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Abstract  In automatic control systems, telecommunications and information systems subjected to impact of random 

disturbances and measurement inaccuracies, there is the problem of estimating the state vector of observed stochastic system. 

With the aim to solve the problem the state space system model is described and the problem statement is given. To solve the 

problem it’s used the discrete Kalman filter (KF) presenting itself the recurrent procedure in the form of the set of the 

difference vector-matrix equations. In the paper the way of deriving the equations of KF on the basis of the procedure of 

minimization of the mean-squared error of estimation based on a method of the least squares is considered. Using this 

procedure the discrete analog of the Wiener-Hopf equation as well as Gaussian and Gaussian-Markov estimates of the state 

vector of linear stochastic system are received satisfying to a minimum of the mean-squared error in the estimate. On the basis 

of the received estimates and the discrete equation of Wiener-Hopf the equations of the KF is derived, the theorem of the KF 

with the minimum mean-squared error is formulated, the sequence of using the equations of KF making up the recursive 

algorithm of KF for computer program realization is explained. 
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1. Introduction 

Modern automatic control systems as well as 

telecommunications and information systems transmitting 

and processing signals and subjected to impact of random 

perturbations and uncertainties of system parameters and to 

influence of random external disturbances and measurement 

noises can be considered in the form of the state space 

models of non-stationary linear dynamical stochastic 

systems [1]. In stochastic systems, to realize modern control 

algorithms or to separate a useful signal from its mixture 

with noise, there is a problem of estimating the entire state 

vector of the dynamical system based on measured values of 

system’s output signal [2]. The solution of this problem in 

real time is a filtering problem, for which the classical and 

most popular solution algorithm is the discrete Kalman filter 

(KF) [3,4], using both in control theory and in the theory   

of signal transmission and processing [5]. The KF has the 

same structure as the considered dynamical system, is the 

mathematical model and consists of a set of difference 

vector-matrix equations for calculating estimates of the state 

of a stochastic system, estimates of the error covariance 

matrices and the filter gain. The difference between it and the 
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system is that at any given time, the filter gain is optimal 

relative to the specified statistical properties of disturbances 

and measurement errors [2-8]. The computational algorithm 

of the KF is a recursive procedure that is convenient for 

program realization using programming languages as well as 

MATLAB [3,9-11] and other computer programs for system 

modeling. 

The article presents a mathematical model of a discrete 

non-stationary linear stochastic dynamical system, the 

formulation of the problem of estimating the vector of the 

system state, the derivation of equations and the formulation 

of the KF theorem, as well as an algorithm for using the 

equations of the discrete KF. As it’s known, the estimation of 

the state of a dynamical system (the solution of the filtration 

problem), as well as the derivation of the KF equations can 

be carried out using the Bayesian approach, maximum 

likelihood estimation or the least squares method [12]. Here 

we follow the already known path and consider the filtration 

problem as a generalization of the Gaussian least squares 

method, described in detail in [13]. Based on the least 

squares method and the procedure for minimizing the 

mean-squared error of estimation, a discrete analog of the 

Wiener-Hopf equation is obtained, as well as Gaussian   

and Gaussian-Markov estimates (and estimates of their  

error covariance matrices) of the state vector of the  

observed system, which are linear unbiased and satisfy the 

minimum value of the mean-squared error of estimation  

[13]. The discrete Wiener-Hopf equation, Gaussian and 

Gaussian-Markov estimates with a minimum mean-squared 
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error are used later to derive the discrete KF equations, that 

are a recurrent procedure in which at a discrete time 𝑘 of the 

extrapolation (prediction) stage, based on the difference 

equations of the dynamics of the observed system, the 

estimate of the state vector is calculated for the next 𝑘 + 1 

moment of time, and then, at the time 𝑘 + 1  of the 

correction stage, based on new measurement of the system 

output signal and the changed value of the KF gain, the 

estimate of the state vector of the system calculated at the 

time 𝑘 of extrapolation of the KF procedure is corrected 

[2-13]. 

From the first application of the KF in the airspace the KF 

was a part of the Apollo onboard guidance [3] and to our 

days the KF has been demonstrating its usefulness in many 

various applications in different areas of technology and 

economics [14-16]. However, it is still not easy for people 

who are not familiar with the estimation theory to understand 

and implement the vector-matrix equations of the KF. 

Whereas there is a large number of excellent introductory 

materials and literature on the KF the purpose of this paper is 

to remind one simple method for deriving and explain the 

recursive algorithm for using the equations of the KF.  

2. Notational Preliminaries  

All vectors and matrices are time-varying quantities are 

treated at the discrete time instants 𝑘 = 0, 1, 2, … , 𝑁 . By 

convention, the argument 𝑘 of vectors (e.g., 𝑥 𝑘 , 𝑣 𝑘 , …) 

and matrices (e.g., 𝑃 𝑘 , 𝑅 𝑘 , …) denotes the fact that  

the values of these variables correspond to the 𝑘th step of 

time. The notation 𝑥  𝑘|𝑁  designates that the value of the 

estimation vector 𝑥  at the time instant 𝑘 conditioned on 𝑁 

time instant measurements. If 𝑁 < 𝑘, we are estimating a 

future value of 𝑥  𝑘 , and we refer to this as a predicted 

estimate. The case 𝑁 = 𝑘 is referred to as a filtered estimate. 

Prediction and filtering make up the algorithm of KF and can 

be done in real time [6-8]. 

The list of notations used through the paper is summarized 

in the Table 1.  

