stochastic approach advances 

the earlier procedures ([13,15-18]) by permitting the 

simultaneous generation of n distinct alternatives in a single 

computational run. Namely, to construct the requisite n 

maximally different system design options, the algorithm has 

to run only once irrespective of the value of n [19-23]. 

Furthermore, a bicriteria, max-sum, max-min objective is 

employed that combines the novel data structure into the 

simultaneous solution algorithm. The efficacy of this 

approach is illustrated on a water resources management 
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system case study. 

2. Generating Distinct Solution Options 

Mathematical programming has focused almost 

exclusively on finding single optimal solutions to 

single-objective problems or, equivalently, producing 

noninferior solutions to multi-objective formulations [2], [5], 

[8]. While these approaches may solve the formulations as 

constructed mathematically, whether these solutions are 

truly “best” for the original “real world” applications 

remains less certain [1], [2], [6], [8]. In most “real world” 

systems, there are countless system specifications that can 

never be incorporated into the mathematical problem 

formulation [1], [5]. Unavoidably, the majority of the 

subjective aspects remain unmodelled and unquantified in 

the mathematical system formulations. This frequently 

occurs when final outcomes are decided upon based not only 

on modelled objectives, but also on more subjective 

socio-political-economic preferences and stakeholder goals 

[7]. When unmodelled components are suspected to exist, 

non-traditional solution approaches are needed for searching 

the decision space not only for noninferior solutions, but also 

for sub-optimal possibilities. Specifically, any search for 

alternatives to problems suspected to possess unmodelled 

components must concentrate not only on a non-inferior set 

of solutions, but also necessarily on an explicit exploration of 

the problem’s inferior solution space. Numerous “real life” 

instances of these types of modelling situations are 

illustrated in [6], [8], [9], and [10]. 

To demonstrate the impact of unmodelled objectives on a 

solution search, assume that the optimal solution to a 

maximization problem is X* with objective value Z1* [24]. 

Suppose a second, unmodelled, maximization objective Z2 

exists that represents some “politically acceptable” feature. 

Assume that the solution, X
a, belonging to the 2-objective 

noninferior set, exists that corresponds to a best compromise 

solution if both objectives could actually have been 

simultaneously considered. While X
a would be the best 

solution to the real problem, in the actual mathematical 

formulation it would seem inferior to solution X*, since Z1a 

  Z1*. Thus, when unmodelled components are included in 

the decision-making process, inferior decisions to the 

mathematically modelled system could actually be optimal 

to the fundamental “real” problem. If unmodelled aspects 

and unquantified objectives might exist, alternative solution 

procedures are essential to not only explore the decision 

region for noninferior solutions to the modelled problem, but 

also to concurrently search the decision space for explicitly 

inferior solutions. 

Necessarily, then, in these situations, the aim is to create a 

workable set of options that are quantifiably good with 

respect to the modelled objectives yet are as different as 

possible from each other within the solution space. By 

satisfying this maximal difference condition, the resulting set 

of alternatives is able to supply truly different perspectives 

that all perform similarly with respect to the known  

modelled objective(s) yet very differently with respect     

to various potentially unmodelled aspects. By creating 

good-but-different options, the system designers are the able 

to consider potentially desirable qualities within the 

alternatives that might be able to satisfy the unmodelled 

objectives to varying degrees of stakeholder acceptability. 

To motivate the process, it is necessary to formally 

characterize the mathematical definition of maximal 

difference [6], [7]. Assume that the optimal solution to an 

original mathematical programming formulation is X* with 

corresponding objective value Z* = F(X*). An ensuing 

difference model can then be solved to produce an 

alternative solution, X, that is maximally different from X*: 

Maximize  (X, X*) = Mini
 | Xi - Xi* |    (1) 

Subject to:   X   D     (2) 

     | F(X) - Z* |   T   (3) 

where   represents an appropriate difference function 

(shown in (1) as an absolute difference) and T is a tolerance 

target relative to the original optimal objective value Z*. T  

is a user-specified limit that determines what proportion of  

the inferior region needs to be explored for acceptable 

alternatives. This difference function concept can be 

extended into a difference measure between any set of 

alternatives by replacing X* in the objective of the maximal 

difference model and calculating the overall minimum 

absolute difference (or some other function) of the pairwise 

comparisons between corresponding variables in each pair of 

alternatives – subject to the condition that each alternative is 

feasible and falls within the specified tolerance constraint. 

