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Abstract  This work is a review that summarizes the previous works that describe the theory in which the movement of 

some circular or disk cosmological systems, such as the entire disk of the Solar System and spiral galaxies, corresponds to the 

dynamics like a rigid body in rotational motion. It has been found that both the Lagrangian solution and the relativistic 

solution consider all the energies and forces involved in the rotating systems. On this assumption, we have been derived the 

respective equations to explain the apsidal precession of the planets, the Earth’s axial precession and the rotation curves of 

some spiral galaxies, all of them due to the effect of rotating systems like a rigid body in rotational motion. A good 

approximation between the calculated and the observations for each of these cases has been found. Thus, this theory unifies 

classical mechanics (through Lagrangian mechanics) with the solution of general relativity and its intrinsic consideration of 

the rigid body in rotational motion in the three-dimensional framework. Also, it unifies all these rotational behavior of these 

disk cosmological systems in the same concept of the rigid body in rotational motion. 

Keywords  Solar system: General, Planet-disk interactions, Galaxies: spiral, Kinematics and dynamics, Lagrangian 

mechanics, General Theory of Relativity 

 

1. Introduction 

Newton’s law of gravitation [1,2] has been applied for 

hundreds of years with some success to explain several 

observed mechanical and astronomical phenomena, and it is 

still used to try to explain some problems in cosmology, 

although having some difficulties to provide an exact 

solution and confirm the measurements and observations in 

several cases. 

The issue is that the classical total force only considers 

two terms, which are the Newtonian gravitational force  

and the centrifugal force [2]. Then, it has some limitations 

proper of this classical theory since it does not consider any 

other energy or force involved in the rotating systems. This 

is the reason why is necessary to add some matter or forces 

to adjust the calculations to the rotational velocities 

observed in spiral galaxies, such as the dark matter concept 

[3], which has not been detected to date, or even develop 

some adjustments like the proposed in the Modified 

Newtonian Dynamics (MOND) theory [4,5]. The main 

problem with these considerations is that the rotation of 

spiral galaxies and the entire Solar System (as circular or 

disk cosmological systems) have not been well taken   

into account,  even in most  of the standard astronomical 
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considerations.  

On the other hand, the net or absolute total force in    

the relativistic solution, which is derived from the General 

Theory of Relativity (GTR) [6], also considers a third 

additional term that includes the force related to the Coriolis 

force in a rotating system, which is inverse of the distance 

to the fourth power [7]. This is the main reason why the 

relativistic solution can be considered to provide an exact 

solution which does not require any additional matter and 

does not require any adjustment to fit to the rotational 

velocities observed in spiral galaxies. 

This work summarizes the previous works that describe 

the theory in which the movement of some circular or disk 

cosmological systems, such as the entire disk of the Solar 

System and spiral galaxies, they all behave like a rigid  

body in rotational motion. Through those works, it has been 

found that both, Lagrangian and relativistic solutions 

consider all the forces and energies involved in the rotating 

systems. On this assumption, have been derived the 

respective equations to explain the apsidal precession of the 

planets [8], the Earth’s axial precession [9,10] and the 

rotation curves of some spiral galaxies [11,12], if the gas  

is assumed to be a stable component of the galaxy, as 

described by the quasi-stationary density wave theory, 

which characterizes spirals as rigidly rotating, long-lived 

patterns (i.e. steady spirals) [13]. In the case of the barred 

spiral galaxies, the Kerr metric has been considered as  

part of the solution. Thus, the existence of barred spiral 

galaxies could be a confirmation of the Kerr metric. A good 
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approximation between the calculated and the observations 

for each of these cases has been found. Thus, this    

theory unifies classical mechanics (through Lagrangian 

mechanics) with the solution of the general relativity in  

the three-dimensional framework. Also, it unifies all these 

rotational behavior of these disk cosmological systems in 

the same concept of the rigid body in rotational motion. 

Although there may be several independent 

investigations to date regarding the existence of the 

supposed dark matter by indirect detection (that is, 

attributing some observations to dark matter), so far this is  

a proposed conjecture and its existence has not yet been 

confirmed or directly detected to date, so that its existence 

cannot yet be categorically confirmed. Therefore, the  

other theories that do not require dark matter to explain the 

rotation curves observed in spiral galaxies, such as the one 

considered here, should not be ruled out. 