Table 1.  List of notations  

Symbol Meaning 

Vectors 

𝑥 
𝑛 × 1 state vector of the system or 

of the generic linear observation model 

𝑥  
𝑛 × 1 estimate of a state vector of the system  

or of the generic linear observation model 

𝑥  𝑛 × 1 error in estimation of a state vector 

𝑢 𝑙 × 1 input signal of the system 

𝑦 𝑚 × 1 measurement signal of the system 

𝑦  𝑚 × 1 estimate of the measurement signal 

𝑦  𝑚 × 1 error in estimation of the measurement signal 

𝑤 
𝑝 × 1 Gaussian white noise sequence of 

model uncertainties and disturbances 

𝑣 𝑚 × 1 Gaussian white noise sequence of 

measurement inaccuracies 

𝑧 
a known 𝑚 × 1 measurement vector of 

the generic linear observation model 

𝑠 
an unknown 𝑚 × 1 vector of measurement errors 

of the generic linear observation model 

𝑔 𝑛 × 1 vector to be determined 

𝑔𝑖  𝑖th row of matrix 𝐺, a row vector 

Matrices 

𝐴 𝑛 × 𝑛 system matrix 

𝐵 𝑚 × 1 input matrix 

𝐶 𝑚 × 𝑛 measurement matrix 

𝑄 
𝑝 × 𝑝 covariance matrix of Gaussian white noise sequence 

of model uncertainties and disturbances 

𝑅 
𝑚 × 𝑚 covariance matrix of Gaussian white noise 

sequence of measurement inaccuracies 

𝑃 𝑛 × 𝑛 covariance matrix of a state vector 𝑥 

𝑃  
𝑛 × 𝑛 error-covariance matrix of 

an estimation error 𝑥  

𝐷 
a known 𝑚 × 𝑛 measurement matrix of 

the generic linear observation model 

𝑆 
𝑚 × 𝑚 covariance matrix of a vector 𝑠 

of the generic linear observation model 

𝐺 𝑛 × 𝑚 matrix to be determined 

𝐾 𝑛 × 𝑛 gain matrix 

3. The Basic Model and the Problem of 
the State Estimation  

Consider the basic linear, time-varying (nonstationary), 

discrete-time state variable model of dynamical systems  

[5,6] as: 

𝑥 𝑘 + 1 = 𝐴 𝑘 𝑥 𝑘 + 𝐵 𝑘 𝑢 𝑘 + 𝑤 𝑘 ,    (1) 

𝑦 𝑘 = 𝐶 𝑘 𝑥 𝑘 + 𝑣 𝑘 , 𝑘 = 0, 1, 2, … , 𝑁,   (2) 

where 𝑥 𝑘  is a 𝑛 × 1  state vector; 𝑦 𝑘  is a 𝑚 × 1 

measurement vector; 𝑢 𝑘  is 𝑙 × 1 input vector; 𝐴 𝑘  is 

𝑛 × 𝑛  system matrix; 𝐵 𝑘  is 𝑛 × 𝑙  input matrix;   

𝐶 𝑘  is 𝑚 × 𝑛 measurement matrix. 𝐴 𝑘 , 𝐵 𝑘 , 𝐶 𝑘  
matrices and 𝑢 𝑘  vector are known. 

Additionally, 𝑤 𝑘  is 𝑝 × 1  Gaussian white noise 

sequence of model uncertainties and disturbances and 𝑣 𝑘  
is 𝑚 × 1 Gaussian white noise sequence of measurement 

inaccuracies, i.e., 

𝐸 𝑤 𝑘  = 0, 𝐸 𝑤 𝑘 𝑤𝑇 𝑗  = 𝑄 𝑘 𝛿𝑘𝑗 ,     (3) 

𝐸 𝑣 𝑘  = 0, 𝐸 𝑣 𝑘 𝑣𝑇 𝑗  = 𝑅 𝑘 𝛿𝑘𝑗 , ∀ 𝑗, 𝑘, (4) 

respectively, where superscript 𝑇  denotes the matrix 

transposition. 

𝑄 𝑘 , 𝑅 𝑘  are 𝑝 × 𝑝  and 𝑚 × 𝑚  covariance 

matrices, respectively, 𝛿𝑘𝑗  is the Dirac delta function, i.e., 

𝛿𝑘𝑗 = 1 for 𝑘 = 𝑗 and 𝛿𝑘𝑗 = 0 for 𝑘 ≠ 𝑗. Supposed that 

𝑤 𝑘  and 𝑣 𝑘  are mutually uncorrelated, i.e., 

𝐸 𝑤 𝑘 𝑣 𝑗  = 0, ∀ 𝑗, 𝑘.           (5) 

The state vector 𝑥 𝑘  is zero mean and has a 𝑛 × 𝑛 
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covariance matrix 𝑃 𝑘 , i.e., 

𝐸 𝑥 𝑘  = 0, 𝐸 𝑥 𝑘 𝑥𝑇 𝑗  = 𝑃 𝑘 , ∀ 𝑗, 𝑘.   (6) 

Initial state vector 𝑥 0  and its covariance matrix 𝑃 0  
are known and 𝑥 0  is uncorrelated with 𝑤 𝑘  and 𝑣 𝑘 , 

i.e., 

𝐸 𝑥 0 𝑤 ′ 𝑘  = 0, 

𝐸 𝑥 0 𝑣 ′ 𝑘  = 0, 𝑘 = 0, 1, 2, … , 𝑁.        (7) 

The objective is to estimate the 𝑛 × 1 unknown state 

vector 𝑥 𝑘  at 𝑘 = 1, 2, … , 𝑁  from the 𝑚 × 1  noisy 

measurement vector 𝑦 𝑘 , where 𝑘 = 1, 2,… , 𝑁. 

