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Abstract  This work describes the hypothesis where the explanation of the Earth’s axial precession can be based on the 

General Theory of Relativity solution. In this solution, the entire Solar System disk would rotate like a solid (or rigid) body, 

so that the Earth changes its position with respect to the “fixed” stars. On this assumption, we define the equation that 

describes the period of Earth’s axial precession based on the relativistic solution and comparing our estimates with the 

observations, finding a good approximation between the estimated period of the Earth’s axial precession and the 

observations. 
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1. Introduction 

Axial precession, also called precession of the equinoxes, 

is one of the Earth’s movements, currently considered the 

circular movement of the rotational axis, whereby the axis 

slowly traces out an imaginary cone with respect to the 

“fixed” stars. 

Thus, what is seen is that Earth’s axis rotates completely 

around 360° in a period of about 25,771.5 years (called 

Platonic year) [1], which implies an axial precession of 

about 0.0139689° per year. During such a period, the visible 

positions of stars as measured in the equatorial coordinate 

system will slowly change.  

The projection onto the sky of Earth’s axis of rotation 

results in two notable points at opposite directions: the 

North and South celestial poles. Over this cycle the Earth’s 

North axial pole apparently moves from where it is 

appointing now (within 1° of Polaris star) in a circle about 

the ecliptic pole, with an angular radius (α) in average of 

23.45°.  

Currently, there is a classical solution, but not yet fully 

proven and confirmed to date, which attempts to explain the 

axial precession, considering that this precession is caused 

by the gravitational influence of the Sun and the Moon 

acting on Earth’s equatorial bulge. Then, considering that 

the precession of Earth’s equinoxes is due to the Sun and 

Moon torques [2]. To a much lesser extent, the planets 

would exert influence as well [3]. 

However, the fact that the planets also influence on the  
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axial precession, would indicate that this precession should 

not be as regular as it is observed, since each planet changes 

its position within the Solar System at a different rate and 

these could not exert a regular influence on Earth 

throughout the Platonic period. Furthermore, it is known 

that all the planets precess due to the apsidal precession, 

and Earth’s orbit motion by the apsidal precession is not 

currently considered in this classical solution for axial 

precession, which should cause a difference in the 

calculated axial precession when Earth’s apsidal precession 

is considered.  

In addition, it is considered that Newtonian theory of 

gravity, that is the theory on which the current explanation 

of axial precession is based, presents limitations typical of 

this type of classical theory, mainly regarding to rotating 

systems, as that this theory does not consider all the 

energies involved in a rotating system, as Lagrangian 

mechanics and the General Theory of Relativity do [4]. 

Moreover, this classical solution does not directly 

consider the General Theory of Relativity (GTR) [5], which 

also includes the Newtonian theory of gravity, as well as 

considers the distortion of space-time, the dynamics of the 

expansion of the universe and all the energies, kinetics and 

potentials, involved in the dynamics of the rotating systems, 

and has been shown to be a predictive theory that has been 

able to coherently describe the dynamics and kinematic and 

dynamic behaviour of most celestial bodies in space-time.  

Thus, in this solution we will give possible explanations 

that solve those inconsistencies, based on the General 

Theory of Relativity solution, which also considers the 

apsidal precession in the solution. Then, we found that this 

axial movement can be estimated from the total force 
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equation for a rotational gravitational system solution 

derived from the General Theory of Relativity, being 

composed by the sum of the Newtonian force of gravity, the 

centrifugal force and the force related to the Coriolis force. 

Then, this solution is different to the classical solution of 

the Newtonian force in the third term, since it includes the 

force with the inverse of the distance to the fourth power. 

The aim of this work is to describe the hypothesis where 

the explanation of the axial precession can be based on the 

General Theory of Relativity solution.  

In this solution, entire Solar System disk would rotate 

like a solid (or rigid) body, so that Earth would periodically 

change its position with respect to the “fixed” stars (Fig. 1). 

Thus, we define the equation that describes the period  

of axial precession based on the relativistic solution and 

comparing our estimates with the observations, finding a 

good approximation between the estimated period of the 

Earth’s axial precession and the observations. 

2. General Theory of Relativity Solution 
for the Total Force 

A relativistic solution for the angular movement of the 

celestial bodies in a rotational system can be determined 

from a study of the solutions of Einstein’s equations 

following the standard procedure [6,7]. Thus, the total force 

for a rotating system is given as 
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where r is a position vector and L is the orbital angular 

momentum of the rest mass m, given by 

2 .L mrv mr               (2) 

The first term in Eq. (1) represents the Newtonian 

gravitational force, which is described by the inverse-square 

law. This is the case of Newton equation [8] that describes 

the orbital motion of planets around the Sun. The second 

term represents the centrifugal force in the circular motion. 