2. Lagrangian Solution for the Total 
Force of the Rotating System 

2.1. Lagrangian Solution for the Rotating Frame of 

Reference 

The rotating frame of reference is a frame that rotates 

around a spin axis (fixed for simplicity) with a given  

angular velocity. A rotating frame of reference is usually 

characterized by three inertial forces: the centrifugal force, 

the Coriolis force, and for a non-uniformly rotating frame  

of references, the Euler force [14]. The rotating frame of 

reference can be described through the general case of a  

rigid body in rotational motion and a fixed frame [15]. It is 

considered the distance from the spin axis to the final 

position of a point P that according to the fixed frame of 

reference is the radius vector named rf (which will be 

considered as our generalized coordinate in the rotating 

system for the Lagrangian solution), while some position of 

the same point according to the rotating frame of reference is 

named r, and 

,fr r R                   (1) 

where R denotes the position from the origin of the rotating 

frame of reference according to the fixed frame. As usual, 

Lagrangian function summarizes the dynamics of the entire 

system, determining the kinetic and potential energies of the 

system, given by: 

,L T V                   (2) 

where T is the total kinetic energy and V is the potential 

energy of the system [16]. Furthermore, the rotating frame of 

reference is described by the Lagrangian [17] for the motion 

of a particle with rest mass m in a rotating frame (with its 

origin coinciding with the fixed-frame origin, for simplicity) 

in the presence of the potential U(r), given as: 

21
( ),

2
fL mr U r               (3) 

and the derivative of the generalized coordinate (1) is written 

as: 

,fr r R r r  =               (4) 

where Ω is the angular velocity vector of the rotating frame 

of reference. Then, (3) can be written as: 

21
( , ) ( ).

2
L r r m r r U r             (5) 

For the rotating system, the Euler-Lagrange equation is 

given by: 

0.
f f

d L L

dt r r

  
  

   

             (6) 

In addition, the equation for the canonical momentum in 

this system can be written as: 

  ,
f

L
p m r r

r


  


           (7) 

and for the first part of (6), hence: 

 .
f

d L
m r r r

dt r

 
   

  

        (8) 

Moreover, for the second part of (6), the partial derivative 

is given by: 

 ( ) .
f

L
U r m r r

r


       

    (9) 

Thus, from (8) and (9), the Euler-Lagrange equation (6) 

for rf term [18] is reduced as: 

 ( ) 2 .mr U r m r r r           (10) 

In addition, the potential energy generates the fixed-frame 

acceleration, -∇U = maf, and from (10), for the acceleration 

can be written as: 

 a a A 2 ,r f rr v r          (11) 

which represents the sum of the net acceleration (af - A). 

The centrifugal acceleration is given by -Ω × (Ω × r), and 

ac = -2Ω × vr is the Coriolis acceleration. When the final 

velocity vf is equivalent to the Coriolis velocity vc, yields: 

2 .
2

f
c f

v
v v r

r
               (12) 

In addition, from (11) the velocity is given as: 

 
22 2 2 22 ,r f f fv v v r r v r          (13) 

where simplifying, velocities in the two reference frames are 

given by the well-known equation: 

.f rv v r                (14) 

This means that the final velocity of a body rotating in    

a rotating frame of reference is the addition of both, the 
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velocity of the body at the distance r from centre and the 

angular velocity of the rotating frame of reference at the 

same distance from the spin axis. The force in a body with 

rest mass m in the rotating system is given as: 

 
2

2

2
2

,

2 ,

r
f

f
f

mv m
F v r

r r

v
F m r v

r

  

 
     
 
 

        (15) 

where the second term is the centrifugal force, and the third 

term 2mΩ × vf is the Coriolis force. 

2.2. Total Force in the Rotating Frame of Reference 

As usual, the total energy in a rotating system is given by: 

( ),KE E V r                 (16) 

where EK is the kinetic energy and V(r) is the effective 

gravitational potential energy. From (13) and (16), we can 

write: 

 

2

2

1
( ),

2

1
( ).

2

r

f

E mv V r

E m v r V r

 

  

         (17) 

And having the gravitational potential energy related to 

some central resting mass M and a given particle with rest 

mass m orbiting at a distance r, the total energy can be 

written as: 

 2 2 2

2 2 2

1
2 ,

2

1 1
,

2 2

f f

f f

GMm
E m v v r r

r

GMm
mv E m r m v r

r

     

 
       

 

 (18) 

where G is the Newtonian constant of gravity. Then, from 

(16), the effective gravitational potential energy is given as: 

2 21
( ) .

