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Abstract  In this paper, we investigate some thermodynamics properties of quantum Black Hole. The Black Hole of 

Reissner-Nordstrom model with a self-gravitating charged pure vacuum shell as a source is studied using Schrödinger 

equation. We show that the density energy strongly influences the horizon radius of the black hole. It is shown that the gravity 

has no effect for certain values of the mass of quantum black hole. Moreover, the probability density shows that Black Hole 

stabilises itself when the radius increases. We show that the quantum Black Hole loses information when the event horizon 

increases. We show the evidence that quantum black Hole emit information. It is seen that the heat capacity increases with 

temperature and follow the Dulong and Petit Low. We observed that the Quantum black Hole system loses a certain amount 

of energy. 
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1. Introduction 

Nowadays, advanced researches in physics of high 

energy have attracted many scientists, particularly the 

fascinating science of Black Hole (BH) [1,2]. Thus, many 

connections have been made between astronomy and 

certain theories of physics in order to better understand the 

physics of black holes [3], and this is how astrophysics was 

born [4,5]. In principle, astrophysicists create and evolve 

physical models and theories to reproduce and predict 

observations. The tools used are of great variety and include 

analytical models and numerical analysis. These models 

lead us to study several aspects such as stellar dynamics and 

the evolution of stars, the great structures of matter in the 

universe, the origin of cosmic rays, general relativity, 

cosmology, which serves as a basis for the astrophysics of 

black holes and the study of gravitational waves. A variety 

of theoretical arguments indicate that black holes can be 

studied as classical or quantum object.  

Classically, black hole (BH) is a region of space time 

exhibiting strong gravitational effect where particles and 

light cannot escape once it's swallowed up. BHs can be 

considered as a perfect absorbers [6]. A BH is not really 

black, because it reflects no light [7,8]. They are described 

by several parameters such as their mass, angular momentum 

and charge. In views of such issues, there are four basics 

theoretical kinds of black holes solutions from Einstein  
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equation depending on the metric which is the key to 

understand the physics of black hole [9]. Nowadays, 

classical General Relativity still provides successful 

description of gravity. However, it may be reasonable to 

consider gravitational effects in BH’s study. We know that 

quantum mechanics plays a vital role in the behaviour of the 

matter fields. There appears the problem of defining a 

consistent scheme in which the space-time metric is treated 

classically but is coupled to the matter fields which are 

treated quantum mechanically [10]. Thereby come the origin 

of quantum black hole (QBH) [11]. 

Concerning the quantum black holes also called micro 

black holes, much work has been done using a fixed 

background during the emission process first pointed out by 

Hawking [12]. In 1974 he discovered that BH should emit a 

black body radiation with the temperature depending on their 

parameters. This idea is seen as paradox for many scientists 

because in classical level, BH is considered as an object 

which cannot emit any radiation [13]. The basic idea is that, 

due to natural interactions and fluctuations in the vacuum, 

the matter will be created in the form of an electron and 

anti-electron. When this occurs near the event horizon, one 

particle will be ejected away from the BH, while the other 

will fall into the gravitational well [14]. In 1984, Gerad’t 

Hooft [15] suppose that BH should be subject to the same 

roles of quantum mechanics as ordinary elementary particles, 

he concludes that they can radiate as a black bodies with    

a certain temperature and the energy density can easily    

be drawn. In 1996, Marcello barreira et al [16] point out 

quantum gravitational effects on BH radiation, using loop 

quantum gravity. He derived the emission spectra by using 

loop quantum gravity and showed that the quantum 
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properties of geometry affect the radiation considerably. 

Hawking radiation from BH is nowadays one of the most 

remarkable effect which can be justify using a combination 

of quantum mechanics and general relativity [17,18,19]. 

In this paper we used classical and quantum methods   

to show that QBH stores energy and emits information as 

was respected by literatures [20,21,22]. Intense researches 

[23,24,25] as carried out in order to determine the 

thermodynamics properties of BH. In 2017 Mahamat Saleh 

et al [26] derived the energy and thermodynamics in 

schwarzchild black hole by considering quantum fluctuation, 

The results show that due to the quantum fluctuations in the 

background of the Schwarzschild BH, all the energies 

increase and Einstein energy differs from Møller’s one. 