The third term is related to the Coriolis force, which includes 

the inverse of the distance to the fourth power, which is 

derived from the GTR. 

3. Apsidal Precession in the Rotating 
Reference Frame 

In a rotating reference frame, precession results from the 

angular velocity of rotation and the angular velocity 

produced by the torque [4], which matching with the General 

Theory of Relativity solution. Let us consider a body with 

rest mass m in circular orbit at a distance r from the axis of 

rotation. In such a framework, the orbiting body will undergo 

precession expressed by the angular velocity of precession 

ωφ as described for a rotating gyroscope of radius r [9], with 

some equivalencies defined as 
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where dφ is the differential of the precession angle, dt is the 

time differential, M0 is the modulus of angular momentum, I 

is the moment of inertia of a ring of radius r, ω is the angular 

velocity around the axis of rotation and g is the gravitational 

acceleration.  

When a solid body rotates around its spin axis under an 

external force (given by F(r) = m∙g), the moment of the 

external forces is not null, and the angular momentum is 

non-conservative (L ≠ 0). Thus, the angular momentum 

changes direction with precession as an additional circular 

motion. Taking into account the third term of Eq. (1) and 

taking the rotational velocity ω × r of a body in circular 

motion, the angular momentum of inertia is written as 
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The angular velocity of precession for a body revolving 

around a central point can be estimated by substituting Eq. 

(4) into Eq. (3), giving 
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where dθ is the differential of the radial angle covered by the 

rotation of the body in the rotational framework. Extending 

Eq. (5) to celestial mechanics, consider Kepler’s geometry 

with a planet in elliptical orbit around the Sun as the focus.  

In the ellipse we have that ρ = a(1 - e2), where a is the 

semi-major axis and e is the eccentricity. When the 

eccentricity tends to zero, parameter ρ tends to the radius r of 

a circle. While the body moves in one revolution (θ = 2π 

radians), the precession angle dφ for elliptical motion can be 

written as 
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giving the same relativistic equation that is used to estimate 

the advance of Mercury’s perihelion [10]. As known, by 

substituting the known data for Mercury [11] into Eq. (6),   

the perihelion advance of Mercury can be estimated for 

approximately 43.013” arc per century.  

It is known today that all planets precess, regardless of 

their distance from the Sun, and this equivalence can be 

applied to determine the apsidal precession of all other 

planets in the Solar System, giving the same results as the 

observations for each respective apsidal precession. 

4. Axial Precession in the Relativistic 
Solution 

In the scenario where the entire Solar System disk is 
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rotating like a solid body, the effect of that motion should be 

perceived from the Earth as a change in linear position with 

respect to the “fixed” stars, noting that these would have an 

apparent periodic circular motion [12]. Taking into account 

the third term of Eq. (1) for a rotational system [13], we can 

reduce the common terms, giving 
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and for the acceleration, we can write 
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where ac is related to the Coriolis acceleration, also having 

the following equivalences: 
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Integrating Eq. (9) two times with respect to time, we 

obtain 
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In the case of the free fall of a body, xc is the displacement 

in the opposite direction to the Earth’s rotation, and its 

velocity is given as 
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The time to reach the ground is given by 
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where h is the height and g is the gravitational acceleration. 

Then, substituting Eq. (12) into Eq. (10), the final 

displacement is given as 

3

21 2
.

3
c

h
x g

g

 
   

 
           (13) 

To get an idea of the magnitude of this displacement xc, let 

us consider an object at the equator free falling from a height 

of 100 meters. Substituting these values into Eq. (13) gives a 

total displacement of about 2.2 cm. This amount is small 

compared to the 100-meter drop, but it is certainly 

measurable. Furthermore, from Eq. (11) and with the 

equivalence Ω = v/r for circular motion, we obtain 
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With this condition, from Eqs. (8), (9) and (14) we can 

write the equation equivalent to the case of a rotating disk in 

the plane of rotation as 

2
2

2

1
2 2

2 3

3
2 ,

3

.
6

v

v

GM v
r

rc

GMv

c r

 
    

 

 
   

 
 

       (15) 

Since apsidal precession in a planet is that its orbit has a 

periodic advance, it is necessary to include this movement of 

Earth’s orbit. From the General Theory of Relativity solution, 

the apsidal precession is given by Eq. (6). Thus, the total 

angular frequency ΩT of the system is obtained by adding the 

apsidal precession from Eq. (6) for a rotating and orbiting 

body, giving 
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where tP is the time in seconds of a sidereal year. Then, for 

one revolution (2π radians), the total period is given by 
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Substituting the Earth-Sun system data [14] into Eq. (17) 

for the maximum distance rMax (during the aphelion), and the 

related minimum orbital velocity v, total angular frequency 

equals 7.72554 × 10−12 radians per second (50.2881” arc  

per year, or 0.0139689° per year). For one revolution (2π 

radians), total period in the case of the Earth equals 8.133 × 

1011 seconds (25,771.5 years), which is according to the 

observed period of Earth’s axial precession. 