2
f

GMm
V r m r m v r

r
          (19) 

Furthermore, the angular momentum of a test particle of 

rest mass m orbiting in a circular motion, in polar coordinates 

is defined as: 

2 ,L mrv mr                   (20) 

where ω is the angular velocity of the body in a circular orbit. 

Also, considering the angular velocity of the rotating frame 

of reference, it can be written as: 

2 ,L mr                     (21) 

where Ω is the angular velocity of the rotating frame of 

reference. The second term of the right side of (19) 

corresponds to the angular velocity of the body orbiting 

around the centre, and the third term corresponds to the 

angular velocity of the body with respect to the rotating 

frame of reference. From this correspondence, (19) can be 

written as: 

2 21
( ) ,

2
f

GMm
V r m r m v r

r
           (22) 

and multiply second and third terms, respectively, by terms 

that complement the parameters, which are equal to the unit 

(without changing its value or physical meaning), and 

replacing the angular velocity from (12), becomes: 

 

2
2 2

2

2
2 2 2 2

2

1
( ) ,

2

( ) .
22

f
f

f

f f

f

m v rGMm mr
V r m r m v r

r m v rmr

mr v v m rGMm
V r

r r m v rmr






 



   
       

      

 
        

(23) 

Solving this equation, we can apply the equivalence 

between the escape velocity and the final orbital velocity [19] 

defined by: 

2
2 ,e

GM
v vf

r
             (24) 

where ve is the escape velocity. Also, considering the 

equivalence whit the orbital velocity v0 [20] given by: 

0 ,f
GM

v v
r

               (25) 

and v = ω × r, and reducing common terms, (23) can be 

written as: 

   
2 2

2 2 2

2 2 3
( ) .

2

f

e

mr v r mrGMm
V r

r mr mv r

 
      (26) 

From (20) and (25), we can write (26) in terms of the 

angular momentum of a body in a circular motion [21,22] as: 

2 2

2 2 3
( ) ,

2 e

GMm L GML
V r

r mr mv r
           (27) 

and by the radius derivative, the magnitude of the net or 

absolute total force is given by: 

2 2

2 3 2 4

3
.

e

GMm L GML
F

r mr mv r
           (28) 

On the scenario where the escape velocity of a massive 

body (such as a black hole) is, as known, the speed of light  

c [8,23] and the escape radius is equivalent to the 

Schwarzschild radius [24], then we have the correspondence: 

2 2 2 22 2
,e f f

e S

r r
v v c v

r r

   
     

   
        (29) 

where re is the escape radius and rs is the Schwarzschild 

radius. Replacing (29) in (28), becomes: 

2 2

2 3 2 4

3
.

GMm L GML
F

r mr mc r
           (30) 

The third term is related to the Coriolis force [7], which 

includes the inverse of the distance to the fourth power, 
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which is derived from the GTR. This shows that the 

relativistic solution for the total force intrinsically considers 

the dynamics of a rotating disk system like a rigid body in 

rotational motion in the three-dimensional framework, which 

allows to unify classical mechanics (through Lagrangian 

mechanics) with the solution of the general relativity in the 

three-dimensional framework. Equations (28) and (30) are 

the same formula, and there is only one conversion factor, 

which is Eq. (29) referred to in [8,23], to express equation 

(28) as equation (30). These calculations are fully supported 

by Lagrangian mechanics, and it is easy to follow them by 

someone who knows this method. 

3. Apsidal Precession in the Rotating 
Frame of Reference 

Considering a body with rest mass m in a circular orbit at a 

distance r from the spin axis of a rotating system, precession 

results from the angular velocity of rotation and the angular 

velocity produced by the torque [8]. Then, the orbiting body 

will undergo precession expressed by the angular velocity of 

precession ωφ as described for a rotating gyroscope of radius 

r [25], with some equivalencies defined as: 

0 0

2

( )
,

M Md mgr r F r

dt L I I mr





  


          (31) 

where dφ is the differential of the precession angle, dt is the 

time differential, ω is the angular velocity around the axis of 

rotation, I is the moment of inertia of a ring of radius r, M0 is 

the modulus of angular momentum and g is the gravitational 

acceleration. When a rigid body rotates around its spin axis 

under an external force (for instance, given by F(r) = m∙g), 

the moment of the external forces is not null, and the angular 

momentum is non-conservative (L ≠ 0). Then, the angular 

momentum changes direction with precession as an 

additional circular motion. In this way, considering the third 

term of (30) and the rotational velocity of a body in a circular 

motion, the angular momentum of inertia becomes: 

0 2

3
( ) .