Moreover, when increasing the quantum correction factor, 

the difference between Einstein and Møller energies, the 

Unruh-Verlinde temperature and the heat capacity of the 

black hole increase while the Hawking temperature remains 

unchanged. Berezin [27,28] considered that the temperature 

of the Reissner nordstrom BH grows when its mass decrease. 

He investigated a model of BH interacting with the 

background metric. In addition, He found that as the mass of 

the black hole decreased, the area of the event of horizon go 

down, thus violating the law that, classically, the area cannot 

decrease. So far, however, the gravity effect has not yet been 

treated in the number of papers. In this paper, a Reissner 

Nordstrom BH surrounded with the gravity effect is 

considered to investigate the thermodynamic properties and 

the stability of the black hole.  

The paper is organized as follows. In section 2, we begin 

by outlining the model of BH interacting with gravity  

effect. We also quantify the system and then calculate 

thermodynamics parameters. Section 3 is devoted to results. 

We end with conclusion.  

2. Model and Calculations 

2.1. Hamiltonian of the System 

There exist many ways to analyze the information in BH. 

One of the method is to employ classical general relativity 

[29,30,31,32]. We first investigate the Hamiltonian of the 

system. The general spherical symmetric metric can be 

represented as: 

 2 2 2 2 22 ,ds Adt Hdtdq Bdq r t q d     , 

0A  , 0B                  (1) 

where  
2 2 2 2sind d d    

 
is the line interval of the unit 

sphere. , ,A B H  and r  are functions of q  and t  only. 

We consider now the condition of orthogonality which 

requires that:  

0H  .                  (2) 

In a standard gauge, the metric then takes the form: 

 2 2 2 2 2,ds Adt Bdq r t q d    , 0A  , 0B    (3) 

For the Reissner Nordstrom BH, the metric is given by:  

 2 2 1 2 2 2 ,ds fdt f dr r d              (4) 

with 
2

2

2

2 8
1

3

km ke
f k r

r r
               (5) 

where out  is the density energy of external space and the 

mass of the BH can be written from (2) in terms of the areal 

coordinate r  as:  
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In other to quantize a system, Berezin [33] uses the 

following relation:  
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From equation (7)  
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Using equation (7), (8) and (9), we show that the 

Hamiltonian is (see Appendix B):  
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2.2. Schrödinger Equation and Probability Density 

The stationary equation of Schrödinger is given by: 

   H r E r  . Using the commutation relation 

 ,r i    and i
r


  


, we obtain the Schrödinger 

equation: 

     

 

2 2 2
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 (11) 

The solution of this equation will be obtained numerically 

because it is quite difficult to solve it analytically. But    

we know that having the Hamiltonian and solving the 

Schrödinger equation, we can be able to obtain the Eigen 

vector which is the wave function here and the Eigen value 

which is the energy.  

Knowing the wave function, we can also obtain the 

probability density of quantum BH in order to see if      

the system is able to store and keep information. The 

mathematical expression for probability density given as:  

 
2

P r  
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2.3. Horizon Radius and Area of BH  

Let consider the dynamics invariant of Reissner 

Nordstrom BH: 

2
2

2

2 8
1

3
out

m e
f r

r r

 
         

Let’s determine the solutions of: 

4 2 28 3 6 3 0outr r mr e            (12) 

This equation is obtained when the dynamic invariant 

equal to zero (lapse function). 

4 2 23 3 3
0

8 8 8out out out

m
r r r e

  
       (13) 

Note that Eq. (13) helps to determine the location of    

the horizon radius hr . However, the best way to extract 

thermodynamic information about the BHs is given      

by horizon radius. By taking into consideration the 

approximation 1  , and 2 3

8
l


  we can rewrite Eq. (13) 

in the form: 

4 2 2 2 2 22 0r l r ml r l e            (14) 

Eq. (14) is of order 4; hence it has four solutions. After 

some transformations, we discovered that it is difficult     

to solve it analytically. The same kind of equation has been 

obtained by [34] and for details, see appendix A. This 

equation can easily be solved and the physical acceptable 

solutions are hr  and cr  representing respectively the 

horizon radius and cosmologic radius are given by: 
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When 1  , the hr  expansion as a function of m , l  

and e  give: 
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With 
2

2

4
1

e

l
                           (19) 

Let’s note that for l  , 1   and 

2 2
hr m m e   , we have the limiting case which 

coincides with the result that we know (the Reissner 

Nordstrom Black Hole):  

2 2 2r km k m e k     and the Schwarzschild BH for 

0e  . 

