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Abstract  In this paper a new approach to adaptive stabilization using Minimal Control Synthesis (MCS) algorithm for a 

synchronous power system is proposed. The MCS algorithm is a significant extension of hyperstability based model 

reference adaptive control approach. The main feature of the algorithm is that it requires simple structure and a few 

computational requirements to implement the strategy. The controller uses the proportional plus integral type adaptation 

mechanism to satisfy the hyperstability conditions for taking care of plant parameter changes, small disturbances and plant 

nonlinearities. The stabilization signals are synthesized at the excitation input of the machine system such that a well defined 

closed-loop performance is achieved. The proposed adaptive control scheme avoids the difficulty of satisfying the 

Kalman-Yakubovich Lemma, model matching condition and the complexity of implementing an online parameter estimator. 

Above all, the hyperstability guarantees asymptotical stability of the power system under a disturbance. The power system 

under investigation consists of a synchronous machine connected to an infinite bus. It has both voltage regulator and speed 

governor controls. The effectiveness of the controller for damping machine oscillations caused by power system disturbances 

is verified by simulation studies. 
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1. Introduction  

The power system behaves essentially as a set of coupled 

oscillators which are continuously perturbed due to load 

fluctuations and parameter changes. The amortisseur or 

damper effects can suppress the higher frequency 

oscillations. But the lower frequency oscillations are 

insensitive to damper windings and dynamic instabilities 

are associated with these lower frequency modes. 

Oscillations of small magnitude and low frequency in the 

range 0.5 Hz to 2.5 Hz often persist for a longer period of 

time and limit the transmission of power [1],. It is also 

assumed that the voltage regulator introduces negative 

damping at increased load [1],. The increasingly 

challenging dynamic electric power system problems 

however are not hopelessly unmanageable. The challenging 

new problems are always met by new ideas and new 

methods aimed in solving the problems. To improve system  
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damping, in general, artificial means of producing torques 

in phase with the speed are introduced by Supplementary 

Stabilizing Signals (SSSs) designed by supplementary 

excitation controls. The network used to generate SSSs 

during low frequency oscillations is Power System 

Stabilizer (PSS) [2]. A major concern of power system 

engineers is to keep the power system under control at all 

times. PSSs have been widely used to enhance the system 

damping and to improve the dynamic stability of power 

systems for many years [3], [4], [1], [5-9]. Power systems 

are generally nonlinear and highly dynamical systems. The 

linearized model of the power system is used with linear 

optimal control theory to design the fixed parameter 

conventional PSS. The optimal controllers are reported to be 

very effective for damping machine oscillations [1]. But 

when the operating condition changes under a disturbance, 

the fixed parameter controllers cannot maintain the power 

system dynamical stability. Thus the parameters of these 

controllers must be re-tuned so that they can provide the 

desired performances. The additional damping signal is 

introduced through the excitation system by the extra 

damping torque modulation. Thus to improve the dynamic 

characteristics of the system over a wide range of operating 

points, adaptive controls have been proposed [5], [10], [11]. 

Two main approaches to adaptive control have been 
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reported by power system engineers: Self Tuning Adaptive 

Control (STAC) and Model Reference Adaptive Control 

(MRAC) [12]. 

In the STAC scheme, parameter identification techniques, 

such as the recursive least squares method, is used to identify 

system parameters online and these parameter estimates are 

then incorporated in the control policy. In the MRAC scheme, 

a reference model exhibiting the desired system response is 

included in the control strategy. The error between the output 

of the actual system and that of the reference model is used to 

update the controller parameters with the objective of the 

system output converging to the model output. Although 

adaptive PSSs based on STAC or MRAC have been reported 

to be effective, the inherent assumptions and the 

nonlinearities associated with the adaptive controllers raise a 

number of basic questions whose actual answers may bring 

complexity to the control structure. The parameter estimator 

design in STAC and the appropriate selection of the 

reference model in MRAC often meet with difficulties in 

practical implementation. It is reported that the MCS 

algorithm based on hyperstability theory of Popov can be 

retro-fitted to an existing control strategy and closed-loop 

robustness will be greatly enhanced. The MCS algorithm has 

already been successfully applied to Multi-machine power 

systems with decentralized control strategy to damp machine 

oscillations [13].  