GMmv
M r F r

c


             (32) 

Substituting (32) into (31), hence: 

2 2 2 2

2 2

3 1 3 1
,

3 3
,

d GMmv GMv

dt c mr c r

GM dt GMd
d

rc rc


 




 


   
     

   

 

   (33) 

where dθ is the differential of the radial angle covered by the 

rotation of the body in the rotating frame of reference. 

Extending (33) to the Kepler’s geometry for a planet in an 

elliptical orbit around the Sun at a focus, where in the ellipse 

ρ = a(1 - e2), where a is the semi-major axis and e is the 

eccentricity. When the body moves in one revolution (θ = 2π 

radians), becomes: 

   2 2 2 2

3 (2 ) 6
.

1 1

GM GM
d

a e c a e c

 
  

 
       (34) 

Thus, considering the Newtonian equivalence of GM in 

terms of the period T for an elliptical orbit, defined as: 

2 3

2

(2 )
,

a
GM

T


               (35) 

and replacing in (34), becomes 

   

3 2 3 2

2 2 2 2 2 2

3(2 ) 24
,

1 1

a a
d

c T e c T e

 
  

 
     (36) 

which is the same relativistic equation to calculate the 

advance of Mercury’s perihelion [26]. 

As known, by substituting the known data for Mercury [27] 

into (36), the advance of Mercury’s perihelion gives about 

43.013” arc per century (Figure 1). It is known that all 

planets precess, regardless of their distance from the Sun, 

and this equivalence can be applied to determine the apsidal 

precession of all other planets in the Solar System, giving the 

same results as the observations for each respective apsidal 

precession. 

 

Figure 1.  Precession of Mercury’s perihelion in a rotating frame of 

reference with angular velocity Ω 

4. Axial Precession in the Relativistic 
Solution 

Considering that the entire disk of the Solar System could 

be rotating like a rigid body, the effect of that motion should 

be perceived from the Earth as a change in linear position 

with respect to the considered “fixed” stars, noting that these 

would have an apparent periodic circular motion [9,10]. 

From the third term of (30) for a rotating system, reducing 

common terms, becomes: 

 
2

2
2

2 4 2

3 3
,

c
c

c

GM mr GMm
F

mc r c

 
        (37) 

and for the acceleration, yields: 
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2

2

3
a ,c c

GM

c
                 (38) 

where ac is related to the Coriolis acceleration, which also 

has the following equivalences: 

2a 2 a 2 2 .c t v r               (39) 

Thus, integrating (39) two times with respect to time, 

hence: 

31 1
a .

3 3
cx t rt                 (40) 

In the case of the free fall of a body, xc is the displacement 

in the opposite direction to the Earth’s rotation, and its 

velocity is given by: 

1
.

3

c
c

x
v r

t
                  (41) 

The time to reach the ground is given by: 

1

221 2
,

2

h
h gt t

g

 
    

 
          (42) 

where h is the height and g is the gravitational acceleration. 

Substituting (42) into (40), the final displacement is written 

as: 

3

21 2
.

3
c

h
x g

g

 
   

 
             (43) 

To get an idea of the magnitude of this displacement xc,  

let us consider an object at the equator free falling from a 

height of 100 meters. Substituting these values into (43) 

gives a total displacement of about 2.2 cm. This amount is    

small compared to the 100-meter drop, but it is certainly 

measurable. Furthermore, from (41) and with the 

equivalence Ω = v/r for a circular motion, we obtain: 

1 1
,

3 3

.
3

c c

c

v
r v r r r

r

v

r





 
      

 



     (44) 

From Eqs. (38), (39) and (44), yields: 

2
2

2

1
2 2

2 3

3
2 ,

3

.
6

v

v

GM v
r

rc

GMv

c r

 
    

 

 
   

 
 

         (45) 

Having the apsidal precession from (36), we must include 

this movement of Earth’s orbit in the total angular frequency 

ΩT of the system, giving: 

 

1
2 2

2 3 2 2
P

6
,

6 1
T v

GMv GM

c r a e c t





 
      

 
 

   (46) 

where tP is the time in seconds of a sidereal year. For one 

revolution (2π radians), the total period is written as: 

 

T

1
2 2

2 3 2 2
P

2 2
,

2
.