These results are obtaining especially when we take into 

account the self-gravitational interaction, the background 

space time as dynamical and the energy as conservation.  

There are a number of different ways in which 

thermodynamic ideas can be introduced into black hole 

physics, the simplest approach is to consider the black holes 

as a spherical quantum object allowed to radiate. However, 

when quantum mechanical effect is taking into account, it 

supposes that black hole emit thermal radiation, so we can 

now investigated on thermodynamic properties of black 

holes. 

According to the second law of thermodynamics, the 

event horizon always increases. 
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    (20) 

In this part, we are dealing with the work of Bardeen, 

Carter and Hawking [35,36] to find the temperature, 

performed calculations using a semi-classical approximation, 

putting Beskenstein conjecture on a firm basis. They 

established that the BH temperature is proportional to its 

surface gravity. Considering the gravitational term, we 

obtained: 
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 (21) 
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3. Numericals Results 

We will display here the curve for the horizon radius and 

area of the BHs all as functions of mass. We also plot the 

diagram of density probability and heat capacity. 

Figure 1 shows the graph of horizon radius as function of 

the mass of BH for different values of the vacuum energy 

density. It is observed that the horizon radius increases with 

the mass and exhibits parabolic shape, which means that the 

gravitational potential gradually increases the horizon radius. 

Increases faster for large masses than small masses. But 

when the parameter out  become smaller, the shape of our 

curve become linear. This means that black holes change in 

size for different value of density energy. Therefore, this 

behaviour has important consequences on the shape of black 

hole. We also see that for out =0.2 and out =5 the curve is 

linear and not out =20. Moreover we also observe two 

points of singularities where density energy didn’t have 

effect on the curve.  

Figure 2 presents the area of BH as function of mass for 

different values of out . We observe that the area of thee RN 

black hole increases with mass. We observe also that the area 

has several behaviour when we vary the vacuum energy 

density. While increasing the mass, we found that the area of 

a BH is not sensitive to the vacuum energy. Indeed, Berezin 

[37] proved that the area of a BH cannot decrease. This is 

confirmed in the present work and going further, by adding 

the gravitational term, we do not break down the theory. This 

also confirms the second law of thermodynamics for BHs 

problems. If the mass of BH increases then this means that its 

surface area adds its volume too. And since the area of a BH 

is linked with the entropy of a system, we can say that by 

increasing the area we increase also the entropy knowing the 

formula 
4

A
S

G
 . These results have been obtained by [38] 

when they studied the spectroscopy and thermodynamics of 

MSW BHs. The volume enclosed within a given area is 

maximized for a spherical surface; this is the reason soap 

bubbles are spherical. For BHs, surface area corresponds to 

entropy, so from thermodynamically considerations, we 

would expect that spherical BHs would maximize entropy 

[39]. 

In figure 3, we have plotted the probability density as 

function of the horizon radius. It can be seen that the 

probability density is a decreasing, non-periodic function of 

horizon radius. This probability density of a BH oscillates 

decreasing with a period of oscillation. Then this process 

produces quantum mechanical entanglement entropy, which 

can be thought of as a measure of the loss of information 

about correlations across the horizon. The decreasing of 

probability density tells us that the quantum system of BH 

loses information contained inside when the event horizon 

increases. Taking into account the gravity is also affecting 

the BH, and then the control of information inside BH will be 

quite difficult. This result inform us that when the horizon 

radius of a BH has a high value, its amplitude reduces and 

tends to stabilize the system which first loses energy. The 

beginning of the curve shows a very fast increasing in 

density probability. 

 

 

Figure 1.  Variation of horizon radius hr  with mass m  
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Figure 2.  Variation of area A  of BH with mass m  for different values of vacuum energy density out  

 

 

Figure 3.  Probability density P  of a BH as function of horizon radius hr  with the presence of gravity 
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Figure 4.  Heat capacity vC  as function of temperature   of a BH 

We observe in figure 4 that the heat capacity increases 

with temperature following the 1Dulong and Petit Low [40]. 