Thus, a consequence of the axial precession is a changing 

pole star. Currently, Polaris star (at a distance from Earth of 

about 323 – 433 ly) is extremely well-situated to mark the 

position of the North celestial pole. According to the 

observations, in the year 2100 AC, Earth’s North Pole will 

appoint at only 0.5° of Polaris star. Vega star (at a distance 

from Earth of about 25.04 ± 0.07 ly) in the constellation Lyra 

is often touted as the best North star due to its brightness. It 

fulfilled that role around 12000 BC and will do so again 

around the year 14000 AC. However, it never comes closer 

than 5° to the North Pole. 

According to the Fig. 1, we can interpret that about the 

year 2100 AC (point A), Earth’s North Pole will be 

appointing near of Polaris star (point C); and later, when 

planet travels out by half period of the Platonic year to the 

opposite side (point B) by such a circular motion, then 

Earth’s North Pole will appoint near of Vega star (point D) in 

the year 14000 AC, changing the Earth its position within the 

Solar System and also maintaining in average the same 

angular radius (α in Fig. 1) with respect to the ecliptic, then 
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changing its linear reference with respect to the “fixed” stars, 

and resulting in the effect of the axial precession, matching 

with the known observations and predictions. 

 

Figure 1.  Entire Solar System disk scheme rotating like a solid (or rigid) 

body for the Earth’s orbit. Then, Earth periodically would be changing its 

position with respect to the “fixed” stars. Angular radius (α) is in average of 

23.45° along the changing of the Earth position 

5. Conclusions 

This work describes the hypothesis where the explanation 

of the Earth’s axial precession can be based on the 

relativistic solution. Then, this work shows the use of Eq. (1) 

derived from the solution of General Relativity, which 

considers all the forces and energies involved in a rotating 

system, applied here to estimate the axial precession. In this 

solution, the entire Solar System disk would rotate as a 

solid (or rigid) body, so that the Earth changes its position 

with respect to the stars that we can consider as "fixed"  

stars. Then, we define Eq. (17), which also considers the 

advancement of the Earth’s orbit due to the apsidal 

precession to estimate the period of Earth’s axial precession, 

and comparing our estimates we find a good approximation 

with the observations. One of the important significances of 

the result of this work is that for the explanation of the 

Earth’s axial precession it is possible to use the relativistic 

solution to find the known period of the axial precession, 

since in this solution the total net or absolute force 

considers a third term, which includes the force related to 

the Coriolis force in a rotating system, which is inverse of 

the distance to the fourth power; while the classical 

Newtonian total force, derived from the Newtonian theory 

of gravitation, only considers two terms, which are the 

Newtonian force of gravity and the centrifugal force, then 

having some limitations proper to this type of classical 

theory, and does not consider all the forces and energies 

involved in a rotating system. This is the reason why in the 

classical solution is necessary to add some external 

gravitational forces to the rotating system to adjust the 

calculations of classical mechanics to the observations. 

Thus, according to classical dynamics, axial precession 

depends mainly on the gravitational forces exerted by the 

Moon and the Sun on Earth’s equatorial bulge, so that if  

the Earth were hypothetically a perfect sphere, those 

gravitational forces would not be producing any torque or 

moment of inertia on the Earth and there would be no 

change in the direction of the Earth’s axis, and there would 

be no axial precession. 

On the other hand, the relativistic solution is different 

comparing to the Newtonian theory and to the classical 

dynamics considerations, mainly with regard to rotating 

systems, and does not require adding any other external 

gravitational force to fit it to the observations, and the   

axial precession only depends on the entire Solar System 

disk being rotating like a solid (or rigid) body, so the 

gravitational forces of the Moon, Sun and other planets on 

Earth’s equatorial bulge would not affect to have axial 

precession. The next step to probe the cause of the Earth’s 

axial precession is to make more detailed observations and 

comparisons of the motion of the other planets with respect 

to the "fixed" stars, in order to verify whether the behaviour 

and dynamics of the entire Solar System disk behaves 

according to the relativistic solution and it rotates like a 

solid body.  
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