6

6 1

T
v

T

T

T

GMv GM

c r a e c t



 







 
  



 
 

 
 

       (47) 

 

Figure 2.  Entire disk of the Solar System scheme rotating like a rigid body 

for the Earth’s orbit. Earth periodically would be changing its position with 

respect to the considered “fixed” stars 

For the maximum Earth-Sun distance rMax and the  

related minimum orbital velocity, substituting the Earth-Sun 

system data [28] into (47), the total angular frequency equals 

7.72554 × 10−12 radians per second (0.0139689° per year), 

and for one revolution, the total period is 8.133 × 1011 

seconds (25,771.5 years), which is according to the observed 

period of Earth’s axial precession. Angular radius (α) is in 

average of 23.45° with respect to the ecliptic along the 

changing of the Earth position. Since a consequence of the 

axial precession is a changing pole star, we interpret from the 

Figure 2 that about the year 2100 AC (point A), Earth’s 

North Pole will be appointing near of Polaris star (point C). 
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Later, when the Earth travels out by half period of the 

Platonic year to the opposite side (point B), Earth’s North 

Pole will appoint near of Vega star (point D) in the year 

14000 AC, changing the Earth its position within the Solar 

System, and resulting in the effect of the axial precession, 

coinciding with the known observations and predictions. 

5. Rotational Velocities Solution in 
Spiral Galaxies 

We revisit the equation that describes the rotational 

velocity of stars in spiral galaxies based on the general 

relativity solution [11]. And based on the Kerr metric, 

dynamics and geometry of barred spiral galaxies [12] are 

explained. In particular, we show examples of the calculated 

rotation curves of unbarred spiral galaxies NGC 4378 and 

NGC 4594, and barred spiral galaxies Milky Way and NGC 

7541, comparing our calculations with the observations, 

finding a good approximation. 

5.1. Kerr Metric in the Barred Spiral Galaxies 

The Kerr metric [29] is an exact solution of the vacuum 

Einstein equations that generalizes to a rotating uncharged 

black hole with angular velocity Ω● different of zero and of 

massive resting mass M● of the Schwarzschild metric [24].  

In Kerr’s original paper, he presented the metric in the 

following form 

 

  

  

2
2 2

2 2 2

2 2

2 2 2 2 2 2

2
1 sin

cos

2 sin sin

cos sin ,

mr
ds dv a d

r a

dv a d dr a d

r a d d




 

  

 
     

 

    

   

    (48) 

where a = J●/M●c is the ratio between the angular momentum 

of rotation J●. 

 

Figure 3.  Kerr metric of a rotating black hole 

The Schwarzschild curvature singularity at r = 0 is 

replaced in the Kerr metric by r2 + a2cos2θ = 0, that is, r = 0 

and θ = π/2. Due to the cos2θ term in the square root solution, 

the outer surface resembles a flattened sphere that touches 

the inner surface at the poles of the rotation axis, where the 

colatitude θ equals 0 or π; the space between these two 

surfaces is called the ergosphere. Thus, the inner surface 

marks the event horizon [30] (Figure 3). The size and shape 

of these surfaces of a would depend on the black hole’s mass 

and angular momentum. 

Furthermore, a barred spiral galaxy has a central bar that 

starts from diametrically opposite points of the galactic 

nucleus. Then, taking into account the Kerr metric, we can 

consider that stars and gas that are moving at the outer zones 

with the spiral arms, where the outer event horizon is near of 

the surface. 

When stars and gas reach the region of one of the two 

rotation poles of the black hole, it is strongly suggested (but 

does not yet confirmed) that matter and gas clouds interact at 

the edges of the bar losing angular momentum and thus 

facilitating the creation of a flow of matter and gas that is 

diverted following a straight path from the outside region 

towards the axial poles, then forming the bar (Figure 4). 

 

Figure 4.  The dynamics around the Kerr metric of a rotating black hole, 

and the forming of the bar of a barred spiral galaxy 

5.2. Rotational Velocity for Spiral Galaxies 

Considering Eq. (37) from the relativistic solution for the 

force FC, in the same way as with the equation for classical 

mechanics scenario, we equate it to the centrifugal force Fc 

[11], obtaining: 

2 2
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             (49) 
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Furthermore, according to Eq. (21), we can write the 

angular momentum as: 

2 ,gJ M r                   (50) 

where Mg is the mass of the system (in this case, mass of the 

spiral galaxy). 