The estimate 𝑥  𝑘  of a state vector 𝑥 𝑘  must be: 1) 

linear, 2) unbiased, i.e., 𝐸 𝑥  𝑘  = 𝐸 𝑥 𝑘   and must 

have 3) a minimum value of the mean of the squared error 

𝐸 𝑥  𝑘  2, i.e., 

𝐸 𝑥  𝑘 𝑥  𝑘 𝑇 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚,         (8) 

where 𝑥  𝑘 = 𝑥 𝑘 − 𝑥  𝑘  is the error in the estimate. 

Thus, there is the mean-squared estimation problem: 

given the noisy measurements 𝑦 1 , 𝑦 2 , …, 𝑦 𝑘 , 

determine a linear unbiased estimator of the entire state 

vector 𝑥 𝑘 , 𝑥  𝑘 , such that the conditional mean-squared 

error in the estimate 

𝐸 𝑥  𝑘 𝑥  𝑘 𝑇|𝑦 1 , 𝑦 2 , … , 𝑦 𝑘        (9) 

is minimized [5]. 

This mean-squared estimator, 𝑥  𝑘 , can also be called as 

the minimum variance estimator, since  

𝜎𝑥 
2 = 𝐸 𝑥  𝑘 − 𝐸 𝑥  𝑘   

2
= 

𝐸 𝑥  𝑘  2 = 𝐸 𝑥  𝑘 𝑥  𝑘 𝑇 = 𝑚𝑖𝑛𝑖𝑚𝑢𝑚.   (10) 

Note that here the 𝜎𝑥 𝑖
2   𝑖 = 1, 𝑛       variances are diagonal 

elements of 𝑛 × 𝑛 error-covariance matrix defined by [6]: 

𝑃  𝑘 = 𝐸 𝑥  𝑘 𝑥  𝑘 𝑇 = 

𝐸   𝑥 𝑘 − 𝑥  𝑘   𝑥 𝑘 − 𝑥  𝑘  
𝑇
 .       (11) 

4. The Method of Minimizing of the 
Mean-Squared Error of Estimation 

To obtain the expressions for estimates 𝑥  of unknown 

vector 𝑥  from the measurement vector 𝑦  in conditions   

of measurement noises 𝑣 according to the Eq. (2) let’s 

consider the generic linear observation model [5]: 

𝑧 = 𝐷𝑥 + 𝑠,               (12) 

where 𝑥  is an 𝑛 × 1  unknown vector, 𝑧  is a known 

𝑚 × 1  measurement vector, 𝐷  is a known 𝑚 × 𝑛 

measurement matrix, 𝑠 is an unknown 𝑚 × 1 vector of 

measurement errors. 

The unknown quantities 𝑥 and 𝑠 are random variables 

with the following expectations and covariance matrices 

and they are mutually uncorrelated, i.e.: 

𝐸 𝑥 = 0, 𝐸 𝑥𝑥𝑇 = 𝑃, 𝐸 𝑠 = 0, 

𝐸 𝑠𝑠𝑇 = 𝑆, 𝐸 𝑥𝑠𝑇 = 0.              (13) 

The assumption of a linearity leads to the following 

expression for the estimate of 𝑥, 𝑥 : 

𝑥 = 𝑔 + 𝐺𝑧,                (14) 

where 𝑛 × 1  vector 𝑔  and 𝑛 × 𝑚  matrix 𝐺  must 

determine, however, the request of the unbiased estimation 

means that: 

𝐸 𝑥  = 𝑔 + 𝐺𝐸 𝑧 = 𝐸 𝑥 , 

hence 𝑔 = 0, since 𝐸 𝑥 = 𝐸 𝑧 = 0.  

Thus the Eq. (14) for 𝑥  becomes as: 

𝑥 = 𝐺𝑧.                 (15) 

The matrix 𝐺 will be determined from the condition that 

the variance of estimation error 𝑥 = 𝑥 − 𝑥  is minimum. 

According to Eq. (15) every component 𝑥 𝑖  of 𝑥  is 

depended on vector 𝑧 via an 𝑖th row of matrix 𝐺 which is 

denoted as 𝑔𝑖 . Thus 

𝑥 𝑖 = 𝑔𝑖𝑧,               (16) 

where 𝑔𝑖  is the row vector. 

Mentioned request about a minimum variance of 

estimation error signifies that 

𝐸 𝑥 𝑖 − 𝐸 𝑥 𝑖  
2 = 𝐸 𝑥 𝑖 

2 → min𝑔𝑖 𝑥 𝑖 , 𝑖 = 1, 2, … , 𝑛. (17) 

Hence 

𝐸 𝑥 𝑖 
2 = 𝐸 𝑥𝑖 − 𝑥 𝑖 

2 = 𝐸 𝑥𝑖 − 𝑔𝑖𝑧 2 = 

𝐸 𝑥𝑖
2 − 2𝐸 𝑥𝑖𝑧

𝑇  𝑔𝑖 𝑇 + 𝑔𝑖𝐸 𝑧𝑧𝑇  𝑔𝑖 𝑇.   (18) 

Thus, the variance of 𝑖th error is the sum in which the 

first term don’t depend on 𝑔𝑖 , the second and third terms 

are linear and quadratic forms of 𝑔𝑖  ( 𝑔𝑖 𝑇 is the column 

vector). A necessary condition of minimum of Eq. (18) is 

that all its partial derivatives with respect to 𝑔𝑖 𝑘  must be 

equal to zero. In other words, taking the gradient of 𝐸 𝑥 𝑖 
2 

with respect to  𝑔𝑖 𝑇 must be equal to zero, i.e., 

𝜕

𝜕 𝑔𝑖 
𝑇 𝐸 𝑥 𝑖 

2 = 0.             (19) 

Applying the rule of the gradient calculation to the right 

hand side of Eq. (18) yields [13]:  