The adaptive controller in power systems is often used as a 

supplementary controller in conjunction with a conventional 

fixed parameter controller. While the conventional 

controllers regulate the normal voltage and frequency 

adjustments, the supplementary adaptive controller is used to 

improve the dynamical stability as restoring the system to 

normal operating conditions after suffering a disturbance. A 

new design approach based on the MCS algorithm for the 

supplementary adaptive PSS is proposed herein for a higher 

order power system. A numerical example of a Single 

Machine Infinite Bus (SMIB) power system with control 

equipment has been studied to verify the efficacy of this 

approach. The simulation results show that the adaptive 

controller based on MCS algorithm works well under system 

parameter variations and with different small disturbances. 

2. Power System Dynamic Problem 

There are various kinds of power system dynamic 

problems such as high or low frequency oscillations, large or 

small disturbances. However, there are only a limited 

number of system components important to the dynamic 

study: the hydraulic and steam turbines, the synchronous 

generator, the governor and the excitation system. The three 

phase synchronous generator used for large scale electric 

power generation has two synchronously rotating fields,  

one dc-excited field on the rotor with a field winding 

mechanically rotated normally at the synchronous speed. 

The other ac-excited field on the stator with the three phase 

stator winding, each phase winding is 120° apart from the 

others electrically, and each phase current with a 120° time 

phase difference with respect to others. The speed of the 

three phase ac field on the stator is completely dictated by the 

system frequency and the field appears in and around the air 

gap of the machine instantly because of the nature of the 

electro- magnetic field. The speed and hence the dc field of 

the rotor are affected by the inertia and damping of the 

rotating system. Only in the steady state, when the 

mechanical energy input and the electric energy output plus 

the system losses are in complete balance, will there be 

neither acceleration nor deceleration of the rotating system. 

In such a case, the two rotating fields, one dc and one ac, will 

be moving together synchronously, with the N-pole of the ac 

field facing the S-pole of the dc field and the S-pole of the ac 

field facing the N-pole of the dc field across the air gap of the 

machine. When a disturbance occurs to the system, that input 

output energy balance is upset. As a result, the N to S and S 

to N pole bonds will be shaken causing stability problems. 

3. Problem Formulation 

The usual mathematical model of a power system for 

stability studies enables the nonlinear power system to be 

written in the affine form. 

X=f(X)+g(X)U+ d             (1) 

Where f and g are smooth vector fields. Linearzing 

equation (1) around an acceptable operating point gives the 

state space equation: 

∆X= A ∆X+ B ∆U+ df           (2) 

Where ∆ X € Rn is the change of the system state, ∆U € Rm 

is the change of control and df represents a vector aggregate 

of unknown disturbances applied to the plant. Any 

unmodelled terms, non-linearity’s, parameter variations and 

external disturbances are included in the disturbance vector 

df. The pair {A, B} is constant. For conciseness,  

(2) Will be written hereafter simply as:  

X(t)= A X(t)+ B U(t)+ df (t)         (3) 

The reference model that defines the required state 

trajectory Xm is: 

Xm(t)= Am ∆X(t)+ Bm r(t)          (4) 

The reference model parameters {Am, Bm} are determined 

in order to elicit a well defined closed loop performance in 

the sense of power system stability. The main purpose of Am 

is to let the power system be stable and thus to influence the 

controlled plant such that its dynamic characteristics can be 

improved. A common choice of MRAC signal is given by an 

Extension of the state feedback tracking control strategy. 