The population-based procedure that is subsequently 

employed is designed to generate a fixed, pre-determined 

number of close-to-optimal, but maximally different 

alternatives, by adjusting the value of T and solving the 

corresponding maximal difference problem instance by 

exploiting the population structures of the optimization 

algorithm. The survival of solutions depends upon how well 

the solutions perform with respect to the problem’s 

originally modelled objective(s) and simultaneously by how 

far away they are from all of the other alternatives generated 

in the decision space. 

3. Stochastic Optimization via 
Simulation 

Finding optimal solutions to large stochastic problems 

proves complicated when numerous system uncertainties 

must be directly incorporated into the solution procedures 

([25-28]). In the stochastic optimization via simulation 

procedures considered in this study, all uncertain parameters, 

constraints, and objective functions are replaced by 

simulation models in which the decision variables provide 

the settings under which simulation is performed. The basic 

stages can be summarized in the ensuing way ([26], [29]). 
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Assume that the mathematical formulation of the 

optimization problem consists of n decision variables, 
iX , 

denoted by the vector X = [
1X ,

2X ,…,
nX ]. If the 

objective is given by the function F and the feasible region is 

designated by D, then the mathematical programming 

problem is to optimize F(X) subject to X   D. When 

stochastic conditions exist, values for the objective and 

constraints are determined via simulation. A comparison 

between two different solutions X1 and X2 requires the 

evaluation of some statistic of F modelled with X1 compared 

to the same statistic modelled with X2 ([25], [30]). These 

statistics are calculated via simulation, in which each X 

provides the decision variable settings employed in the 

simulation. While simulation provides the context for 

comparing results, it does not provide the mechanism for 

finding optimal solutions to problems. Hence, simulation 

alone cannot be used for stochastic optimization purposes. 

Since the measures of system performance are stochastic, 

each potential solution, X, is evaluated from simulation. 

Because simulation is computationally intensive, an 

optimization procedure is used to direct the search for 

solutions through the problem’s feasible region in as few 

simulation runs as possible ([27], [30]). As stochastic system 

problems frequently contain potentially numerous feasible 

solutions, the quality of the final solution could be 

exceedingly variable unless an extensive search has been 

performed throughout all portions of the feasible space. 

Necessarily, the stochastic optimization method contains two 

alternating computational phases; (i) an “evolutionary” 

phase directed by some optimization method (frequently a 

metaheuristic) and (ii) the solution simulation phase ([31]). 

Because of the stochastic components, all performance 

measures are necessarily statistics calculated from the 

responses generated in the simulation phase. The quality of 

each solution is found by having its performance criterion, F, 

evaluated in the simulation phase. After simulating each 

candidate solution, their respective objective values are 

returned to the evolutionary phase to be utilized in the 

creation of the succeeding candidate solutions. Thus, the 

evolutionary phase aims to advance the system toward 

improved solutions in subsequent generations and ensures 

that the solution search does not become trapped in some 

local optima. After generating new candidate solutions in  

the evolutionary phase, the new solution set is returned to  

the simulation phase for comparative evaluation. This 

alternating, two-phase search process terminates when an 

appropriately stable system state (i.e. an optimal solution) 

has been attained. The optimal solution produced by the 

procedure is the single best solution found throughout the 

course of the entire search process ([31]). 

Population-based optimization methods are particularly 

beneficial for these types of searches because the complete 

set of candidate solutions maintained within their 

populations permit searches to be undertaken throughout 

multiple sections of the feasible region, concurrently. For 

population-based optimization methods, the evolutionary 

phase evaluates the entire current population of solutions 

during each generation of the search and evolves from a 

current population to a subsequent one. An evolutionary 

characteristic of population-based procedures is that better 

solutions in a current population possess a greater likelihood 

for survival and progression into the subsequent population. 

It has been shown that this type of 

optimization-via-simulation approach can be used as a very 

computationally intensive, stochastic technique ([30], [32]). 

However, because of the very long computational runs, 

several approaches to accelerate the search times and 

solution quality have been explored [29]. The next section 

introduces a procedure that incorporates simulated stochastic 

uncertainty to much more efficiently generate sets of 

maximally different solution options. 