𝐸 𝑥𝑖𝑧
𝑇 − 𝑔𝑖𝐸 𝑧𝑧𝑇 = 0, 𝑖 = 1, 2, … , 𝑛.    (20) 

This Eq. (20) is regarded as the Wiener-Hopf equation  

in the discrete form, let’s rewrite it in the compact 

vector-matrix form: 

𝐸 𝑥𝑧𝑇 − 𝐺𝐸 𝑧𝑧𝑇 = 0.         (21) 

The necessary condition for the fairness of the system  

of linear algebraic equations (21) with unknown weighting 

matrix 𝐺  is that the variance 𝐸 𝑥 𝑖 
2  of each 𝑖 th 

estimation error must be extremum. The sufficient condition 

of it is the positive definiteness of the matrix formed by the 

second derivatives of the function 𝐸 𝑥 𝑖 
2 with respect to 

𝑔𝑖 𝑘 . In other words, the Hessian matrix with respect to 

 𝑔𝑖 𝑇 must be positive definite for all 𝑖, i.e.: 

𝜕2

𝜕 𝑔𝑖 
′ 2 𝐸 𝑥 𝑖 

2 is positive definite.      (22) 

Recalculation of partial derivatives for the left hand side 
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of the Eq. (20) yields the required Hessian matrix. Hence 

the condition above turns into the following [13]: 

𝐸 𝑧𝑧𝑇  is positive definite.        (23) 

This condition is sufficient that the extremum values of 

variance obtained by using Eq. (21) will be really minimum. 

Thus the requirement of Eq. (23) is necessary and sufficient 

condition that the Eq. (21) will have only one solution for 

𝐺. 

To obtain the matrix 𝐺 we must find the covariance 

matrices in Eq. (21), so taking into account the Eqs. (12), 

(13) we have: 

𝐸 𝑥𝑧𝑇 = 𝐸 𝑥 𝑥𝑇𝐷𝑇 + 𝑠𝑇  = 𝑃𝐷𝑇,       (24) 

𝐸 𝑧𝑧𝑇 = 𝐸  𝐷𝑥 + 𝑠  𝑥𝑇𝐷𝑇 + 𝑠𝑇   

= 𝐷𝑃𝐷𝑇 + 𝑆.                    (25) 

Now rewrite the Eq. (21) in the following form: 

𝐺 𝐷𝑃𝐷𝑇 + 𝑆 = 𝑃𝐷𝑇.           (26) 

Here in parentheses is 𝑚 × 𝑚  matrix. If 𝑚 

measurements are less than 𝑛 unknowns, then from the Eq. 

(26) we can find the matrix 𝐺: 

𝐺 = 𝑃𝐷𝑇 𝐷𝑃𝐷𝑇 + 𝑆 −1.         (27) 

Substitute the Eq. (27) into the Eq. (15) we receive the 

first form of the linear unbiased estimate with a minimum 

value of its mean-squared error:  

𝑥 = 𝑃𝐷𝑇 𝐷𝑃𝐷𝑇 + 𝑆 −1𝑧.          (28) 

In order to obtain the covariance matrix of estimation 

error consider following equations: 

𝐸 𝑥 𝑥 𝑇 = 𝐸 𝑥  𝑥 − 𝑥  𝑇 = 𝐸 𝑥 𝑥𝑇 =     (29) 

𝐸  𝑥 − 𝐺𝑧 𝑥𝑇 = 𝐸 𝑥𝑥𝑇 − 𝐺𝐸 𝑧𝑥𝑇       (30) 

Taking into account the Eqs. (15), (24) we have from the 

Eq. (30): 

𝐸 𝑥 𝑥 𝑇 = 𝑃 − 𝐺𝐷𝑃.           (31) 

Substitute here the Eq. (27) to the Eq. (31) we receive the 

covariance matrix of the first form estimate (28): 

𝐸 𝑥 𝑥 𝑇 = 𝑃 −  𝑃𝐷𝑇 𝐷𝑃𝐷𝑇 + 𝑆 −1𝐷𝑃.   (32) 

For the case, if 𝑚  measurements are more than 𝑛 

unknowns, the Eq. (26) can be transformed to the following 

form [13]: 

 𝐷𝑇𝑆−1𝐷 + 𝑃−1 𝐺 = 𝐷𝑇𝑆−1.       (33) 

Here in parentheses is 𝑛 × 𝑛 matrix. Using matrix 𝐺 

obtained from the Eq. (33) the second form of the linear 

unbiased estimate with a minimum value of mean-squared 

estimation error is: 

𝑥 =  𝐷𝑇𝑆−1𝐷 + 𝑃−1 −1𝐷𝑇𝑆−1𝑧.      (34) 

According to the Eq. (31) the covariance matrix of the 

second form estimate (34) is given by: 

𝐸 𝑥 𝑥 𝑇 =  𝐼 − 𝐺𝐷 𝑃 

=  𝐼 −  𝐷𝑇𝑆−1𝐷 + 𝑃−1 −1𝐷𝑇𝑆−1𝐷 𝑃 

=  𝐷𝑇𝑆−1𝐷 + 𝑃−1 −1  𝐷𝑇𝑆−1𝐷 + 𝑃−1 − 𝐷𝑇𝑆−1𝐷 𝑃, 

𝐸 𝑥 𝑥 𝑇 =  𝐷𝑇𝑆−1𝐷 + 𝑃−1 −1.                (35) 

In the estimate (34), if 𝑃 → ∞, that is 𝑃−1 = 0, and rank 

of matrix 𝐷  is 𝑛 , then we have the Gaussian-Markov 

estimate [13]: 

𝑥 =  𝐷𝑇𝑆−1𝐷 −1𝐷𝑇𝑆−1𝑧.         (36) 

According to the Eq. (35) the covariance matrix of the 

Gaussian-Markov estimate is given by: 

𝐸 𝑥 𝑥 𝑇 =  𝐷𝑇𝑆−1𝐷 −1.         (37) 

5. Deriving the Equations of the Kalman 
Filter  

The Kalman filter operates in a predict-correct manner 

[5]. 