U= -(K-∆K(t)) X(t) + (KR + ∆KR(t))r(t)    (5) 

Where K and KR are constant feedback and feed forward 

gain matrices. The ∆K and ∆KR(t) terms are adaptive 

changes to these gains that usually results from the effects of 

disturbances. on the state trajectory, X. In that context ∆ does 

not necessarily imply ‘small’. So we shall drop ∆. 
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The closed form solution of K and KR are: K= B+(A-Am) 

and KR= B+Bm where B+ is the pseuu- inverse of B.  

The error dynamics of the closed loop system (2) and (4) 

are given by 

Xe (t)=Am Xe (t) – B We (t)- d(t)       (6) 

Where We (t)= K(t) X + KR(t) r . This assumes that the 

reference model (4) satisfies Erzberzer’s model matching 

conditions: 

(In - B B+) (A- Am)=0n and (In - B B+) B B+ =0n , m 

The error equation (6) can be considered as a feedback 

system in its own right. One writes the error signal as: 

Ye =C Xe (t)                (7) 

So that the triple {Am , Bm , C} forms a hyper stable linear 

block. The hyper stability condition is guaranteed if the 

transfer function G(s) = C(SI-A)-1B is Strictly Positive Real 

(SPR). That is  

The Kalman – Yakubovitch Lemma: 

C = Bt P                 (8) 

Where P is a Positive Definite Symmetric Matrix (PDSM) 

which is the solution of the Lyapunov's equation:  

PA + AtP = - L              (9) 

For PDSM characterization of P matrix and ease of 

computation L can be chosen as L = I where I is an identity 

matrix of appropriate size. Then the error Xe approaches a 

stable equilibrium if Popov’s Integral Inequality Condition 

(PIIC) is satisfied for the nonlinear block. 

If these conditions are satisfied then {A, B, C} is a hyper 

stable block and the transfer function is SPR. As the transfer 

function is SPR the anti-wind up problem is also solved [14]. 

Further, SPR function can tolerate large uncertainties, 

external disturbances and nonlinearities. This explains the 

importance of testing positive realness of transfer function. 

The MCS algorithm also relaxes positivity condition of the 

feed forward block normally imposed by MRAC since the 

PDSM C in equation (9) always exists. The error ∆X tends to 

stable equilibrium if the Popov Integral Inequality Condition 

(PIIC) of the nonlinear time varying blocks: 

2

0
......(10)

T
tY Udt r                (10) 

Where 
2r  is a positive number independent of time t.  

The more general adaptive mechanisms are developed by 

Landau [11]. Based upon the hyperstability theory of Popov 

[15]. These adaptive mechanisms have been tested in 

simulation and implementation studies and have been shown 

to be robust in the face of external disturbances and plant 

parameter variations. The specific but non unique solution 

for the proportional plus integral type gain changes, 

satisfying the PIIC are: 

t 

K(t) = ∫ α Ye (τ) X(τ)t dτ + β Ye (t) X(t)t      (11) 

0 

t 

K R(t) = ∫ α Ye (τ) r(τ)t dτ + β Ye (t) X(t)t     (12) 

0 

Where α and β are adaptive weights which are chosen 

empirically. 

4. Proposed Adaptive MCS Control 
Scheme 

The desired adaptive control approach to the above 

MRAC formulation assumes that K=0m,n and KR = 0m and 

then (5) becomes: 

U= ∆K(t) X(t) + (KR + ∆KR(t)) r(t)      (13) 

Whilst (8) is written as [8]: 

 C=P                (14) 

where P is the solution of the Liapunov equation (9).  

 

Figure 1.  Proposed Adaptive Control Scheme 

5. The Design Procedure 

It involves the following process- 

(i)  Development of a state space model for the power 

system. 

(ii)  A stable matrix Am is always chosen. The main 

purpose of Am is to let the power system be stable and 

thus to influence the controlled plant such that the 

stabilization characteristics can be improved. 

In this paper the reference model is chosen by using strip 

eigenvalue assignment technique with a specified damping 

ratio [9]. 