4. Stochastic Bicriteria Algorithm  

In this section, a previously introduced data structure is 

used that permits the stochastic bicriteria algorithm to be 

employed for creating system options using any 

population-based solution algorithm [24], [33-36]. Suppose 

that the goal is to produce P distinct options in which each 

individual option possesses n decision variables and the 

algorithm’s population is to possess K sets of solution 

alternatives overall. Therefore, each solution in the 

population contains one complete set of P maximally 

different alternatives. Let Yk, k = 1,…, K, represent the kth 

solution consisting of one complete set of P different 

alternatives. Specifically, if Xkp is the pth alternative, p = 1,…, 

P, of solution k, k = 1,…, K, then Yk can be represented as 

Yk = [Xk1, Xk2,…, XkP].            (4) 

If Xkjq, q = 1,…, n, is the qth variable in the jth alternative of 

solution k, then 

Xkj = (Xkj1, Xkj2,…, Xkjn).          (5) 

Accordingly, the entire population, Y, comprised of K 

different sets of P alternatives can be expressed in vectorized 

format as, 

Y’ = [Y1, Y2,…, YK].            (6) 

The following stochastic method can produce a 

pre-determined number of close-to-optimal, maximally 

different system options, by modifying the value of T in the 

maximal difference model and using any population-based 

optimization algorithm to solve the corresponding, maximal 

difference problem. Each solution in the population is 

composed of one complete set of P different possible system 

options. By exploiting the co-evolutionary aspects of the 

algorithm, the procedure evolves each solution (i.e. set of 

alternatives) toward sets of dissimilar local optima within the 

solution domain. In this processing, each solution alternative 

mutually experiences the search steps of the algorithm. 

Solution survival depends both upon how well the solutions 

perform with respect to the modelled objective(s) and by 

how far apart they are from every other alternative in the 

decision space. 
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A straightforward process for generating alternatives 

would iteratively solve the maximum difference model by 

incrementing the target T whenever a new alternative needed 

to be produced and then re-solving the updated model [24]. 

This iterative approach parallels the seminal Hop, Skip, and 

Jump (HSJ) approach [8] in which the alternatives are 

constructed one-at-a-time through an incremental adjustment 

of the target constraint. Although the HSJ is straightforward, 

it necessitates a repetitive execution of the optimization 

algorithm [7], [12], [13]. To improve upon the stepwise  

HSJ approach, a concurrent technique was subsequently 

designed based upon co-evolution ([13], [15], [17]).      

In a co-evolutionary approach, pre-specified stratified 

subpopulation ranges within an algorithm’s overall 

population are established that collectively evolve the search 

toward the specified number of maximally different 

alternatives. Each desired solution alternative is represented 

by each respective subpopulation and each subpopulation 

undergoes the common processing operations of the 

procedure. The survival of solutions in each subpopulation 

depends simultaneously upon how well the solutions 

perform with respect to the modelled objective(s) and by 

how far away they are from all the other alternatives. 

Consequently, the evolution of solutions in each 

subpopulation toward local optima is directly influenced by 

those solutions contained in all of the other subpopulations, 

which forces the concurrent co-evolution of each 

subpopulation towards good but maximally distant regions 

within the decision space according to the maximal 

difference model [7]. Co-evolution is more computationally 

efficient than the sequential HSJ-style approach by 

exploiting inherent population-based searches to 

concurrently generate the entire set of maximally different 

solutions using only a single population [12], [17]. 

While concurrent approaches possess the ability to exploit 

population-based algorithms, co-evolution can only occur 

within each of the stratified subpopulations. Consequently, 

the maximal differences between solutions in different 

subpopulations can only be based upon aggregate 

subpopulation measures. Conversely, in the following 

stochastic algorithm, each solution in the population contains 

exactly one entire set of alternatives and the maximal 

difference is calculated only for that particular solution (i.e. 

the specific alternative set contained within that solution   

in the population). Hence, by the evolutionary nature of   

the population-based search procedure, in the subsequent 

approach, the maximal difference is calculated 

simultaneously for the specific set of alternatives considered 

within each specific solution – and the need for concurrent 

subpopulation aggregation measures is circumvented. 

Using the data structure terminology, the steps for the 

stochastic bicriteria algorithm are as follows ([14], [19-24], 

[33-36]). It should be readily apparent that the stratification 

approach employed by this method can be easily modified 

for solution via any population-based optimization 

algorithm. 