5.1. Prediction 

At the initial observation moment according to the Eqs. 

(2), (6) the following measuring is obtained: 

𝑦 0 =  𝐶 0 𝑥 0 + 𝑣 0 , 

𝐸 𝑥 0 𝑥𝑇 0  = 𝑃 0 .             (38) 

Compare these Eqs. (38) with the Eqs. (12), (13) and 

substitute the corresponding quantities to the Eq. (28) for a 

linear unbiased estimate with a minimum of a mean-squared 

error, we have: 

𝑥  0 = 𝐾 0 𝑦 0 ,              (39) 

where 

𝐾 0 = 𝑃 0 𝐶𝑇 0  𝐶 0 𝑃 0 𝐶𝑇 0 + 𝑅(0) −1.   (40) 

The error-covariance matrix according to the Eq. (32) is 

given by: 

𝑃  0 = 𝑃 0 − 𝐾 0 𝐶 0 𝑃 0 .       (41) 

The solution for all subsequent moments of time is 

obtained by moving from 𝑘  to 𝑘 + 1 . With this aim 

consider the discrete Wiener-Hopf equation (21) which is 

the necessary and sufficient condition that estimate will 

have a minimum mean-squared error. Rewrite Eq. (21) in 

more short form: 

𝐸  𝑥 − 𝐺𝑧 𝑧𝑇 = 𝐸  𝑥 − 𝑥  𝑧𝑇 = 𝐸 𝑥 𝑧𝑇 = 0.  (42) 

Suppose observations 𝑦 0 , 𝑦 1 , …, 𝑦 𝑘  are already 

done and the estimate 𝑥  𝑘  with the minimum of the 

mean-squared error is obtained. The latter means that the Eq. 

(42) is satisfied, i.e.: 

𝐸  𝑥 𝑘 − 𝑥  𝑘   𝑦𝑇 0 , 𝑦𝑇 1 , … , 𝑦𝑇 𝑘   = 0.  (43) 

We point out that this Eq. (43) is already satisfied. 

Suppose the quantities 𝑥  and 𝑃  at the time 𝑘 , 𝑥  𝑘  
and 𝑃  𝑘 , are known. According to the Eq. (1) let’s find 

the predicted value of 𝑥 , 𝑥  𝑘 + 1 , herewith uncertainties 

and disturbances 𝑤 𝑘  (with zero expectations) are not 

taken into account: 

𝑥  𝑘 + 1|𝑘 = 𝐴 𝑘 𝑥  𝑘 + 𝐵 𝑘 𝑢 𝑘 .      (I) 

This is the first equation of the Kalman filtering 

procedure.  
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Let’s show that this prediction 𝑥  𝑘 + 1|𝑘  is optimal. 

According to Eq. (42) we have: 

𝐸 𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘   𝑦𝑇 0 , 𝑦𝑇 1 , … , 𝑦𝑇 𝑘  = 0 

(44) 

Here in Eq. (44) replace 𝑥 𝑘 + 1  with 𝐴 𝑘 𝑥 𝑘 +
𝐵 𝑘 𝑢 𝑘  from the Eq. (1), herewith disturbances 𝑤 𝑘  
cannot be taken into account because they are not correlated 

with 𝑦 0 , 𝑦 1 , …, 𝑦 𝑘 . We have the following equation: 

𝐸 𝐴 𝑘 𝑥 𝑘 + 𝐵 𝑘 𝑢 𝑘 − 𝑥  𝑘 + 1|𝑘   

×  𝑦𝑇 𝑘0 , 𝑦𝑇 𝑘0 + 1 , … , 𝑦𝑇 𝑘  = 0.     (45) 

From the Eq. (45) we can see that the optimal prediction is 

corresponded to the Eq. (I). 

Prediction error is equal to: 

𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘  

= 𝐴 𝑘 𝑥 𝑘 + 𝐵 𝑘 𝑢 𝑘 + 𝑤 𝑘  

−𝐴 𝑘 𝑥  𝑘|𝑘 − 𝐵 𝑘 𝑢 𝑘  

= 𝐴 𝑘 𝑥  𝑘|𝑘 + 𝑤 𝑘 .              (46) 

The error-covariance matrix of prediction is given by: 

𝑃  𝑘 + 1|𝑘  

= 𝐸 𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘   𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘  𝑇 

= 𝐸 𝐴 𝑘 𝑥  𝑘|𝑘 + 𝑤 𝑘   𝑥 𝑇 𝑘|𝑘 𝐴𝑇 𝑘 + 𝑤𝑇 𝑘  , 

however, the noises 𝑤 𝑘  are not correlated with the 

estimation errors 𝑥  𝑘 , so 

𝑃  𝑘 + 1|𝑘 = 𝐴 𝑘 𝑃  𝑘 𝐴𝑇 𝑘 + 𝑄 𝑘 .    (II) 

This is the second equation of the Kalman filtering 

procedure. By this the prediction is done.  