However, this heat capacity is most in the negative domain, 

then the system loses a certain amount of energy until it 

reaches the resonance especially BHs. The sudden variation 

of the curve is observed for the negative heat capacity and 

small temperature. In fact, it is known that for small BHs 

(BH with low event radius), the heat capacity is negative and 

Landsberg [41] confirmed that negative heat capacities occur 

for black holes. In this work, we shown that in the presence 

of gravitational field, the heat capacity is negative too; this 

means that the gravity reduces the size of BH and the heat 

capacity presents some negative value. We can conclude that 

at the resonance the system does not communicate any more 

with its environment. Figure 4 makes it clear that for the high 

value of temperature, the heat capacity tend to be positive 

and attain a saturate value. 

4. Conclusions 

They are several alternative approaches to study 

information in black holes. In this paper, based on the 

previous work of Berezin and some recent literature, we have 

discussed the gravitational effect on quantum black holes of 

Reissner Nordstrom especially on the thermodynamic 

properties. First of all, we investigate the classical equation 

of motion which helps to quantize the system. From 

Schrödinger equation we see that when the horizon radius of 

a BH has a high value, its amplitude reduces and tends to 

                                                             
1 This law was formulated in 1819 by Pierre Louis DuLong and Alexis Therese 

Petit. 

stabilize the system which loses energy. We determine the 

thermodynamic quantities from dynamic invariant, such as 

the temperature, heat capacity, entropy. The temperature 

shows that the mass of BH decreases when the temperature 

increases. We show that the heat capacity of the system is a 

function of temperature and follow the Dulong and petit law. 

We observe that for the high value of temperature, the heat 

capacity tend to be positive, attain a saturate value which 

means that the system does not communicate any more with 

its surrounding at resonance.  

Appendices 

Appendix A 

To solve the polynomials in one variable we shall consider 

how to compute and how to represent the zero of a general 

polynomial of degree d in one variable r 

  1 2
d d-1 2 1 1a a .... a a ad dp r r r r r       

If the degree d is four or less, then the root are functions of 

the coefficients which can be express in terms of radicals. As 

it is shown in [42] it is easy to obtain those roots with Maple 

or Mathematica Software. 

Appendix B 

To determine the Hamiltonian of equation (10), we 

proceed as follows 

From the equation of dynamics of BH given by  
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We replace inf  and outf  into equation (1) and we 

obtain: 
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where   represent extrinsic curvature tensor 

1,in out    

Relation (2) implies that  
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Taking the square of both sides, we have  
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The final equation corresponding to the mass of BH is 

given as 
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From here, we derive now the Schrödinger equations 

corresponding to a quantum BH. 

From equation (A5), we may write these equations     

of motion (respectively momentum, Hamiltonian and 

Lagrangian). The momentum is expressed as  

,
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The equation of motion involving Hamiltonian and 

Lagrangian are:  

L
H P L L 




   


, 

and  

2

d H d
L H H

 
 

 


  

   

By evaluating each terms, we obtain relations 
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Where  F   is an arbitrary function. The choice of this 

function does not affect the Lagrangian equations of motion. 

Therefore the Lagrangian is written as  

2 2

2 2
3

ln 1 1

4
( )

2 3
out

L M M

M e
F

   


   



      
 


  

 

Suppose that   0F    

(A7) becomes  argsinh
p

M
  

Then, the derivative of areal coordinate is  

sinh
p

M


 
  

 
               (A8) 

Inserting (A8) into (A5) leads us to 

2 2
34

cosh
2 3

out
p M e

H M
M


 



 
   

 
   (A9) 

Let us use the commutations relations given by: 

 , x i    and i
x


  


, 

If x M   then 2 2 2x M  , 

dx Md  then 2 2 2dx M d  

The Hamiltonian becomes: 
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2 2 3

i i
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e e M e
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 
 

 (A10) 

The stationary equation of Schrödinger in this particular 

case is given by: 
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Finally, we find the Schrödinger equation as: 
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