Initialization Step. Solve the original optimization 

problem to find its optimal solution, X*. Based upon the 

objective value F(X*), establish P target values. P represents 

the desired number of maximally different alternatives to be 

generated within prescribed target deviations from the X*. 

Note: The value for P must be fixed a priori by the 

decision-maker. 

Without loss of generality, it is possible to skip this step 

and to use the algorithm to find X* as part of its solution 

processing in the subsequent steps. However, this 

significantly increases the number of iterations of the 

computational procedure and the initial stages of the 

processing become devoted to finding X* while the other 

elements of each population solution are retained as 

essentially “computational overhead”. 

Step 1. Create an initial population of size K where each 

solution contains P equally-sized partitions. The partition 

size corresponds to the number of decision variables in the 

original optimization problem. Xkp represents the pth 

alternative, p = 1,…,P, in solution Yk, k = 1,…,K. 

Step 2. In each of the K solutions, evaluate each Xkp, p = 

1,…,P, with respect to the modelled objective using 

simulation. Alternatives meeting both their target constraint 

and all the other problem constraints are designated as 

feasible, while all other alternatives are designated as 

infeasible.  

Note: An individual solution can be designated as feasible 

only if all of the alternatives contained within it are feasible. 

Step 3. Apply an appropriate elitism operator to each 

solution to rank order the best individuals in the population. 

The best solution is the feasible solution containing the most 

distant set of alternatives in the decision space (the distance 

measures are defined in Step 5). 

Note: Because the best-solution-to-date is always retained 

in the population throughout each iteration, at least one 

solution will always remain feasible. A feasible solution for 

the first step can always consists of P repetitions of X*. 

Step 4. Stop the algorithm if the prescribed termination 

criteria (such as maximum number of iterations or some 

measure of solution convergence) are met. Otherwise, 

proceed to Step 5. 

Step 5. For each solution Yk, k = 1,…, K, calculate D1
k and 

D2
k, which are the bicriteria Max-Min and Max-Sum 

distance measures determined, respectively, between all the 

alternatives contained within the solution. 

As an illustrative example for calculating the bicriteria 

distance measures, compute 

D1
k =  1( Xka, Xkb) = 

, ,
Min
a b q

 | Xkaq – Xkbq | , 

a = 1,…,P, b = 1,…,P, q = 1,…,n,        (7) 

and 

D2
k =  2( Xka, Xkb) = 

1a toP 1b toP 1...q n | Xkaq – Xkbq |,  (8) 

D1
k denotes the minimum absolute distance and D2

k 

represents the overall absolute deviation between all the 
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alternatives contained within solution k.  

Alternatively, distance functions could be calculated using 

other appropriately defined measures. 

Step 6. Rank order the specific solutions by those solutions 

which contain the set of options which are most distant from 

each other. The goal of maximal difference is to force the 

options to be as far apart as possible in the decision space 

from the alternatives of each of the partitions within each 

solution. 

Let Dk = G(D1
k, D

2
k) represent the bicriteria objective for 

solution k. Rank the solutions according to the distance 

measure Dk objective – appropriately adjusted to incorporate 

any constraint violation penalties for infeasible solutions. 

Step 7. Apply the algorithmic change operations to each 

solution within the population and return to Step 2. 

5. Water Resources Case Study 

When faced with situations containing numerous 

uncertainties, water resources management (WRM) 

decision-makers often prefer to select from a set of “near best” 

alternatives that differ significantly from each other in terms 

of the system structures characterized by their decision 

variables. The efficacy of the stochastic bicriteria MGA 

algorithm will be illustrated using a WRM systems case 

taken from [37]. While this section briefly summarizes the 

case, more explicit details, data, and descriptions can be 

found in [37]. 

Maqsood et al. ([37]) previously examined a WRM 

problem for allocating water in a dry season from an 

unregulated reservoir to three categories of users: (i) a 

municipality, (ii) an industrial concern, and (iii) an 

agricultural sector. The industrial concern and agricultural 

sector were undergoing significant expansion and needed to 

know the quantities of water they could reasonably expect. If 

insufficient water was available, these entities would be 

forced to curtail their capital expansion plans. If the 

promised water was delivered, it would contribute positive 

net benefits to the local economy per unit of water allocated. 

However, if the water was not delivered, the results would 

reduce the net benefits to the users. 