5.2. Correction 

The estimate of the predicted state vector 𝑥 at the 𝑘 + 1 

instant of time, 𝑥  𝑘 + 1|𝑘 , obtained with the available 

𝑦 𝑘  measurement (Eq. (I)), after the next 𝑦 𝑘 + 1  

measurement must be corrected to the value 𝑥  𝑘 + 1|𝑘 + 1 . 
In order to find 𝑥  𝑘 + 1|𝑘 + 1  let’s replace 𝑥  𝑘|𝑘    

in Eq. (I) with 𝑥 𝑘 − 𝑥  𝑘|𝑘  and substitute instead of 

𝐴 𝑘 𝑥 𝑘  the corresponding expression from the Eq. (1): 

𝑥  𝑘 + 1|𝑘 = 𝐴 𝑘  𝑥 𝑘 − 𝑥  𝑘|𝑘  + 𝐵 𝑘 𝑢 𝑘 , 

𝑥  𝑘 + 1|𝑘 = 𝑥 𝑘 + 1 − 𝐴 𝑘 𝑥  𝑘|𝑘 − 𝑤 𝑘 .   (47) 

Taking into account the Eq. (2) we can write: 

 
𝑥  𝑘 + 1|𝑘 

𝑦 𝑘 + 1 
 =  

1
С 𝑘 + 1 

 𝑥 𝑘 + 1 + 

 
−𝐴 𝑘 𝑥  𝑘|𝑘 − 𝑤 𝑘 

𝑣 𝑘 + 1 
     (48) 

or 

𝑧 = 𝐷𝑥 + 𝑠.                 (49) 

Here the quantities 𝑧 , 𝐷 , 𝑠  are defined through 

comparing the Eqs. (48), (49). The covariance matrix of the 

upper part of vector 𝑠 was earlier denoted as 𝑃  𝑘 + 1|𝑘 , 
the covariance matrix of the lower part 𝑣 𝑘 + 1  is equal to 

𝑅 𝑘 + 1 . Covariance between 𝑣 𝑘 + 1  and 𝑥  𝑘|𝑘  and 

between 𝑣 𝑘 + 1  and 𝑤 𝑘  are equal to zero. So, we have: 

𝐸 𝑠𝑠𝑇 = 𝑆 =  
𝑃  𝑘 + 1|𝑘 0

0 𝑅 𝑘 + 1 
 .     (50) 

Since the measurement vector 𝑧 contains the component 

𝑦 𝑘 + 1  we can calculate Gaussian-Markov estimate 

𝑥  𝑘 + 1  at the  𝑘 + 1  instant of time according to the Eqs. 

(36), (37), i.e.: 

𝑥  𝑘 + 1|𝑘 + 1 = 𝑃  𝑘 + 1|𝑘 + 1 𝐷𝑇𝑆−1𝑧,   (51) 

where 

𝑃  𝑘 + 1|𝑘 + 1 =  𝐷𝑇𝑆−1𝐷 −1.       (52) 

Here 

𝐷𝑇𝑆−1 =  𝐼 𝐶𝑇 𝑘 + 1   
𝑃 −1 𝑘 + 1|𝑘 0

0 𝑅−1 𝑘 + 1 
  

=  𝑃 −1 𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 𝑅−1 𝑘 + 1  .   (53) 

𝐷𝑇𝑆−1𝐷 =  𝑃 −1 𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 𝑅−1 𝑘 + 1   

×  
1

С 𝑘 + 1 
                            (54) 

𝐷𝑇𝑆−1𝑧 =  𝑃 −1 𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 𝑅−1 𝑘 + 1   

×  
𝑥  𝑘 + 1|𝑘 

𝑦 𝑘 + 1 
 .                        (55) 

Substitute the expression for 𝐷𝑇𝑆−1𝑧 from the Eq. (55) 

into the Eq. (51) of Gaussian-Markov estimate: 

𝑥  𝑘 + 1|𝑘 + 1 = 𝑃  𝑘 + 1|𝑘 + 1  𝑃 −1 𝑘 + 1|𝑘 ×  

𝑥  𝑘 + 1|𝑘 +  𝐶𝑇 𝑘 + 1 𝑅−1 𝑘 + 1 𝑦 𝑘 + 1  .   (56) 

In Eq. (56) the factor before 𝑦 𝑘 + 1  is the gain matrix 

𝐾: 

𝐾 𝑘 + 1 = 𝑃  𝑘 + 1|𝑘 + 1 𝐶𝑇 𝑘 + 1 𝑅−1 𝑘 + 1 . (57) 

Using the Eq. (54) for 𝐷𝑇𝑆−1𝐷 and taking into account 

the Eq. (52) we receive:  

𝑃 −1 𝑘 + 1|𝑘 + 1 = 𝑃 −1 𝑘 + 1|𝑘 + 

𝐶𝑇 𝑘 + 1 𝑅−1 𝑘 + 1 𝐶 𝑘 + 1 .           (58) 

Let’s multiply by 𝑃  𝑘 + 1|𝑘 + 1  on the left the Eq. (58) 

and taking into account the Eq. (57) we receive: 

𝐼 = 𝑃  𝑘 + 1|𝑘 + 1 𝑃 −1 𝑘 + 1|𝑘 + 𝐾 𝑘 + 1 𝐶 𝑘 + 1 . 

(59) 

Let’s find the expression for 𝑃  𝑘 + 1|𝑘 + 1 𝑃 −1   
 𝑘 + 1|𝑘  from the Eq. (59) and substitute it into the Eq. (56): 

𝑥  𝑘 + 1|𝑘 + 1 = 𝑥  𝑘 + 1|𝑘 + 𝐾 𝑘 + 1  

×  𝑦 𝑘 + 1 − С 𝑘 + 1 𝑥  𝑘 + 1|𝑘  .      (III) 

This is the third equation of the Kalman filter. It 

corresponds to the observer model equation of the observed 

object (system) with feedback equaled a difference of 

weighted output signals [17,18]. 