Then, the rotational velocity can be calculated by the 

angular velocity of the system, by its equivalence with 

angular momentum J, or by the specific angular momentum  

j = J/Mg [31], which increases almost linearly with respect to 

any distance from the nucleus as a function of distance in the 

spiral galaxies, giving: 

2

2 3 2

2

2 3

3
,

3
,

g

GM J
v

c r M

GM j
v

c r






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               (51) 

with M in this case being the resting mass M● of the galactic 

nucleus. Having that θ = Ωt and, for the sake of describing 

the geometry of this equation, considering the Schwarzschild 

radius rs [24]. Then, we write (49) in polar coordinates as: 

2

22
,

3

3
,

2
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GM rv r v

t rc

r r 

    
   

   

 

           (52) 

which is the equation of a spiral. The two main arms of a 

spiral galaxy can be geometrically represented in (52) by 

considering the (±) signs. In addition, considering the Kerr 

metric, geometry around a rotating axially-symmetric black 

hole would form the bar from the spiral towards the axial 

poles. Thus, from (52), the geometry of barred spiral galaxies 

can be written as: 

3
,

2
sr r                      (53) 

which is the equation of a spiral with two centres (Figure 4). 

The length of the bar will depend on how far the effect of the 

horizon event at the rotation poles reaches to transport matter 

and gas from the outer region towards the singularity. 

Following the Kerr metric, it depends on the mass of the 

black hole, the rotation speed, and the closeness that the 

outer horizon event reaches to the external environment at 

the rotation poles. 

Table 1.  Rotational velocities: Tabulation of respective rotational velocities calculated from Eq. (51) for the unbarred spiral galaxies: NGC 4378 and NGC 
4594, and the barred spiral galaxies: Milky Way and, NGC 7541 

Galaxy Sa NGC 4378 Sa NGC 4594 SB Milky way SB NGC 7541 

Central 

mass (M●) 
7.9 × 107 M☉  6.6 × 108 M☉ 

 
2 × 1010 M☉  

4.9 × 

1010 
M☉  

Total mass 

(Mg) 

3.65 × 

1011 
M☉  

3.66 × 

1011 
M☉ 

 

1.3 × 

1012 
M☉  

4.6 × 

1011 
M☉  

Distance 

from 

nucleus 

(kps) 

Log (J) 

J 

(kg m2 

s-1) 

Rotational 

velocity 

(km s-1) 

Log(J) 

J 

(kg m2 

s-1) 

Rotational 

velocity 

(km s-1) 

Log (J) 

J 

(kg m2 

s-1) 

Rotational 

velocity 

(km s-1) 

Log (J) 

J 

(kg m2 

s-1) 

Rotational 

velocity 

(km s-1) 

0 0 0 0 0 0 0 0 0 0 0 0 0 

1.25 70.91 
8.21× 

1070 
280 70.09 

1.22× 

1070 
120 87.31 

2.03× 

1087 
249 69.38 

2.38× 

1069 
160 

2.5 71.42 
2.64× 

1071 
318 70.82 

6.63× 

1070 
230 87.74 

5.47× 

1087 
238 69.86 

7.24× 

1069 
172 

5 71.87 
7.41× 

1071 
316 71.40 

2.49× 

1071 
305 88.12 

1.33× 

1088 
204 70.31 

2.03× 

1070 
170 

7.5 72.12 
1.32× 

1072 
306 71.69 

4.85× 

1071 
324 88.45 

2.81× 

1088 
235 70.55 

3.58× 

1070 
164 

10 72.30 
1.99× 

1072 
300 71.88 

7.66× 

1071 
332 88.59 

3.92× 

1088 
213 70.74 

5.53× 

1070 
164 

12.5 72.44 
2.73× 

1072 
295 72.04 

1.09× 

1072 
339 88.80 

6.25× 

1088 
243 70.89 

7.84× 

1070 
167 

15 72.55 
3.56× 

1072 
292 72.16 

1.45× 

1072 
343 88.91 

8.11× 

1088 
240 71.02 

1.05× 

1071 
170 

20 72.73 
5.37× 

1072 
286 - - - 89.11 

1.29× 

1089 
247 71.23 

1.69× 

1071 
178 

22 72.79 
6.19× 

1072 
285 - - - 89.17 

1.49× 

1089 
249 71.30 

2.00× 

1071 
182 

25 - - - - - - 89.26 
1.82× 

1089 
251 71.39 

2.47× 

1071 
186 
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5.3. Comparison between Calculated and Observed 