The major problems under these circumstances involved (i) 

how to effectively allocate water to the three user groups in 

order to achieve maximum net benefits under the uncertain 

conditions and (ii) how to incorporate the water policies in 

terms of allowable amounts within this planning problem 

with the least risk of system disruption. Included within these 

decisions is a determination of which one of the multiple 

possible pathways that the water would flow through in 

reaching the users. It is further possible to subdivide the 

various water streams with each resulting substream sent to a 

different user. Since cost differences from operating the 

facilities at different capacity levels produce economies of 

scale, decisions have to be made to determine how much 

water should be sent along each flow pathway to each user 

type. Therefore, any single policy option can be composed of 

a combination of many decisions regarding which facilities 

received water and what quantities of water would be sent to 

each user type. All of these decisions were compounded by 

overriding system uncertainties regarding the seasonal water 

flows and their likelihoods. 

The WRM case considers how to effectively allocate the 

water to the three user groups in order to derive maximum 

net benefits under the elements of uncertainty and how to 

incorporate water policies in terms of allowable amounts 

within this planning problem with the least risk for causing 

system disruption. Since the uncertainties could be expressed 

collectively as interval estimates, probability distributions 

and uncertainty membership functions, the approach of [37] 

provided a solution for the WRM problem with a net benefit 

of $2.02 million. 

In the region studied, the municipal, industrial, and 

agricultural water demands have been increasing due to 

population and economic growth. Because of this, it is 

necessary to ensure that the different water users know 

where they stand by providing information that is needed to 

make decisions for various activities and investments. For 

example, farmers who know there is only a small chance of 

receiving sufficient water in a dry season are not likely to 

make major investment in irrigation infrastructure. Similarly, 

industries are not likely to promote developments of projects 

that are water intensive knowing that they will have to limit 

their water consumption. If the promised water cannot be 

delivered due to insufficiency, the users will have to either 

obtain water from more expensive alternate sources or curtail 

their development plans. For example, municipal residents 

may have to curtail watering of lawns, industries may have to 

reduce production levels or increase water recycling rates, 

and farmers may not be able to conduct irrigation as planned. 

These impacts will result in increased costs or decreased 

benefits in relation to the regional development. It is thus 

desired that the available water be effectively allocated to 

minimize any associated penalties. Thus, the problem can be 

formulated as maximizing the expected value of the net 

system benefits. Based upon the local water management 

policies, a quantity of water can be pre-defined for each user. 

If this quantity is delivered, it will result in net benefits; 

however, if not delivered, the system will then be subject to 

penalties. 

The WRM authority is responsible for allocating water to 

each of the municipality, the industrial concerns, and the 

agricultural sector. As the quantity of stream flows from  

the reservoir are uncertain, the problem is formulated as a 

stochastic programming problem. This stochastic 

programming model can account for the uncertainties in 

water availability. However, uncertainties may also exist in 

other parameters such as benefits, costs and water-allocation 

targets. In the formulation, penalties are imposed when 

policies that have been expressed as targets are violated. 

Also, within the model, any uncertain parameter A is 

represented by A
 and its corresponding values are 

generated via probability distributions. To reflect all of these 

uncertainties, the following stochastic programming model 
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was constructed by [37]: 

1 1 1

 
m m n

i i j i ij

i i j

Max f B W p C S    

  

       (9) 

 
1

m

i ij j

i

W S q  



     j          (10) 

maxij i iS W W       i              (11) 

0ijS       ,i j                (12) 

In this formulation f 
 represents the net system benefit 

($/m3) and iB
 represents the net benefit to user i per m3 of 

water allocated ($). iW 
 is the fixed allocation amount (m3) 

for water that is promised to user i, while maxiW 
 is the 

maximum allowable amount (m3) that can be allocated to 

user i. The loss to user i per m3 of water not delivered is given 

by iC 
, where Ci > Bi ($). 

ijS
 corresponds to the shortage 

of water, which is the amount (m3) by which Wi is not met 

when the seasonal flow is qj. jq
 is the amount (m3) of 

seasonal flow with pj probability of occurrence under j flow 

level, where pj provides the probability (%) of occurrence of 

flow level j. The variable i, i = 1, 2, 3, designates the water 

user, where i = 1 for municipal, 2 for industrial, and 3 for 

agricultural. The value of j, j = 1, 2, 3, is used to delineate the 

flow level, where j = 1 represents low flows, 2 represents 

medium flows, and 3 represents high flows. Finally, m is the 

total number of water users and n is the total number of flow 

levels. 