Let’s multiply by 𝑃  𝑘 + 1|𝑘  on the right the Eq. (59): 

𝑃  𝑘 + 1|𝑘 = 𝑃  𝑘 + 1|𝑘 + 1 + 

𝐾 𝑘 + 1 𝐶 𝑘 + 1 𝑃  𝑘 + 1|𝑘 , 

and from this equation we can receive the error-covariance 
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matrix: 

𝑃  𝑘 + 1|𝑘 + 1 = 𝑃  𝑘 + 1|𝑘  

−𝐾 𝑘 + 1 𝐶 𝑘 + 1 𝑃  𝑘 + 1|𝑘 .       (IV) 

This is the forth equation of the Kalman filter. Let’s 

multiply this equation by 𝐶𝑇 on the right and ascribe to the 

first tirm in the right hand side the factor 𝑅−1𝑅. From the 

obtained equation taking into account the Eq. (57) we can 

find the gain matrix 𝐾: 

𝐾 𝑘 + 1 = 𝑃  𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 × 

 𝐶 𝑘 + 1 𝑃  𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 + 𝑅 𝑘 + 1  
−1

. (V) 

This is the fifth equation of the Kalman filter. 

6. The Theorem of the Kalman Filter  

The Eqs. (39)-(41) and (I)-(V) make up together the 

Kalman filter which is usually formulated as the theorem. 

Let’s present the formulation of the theorem of Kalman filter 

satisfying the minimum of mean-squared error of estimation. 

Theorem (The Kalman Filter). Let given a discrete 

stochastic system defined by the Eqs. (1)-(7) and considered 

at 𝑘 = 0, 1, 2, … , 𝑁  instants of time. The linear unbiased 

estimate with the minimum mean-squared error in the 

estimation of the state vector of this system at any time 

instant 𝑘 > 0 is obtained by the recursive equations (I)-(V) 

the initial state of which at 𝑘 = 0  is determined by the 

equations (39)-(41). 

In addition to the proof of the theorem considered above to 

check the correctness of the Eqs. (IV), (V). With this aim 

let’s make the expression for 𝑥  𝑘 + 1|𝑘 + 1  according to 

the Eq. (42): 

𝐸 𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘 + 1  × 

 𝑦𝑇 0 , 𝑦𝑇 1 , … , 𝑦𝑇 𝑘 |𝑦𝑇 𝑘 + 1  = 0.   (60) 

In this Eq. (60) the estimation error according to the Eq. 

(III) and taking into account the Eq. (2) is equal to: 

𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘 + 1  

=  𝐼 − 𝐾 𝑘 + 1 𝐶 𝑘 + 1   

×  𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘   

−𝐾 𝑘 + 1 𝑣 𝑘 + 1 .              (61) 

To check the correctness of the Eq. (IV) multiply on the 

right the both parts of the Eq. (61) by 𝑥𝑇 𝑘 + 1  and 

calculate expectation. Still, using the Eq. (42) will allow us 

to obtain the Eq. (IV). 

To check the correctness of the deriving the Eq. (V), 

consider the first part of the mathematical expectation in Eq. 

(60), containing values from 𝑦 0  to 𝑦 𝑘  and located to 

the left of the vertical line for 𝑦 𝑘 + 1 . The new 

measurement error 𝑣 𝑘 + 1  is uncorrelated with the old 

observations from 𝑦 𝑘0  to 𝑦 𝑘 . The product of two 

expressions in square brackets in (61), correlated with    

the set of observations from 𝑦 0  to 𝑦 𝑘 , means zero 

mathematical expectation according to equation (44).   

This means that expression (III) satisfies the part of the 

requirement (42) that is to the left of the vertical line.    

The remaining part of the requirement (60) allows us to 

determine the undefined gain matrix 𝐾 𝑘 + 1 . On the basis 

of (61), the following equality must be valid: 

𝐸  𝐼 − 𝐾 𝑘 + 1 𝐶 𝑘 + 1    

 ×  𝑥 𝑘 + 1 − 𝑥  𝑘 + 1|𝑘  − 𝐾 𝑘 + 1 𝑣 𝑘 + 1   

×  𝑥𝑇 𝑘 + 1 𝐶𝑇 𝑘 + 1 + 𝑣𝑇 𝑘 + 1  = 0.     (62) 

The quantities 𝑥 𝑘 + 1  and 𝑥  𝑘 + 1|𝑘  are not 

correlated with 𝑣 𝑘 + 1 . The rest of the mathematical 

expectations can be represented in a simpler form. To do  

this, we use Eq. (29) with respect to 𝑥  𝑘 + 1|𝑘 , taking  

into account that the covariance between 𝑥 𝑘 + 1 −
𝑥  𝑘 + 1|𝑘  and 𝑥 𝑘 + 1  can be replaced by 𝑃  𝑘 + 1|𝑘 . 
As a result, we have: 

 𝐼 − 𝐾 𝑘 + 1 𝐶 𝑘 + 1  𝑃  𝑘 + 1|𝑘  

× 𝐶𝑇 𝑘 + 1 − 𝐾 𝑘 + 1 𝑅 𝑘 + 1 = 0.   (63) 

Solving this Eq. (63) with respect to 𝐾 𝑘 + 1  we’ll 

receive the Eq. (V). 

7. The Algorithm of Using the Equations 
of the Kalman Filter 

The Kalman filter is a recursive procedure that is 

convenient for program realization on computers. The 

algorithm of using the Eqs. (39)-(41) and (I)-(V) of KF is the 

following as: 

1) At the initial state 𝑘 = 0 the initial estimate of the state 

vector 𝑥  0|0  and the initial error-covariance matrix 𝑃  0  
are built according to the Eqs. (39)-(41): 

𝑥  0|0 = 𝑥  0 = 𝐾 0 𝑦 0 , 

where  

𝐾 0 = 𝑃 0 𝐶𝑇 0  𝐶 0 𝑃 0 𝐶𝑇 0 + 𝑅(0) −1 

and 

𝑃  0 = 𝑃 0 − 𝐾 0 𝐶 0 𝑃 0 . 