Rotational Velocities in Spiral Galaxies 

 

Figure 5.  Plot of respective rotational velocities versus distance from 

nucleus for the unbarred spiral galaxies: NGC 4378 and NGC 4594, and the 

barred spiral galaxies: Milky Way and, NGC 7541. The dashed lines are 

calculated from Eq. (51), and the solid lines come from the observations 

 

Figure 6.  Plot of respective angular momentum for the unbarred spiral 

galaxies: NGC 4378 and NGC 4594, and the barred spiral galaxies: Milky 

Way and, NGC 7541. The curves show the same almost linear pattern for all 

these spiral galaxies along the different distances from their respective 

nucleus 

The rotational velocity of some unbarred and barred spiral 

galaxies are calculated by applying (51). In particular, 

considering as an example the known rotation curves of the 

spiral Sa galaxies: NGC 4378 and NGC 4594, and spiral SB 

galaxies: Milky Way and, NGC 7541. Thus, having the 

known values for each of these four spiral galaxies [32-38], 

the results are tabulated in Table 1 (Rotational velocities) for 

each galaxy. It is observed that the nucleus masses of barred 

spiral galaxies are larger than the nucleus masses of unbarred 

spiral galaxies. The rotation curves are plotted in Figure 5, 

which shows the calculated results for these galaxies. The 

observed rotation curves of these galaxies [39,40] are 

superimposed on the calculated rotation curves. Then, the 

solid lines in Figure 5 show the rotation curves obtained from 

the observations. And the rotation curves calculated with (51) 

are shown as dashed lines, finding a good approximation 

between the calculated rotation curves and the known 

rotation curves of these spiral galaxies. The respective 

angular momentum along the different distances from the 

nucleus for these spiral galaxies are plotted in Figure 6. It is 

shown the same almost linear pattern of angular momentum 

for all these spiral galaxies. On the other hand, the Oort 

constants [41] have not been considered in this work, since 

such constants are empirically derived parameters that 

particularly characterize the local rotational properties of the 

Milky Way. 

6. Conclusions 

This work aims to summarize the previous works that 

together describe the theory in which the movement of some 

circular or disk cosmological systems, such as the entire disk 

of the Solar System and spiral galaxies, corresponds to the 

dynamics like a rigid body in rotational motion. It has been 

found that both the Lagrangian solution and the relativistic 

solution consider all the energies and forces involved in the 

rotating systems in the three-dimensional framework. In this 

way, most of the equations on this work are derived from Eq. 

(1), which is the formula of the system for the rigid body in 

rotational motion. This shows that the relativistic solution for 

the total force considers the dynamics of a rotating system 

like a rigid body in rotational motion. There are derived the 

respective equations to explain the apsidal precession of the 

planets, the Earth’s axial precession and the rotation curves 

of some spiral galaxies, all of them due to the effect of 

rotating systems like a rigid body in rotational motion.     

A good approximation between the calculated and the 

observations for each of these cases has been found. Thus, 

this theory unifies classical mechanics (through Lagrangian 

mechanics) with the solution of general relativity in the 

three-dimensional framework. Also, it unifies all these 

rotational behaviour of these circular or disk cosmological 

systems in the same concept of the rigid body in rotational 

motion. Then, (51) describes the rotational velocity of some 

spiral galaxies based on this relativistic solution. We present 

preliminarily examples of the rotation curves of unbarred 

spiral galaxies: NGC 4378 and NGC 4594, and barred  

spiral galaxies: Milky Way and, NGC 7541. Comparing  

our calculations with the observations we find a good 

approximation. Furthermore, the existence of barred spiral 

galaxies could be a confirmation of the Kerr metric. It is 

shown that the respective angular momentum for these spiral 

galaxies has the same almost linear pattern along the 

different distances from their respective nucleus. One of the 

significances of this result based on the general relativity 

solution is that it is possible to fit the known rotation curves 

of the spiral galaxies without any need of introducing dark 

matter at all. The next step in proving the galaxy dynamics 

on the general relativity solution is to make more detailed 

observations of their angular momentum to confirm if the 

way in which spiral galaxies rotate is mainly according to 
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rigidly rotating and long-lived patterns, as steady spirals. 
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