WRM planners faced with difficult and controversial 

choices generally prefer to select from a set of near-optimal 

alternatives that differ significantly from each other in terms 

of their system structures. In order to create these alternative 

planning options for the WRM system, it would be possible 

to place extra target constraints into the original model which 

would force the generation of solutions that were different 

from their respective, initial optimal solutions. Suppose for 

example that five additional planning alternative options 

were created through the inclusion of a technical constraint 

on the objective function that decreased the total system 

benefits of the original model from 2% up to 10% in 

increments of 2%. By adding these incremental target 

constraints to the original SO model and sequentially 

resolving the problem 5 times, it would be possible to create 

a specific number of alternative policies for WRM planning. 

However, to improve upon the process of running five 

separate additional instances of the computationally 

intensive SO algorithm to generate these solutions, the 

population-based, dual-criterion MGA procedure described 

in the previous section was run only once, thereby producing 

the 5 additional alternatives shown in Table 1. The table 

shows the overall system benefits for the 5 maximally 

different options generated. Given the performance bounds 

established for the objective in each problem instance,    

the decision-makers can feel reassured by the stated 

performance for each of these options while also being aware 

that the perspectives provided by the set of dissimilar 

decision variable structures are as different from each other 

as is feasibly possible. Hence, if there are stakeholders with 

incompatible standpoints holding diametrically opposing 

viewpoints, the policy-makers can perform an assessment of 

these different options without being myopically constrained 

by a single overriding perspective based solely upon the 

objective value. 

Table 1.  System Benefits ($ Millions) for 6 Maximally Different 
Alternatives 

Maximally Different 

Solutions 

WRM System Benefits 

($ Millions) 

Best Solution Overall 2.02 

Best Solution Within 2% 1.98 

Best Solution Within 4% 1.96 

Best Solution Within 6% 1.92 

Best Solution Within 8% 1.88 

Best Solution Within 10% 1.81 

The computational example highlights several important 

aspects with respect to the MGA technique: (i) 

Population-based algorithms can be effectively employed as 

the underlying optimization search procedure for SO 

routines; (ii) Population-based solution searches can 

simultaneously generate more good alternatives than 

planners would be able to create using other MGA 

approaches; (iii) By the design of the MGA algorithm, the 

alternatives generated are good for planning purposes since 

all of their structures are guaranteed to be as mutually and 

maximally different from each other as possible (i.e. these 

differences are not just simply different from the overall 

optimal solution as in an HSJ-style approach to MGA); (iv) 

The approach is very computationally efficient since it need 

only be run once to generate its entire set of multiple, good 

solution alternatives (i.e. to generate n maximally different 

solution alternatives, the MGA algorithm would need to be 

run exactly the same number of times that the FA would need 

to be run for function optimization purposes alone – namely 

once – irrespective of the value of n); and, (v) The best 

overall solutions produced by the MGA procedure will be 

identical to the best overall solutions that would be produced 

for function optimization purposes alone. 

6. Conclusions 

Stochastic system design inherently involves 

unquantifiable structural elements and inconsistent design 

specifications. These system design problems frequently 

possess incompatible components that are difficult to 

incorporate into underlying mathematical decision models. 

These stochastic models frequently omit certain key system 

aspects that can significantly impact the appropriateness of 

their solutions. These omitted features require system 
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designers to somehow incorporate numerous inconsistencies 

into their decision-making process prior to the final design 

resolution. When confronted by these incongruencies, it is 

unlikely that any single solution can satisfy all of the 

ambiguous system requirements. Consequently, decision 

support approaches have been created to address the 

confounding features, while simultaneously retaining 

enough flexibility to incorporate the inherent system 

incongruities. 

This paper has applied a stochastic bicriteria procedure to 

system design. This computationally efficient algorithm can 

simultaneously construct entire sets of close-to-optimal, 

maximally different system design options. The bicriteria 

objective can efficiently generate the requisite set of 

good-but-dissimilar options, with each generated solution 

providing an entirely different perspective for the system. 

The max-sum objective criteria ensure that the distances 

between the created options are good in general, while the 

max-min criteria ensure that the distances between the 

options are good in the worst case. Since the stochastic 

algorithm can be applied to a wide range of system design 

problem, the practicality of this bicriteria algorithm can be 

extended to wide array of “real world” system applications. 

These extensions will be examined in future computational 

studies. 
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