Prediction: 

2) The estimate and its error-covariance matrix are 

extrapolated to the next  𝑘 + 1  observation instant of time 

according to the Eqs. (I), (II): 

𝑥  𝑘 + 1|𝑘 = 𝐴 𝑘 𝑥  𝑘|𝑘 + 𝐵 𝑘 𝑢 𝑘 , 

𝑃  𝑘 + 1|𝑘 = 𝐴 𝑘 𝑃  𝑘 𝐴𝑇 𝑘 + 𝑄 𝑘 . 

Correction: 

3) The optimal gain matrix 𝐾 𝑘 + 1  is calculated 

according to the Eq. (V) and extrapolated        

(predicted) estimate 𝑥  𝑘 + 1|𝑘  is improved to the value 

𝑥  𝑘 + 1|𝑘 + 1  according to the Eq. (III) using the new 

measurement 𝑦 𝑘 + 1 : 

𝐾 𝑘 + 1 = 𝑃  𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 × 

 𝐶 𝑘 + 1 𝑃  𝑘 + 1|𝑘 𝐶𝑇 𝑘 + 1 + 𝑅 𝑘 + 1  
−1

, 

𝑥  𝑘 + 1|𝑘 + 1 = 𝑥  𝑘 + 1|𝑘 + 𝐾 𝑘 + 1 𝑦  𝑘 + 1|𝑘 , 



 International Journal of Control Science and Engineering 2021, 11(1): 1-8 7 

 

 

where 

𝑦  𝑘 + 1|𝑘 =  𝑦 𝑘 + 1 − 𝑦  𝑘 + 1|𝑘   

is called the innovation process, 

𝑦  𝑘 + 1|𝑘 = С 𝑘 + 1 𝑥  𝑘 + 1|𝑘  

is called the predicted value of the new measurement. 

4) The error-covariance matrix 𝑃  𝑘 + 1|𝑘 + 1  of the 

new modified estimate 𝑥  𝑘 + 1|𝑘 + 1  is calculated 

according to the Eq. (IV): 

𝑃  𝑘 + 1|𝑘 + 1 = 𝑃  𝑘 + 1|𝑘  

−𝐾 𝑘 + 1 𝐶 𝑘 + 1 𝑃  𝑘 + 1|𝑘 . 

5) If the next 𝑘 is 𝑘 ≤ 𝑁 then the current time instant 
 𝑘 + 1  should be considered as 𝑘. For the estimate of the 

state calculated at the step 3 and now considered as 𝑥  𝑘 , for 

the error-covariance matrix calculated at the step 4 and now 

considered as 𝑃  𝑘  should be carried out the steps 2, 3 and 4 

of the algorithm. If 𝑘 > 𝑁 then the procedure is ended. 

Therefore, the best estimate of 𝑥 𝑘 + 1 , 𝑥  𝑘 + 1 ,  

using all observations up to and including 𝑘 + 1, is obtained 

by a predictor step, 𝑥  𝑘 + 1|𝑘 , and a corrector step, 

𝐾 𝑘 + 1 𝑦  𝑘 + 1|𝑘 . The predictor step uses information 

from the state equation (1). The corrector step uses the new 

measurement available at 𝑘 + 1. The correction is the error 

(difference) between new measurement, 𝑦 𝑘 + 1 , and its 

best predicted value, 𝑦  𝑘 + 1|𝑘 , multiplied by weighting 

(or gain) factor 𝐾 𝑘 + 1 . The factor 𝐾  determines how 

much we will alter (change) the best estimate 𝑥  based on  

the new observation, i.e., 1) if the elements of 𝐾 𝑘 + 1  are 

small, we have considerable confidence in our model,    

and 2) if they are large, we have considerable confidence   

in our observation measurements. Thus, the KF is a 

dynamical feedback system, its gain matrix and predicted- 

and filtering-error covariance matrices comprise a matrix 

feedback system operating within the KF [5,6]. 

8. Conclusions 

The discrete Kalman filter, developed by R. Kalman back 

in 1960 [19], is currently a classic result of the theory of 

control systems and the theory of signal processing, as well 

as the most popular filtering algorithm using in automatic 

control systems, telecommunications and information 

systems subjected to random disturbances and measurement 

inaccuracies. The Kalman filter is a recursive procedure 

consisting of difference vector-matrix equations for 

calculating estimates of the state of a stochastic system, the 

estimates of the error covariance matrices and the filter gain. 

A common approach to the derivation of the KF equations is 

the Bayesian approach [11]. The paper describes the simplest 

way to obtain the KF equations, based on the use of the 

procedure for minimizing the mean-squared error of 

estimation, which is a further generalization of the least 

squares method [12]. As a result of this procedure, we 

obtained: a discrete analog of the Wiener-Hopf equation, as 

well as Gaussian and Gaussian-Markov estimates (and their 

error covariance matrices), which are linear and unbiased 

and satisfy the minimum value of the mean-squared error of 

the estimation. Based on the discrete Wiener-Hopf equation, 

Gaussian and Gaussian-Markov estimates, the KF equations 

are obtained using simple algebraic transformations and 

reasoning. The KF theorem is formulated, which satisfies  

the minimum of mean-squared error of estimation, and the 

algorithm for using the KF equations, which is convenient 

for program realization, is also explained.  
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