6. System Studied 

The design methodology proposed in this paper is applied 

to a single-machine infinite bus power system with control 

equipment such as speed governor and voltage regulator [8]. 

The state vector is:  

' '[ , , , , , , , ]t

F F s fX n v v g g h        (15) 
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Where state variables are: torque angle 
' , speed n , 

field flux linkage 
'

F , field voltage 
Fv , feedback voltage 

sv , gate opening g , governor feedback loop signal fg , 

and water head h . 

 

Figure 2.  Single Machine Infinite Bus Power System [8] 

7. Selection of Reference Model 

For normal operating condition, {P0 , Q0} as {0.735, 

0.034}, the eigenvalues of the uncontrolled system   

(A)=[−0.0105 ± j 0.7947, −0.1969, −0.0572, −0.0672 ± j 

0.1947, −0.2740, −13.70]. 

The first pair of complex conjugate eigenvalues with 

negative real part related to rotor oscillations is known as the 

Electro Mechanical (EM) mode. The damping ratio of this 

mode is 0.0132, which is very low because it is not lying 

within the acceptable range 0.1 to 0.5 [9]. 

 

Figure 3.  Strip eigenvalues h > 0 

 

Figure 4.  Strip eigenvalues in vertical strip 

To find the stable reference model by the SEA technique 

[9] one selects the strip {−h1, −h2} as {−0.05, −0.45}. 

The stable matrix obtained is: 

0 1 0 0 0 0 0 0

0.68 0.03 0.08 0 0 0.88 0 1.32

0.12 0 0.11 0.14 1.37 0 0 0

0.21 0.15 0.03 0.01 0.28 0.27 0.06 0.45

0 0.03 0 0 0 0.06 1.37 0

1.72 0.79 0.21 0.01 0.06 2.22 14.15 3.45

0 0.06 0 0 0 0.12 2.73 0.17

mA
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The eigenvalues of this reference matrix are: 

  (Am)= [-0.25 ± j0.7770, -0.1969, -0.0572, -0.0672 ± 

j0.1947, -0.2740,-13.70]. The damping ratio of the EM is 

0.3451 which is well within the acceptable range 0.1 to 0.5. 

A number of stable reference models are obtained but only 

the model for nominal operating point is presented. It is 

mentioned that for each possible operating condition, the 

damping ratio lies within the acceptable range 0.1 to 0.5. 

8. Zero Order Hold Discrete Equation of 
MCS Algorithm 

The implemented discrete time form of the MCS 

algorithm can be taken from the Zero Order Hold Discrete 

Equations (ZOHDEs), 

Xm(k+1)= (In + T Am ) Xm (k) + Bm r (k) 

Xe (k) = Xm (k) - X(k) 

K (k) = K (k-1) + β Ye (k) X (k)t - µYe (k-1) X (k-1) 

KR (k) = KR (k-1) + β Ye (k) r (k)t - µYe (k-1) r (k-1) 

U(k)= K (k) ) X (k) + KR (k) r (k) 

Ye (k) = Ce Xe (k) Where, K (-1) = 0m,n ; KR(-1) = 0m and 

µ=β- α T.  

Here T is the sampling interval of the discrete time 

process. 

9. Simulation Result 

Under the normal operating condition, a small signal 

disturbance X = [0, .02, 0, 0, 0, 0, 0, 0]t is applied to the 

system and it is found from Figure 5 (a) that the proposed 
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controller damps out the low frequency oscillations very 

quickly. The system is simulated for 30% change of inertia 

M and the responses are shown in Figure 5(b). It is seen that, 

in all cases the uncontrolled system is highly oscillatory. 

Thus the controller works well in the face of parameter 

changes and the results demonstrate the effectiveness of the 

proposed adaptive controller. 

Next, it is possible to change the electromagnetic 

parameters of the generator by changing the rotor angle and 

by mounting additional flywheel on the shaft of the model 

generator, as well as by connecting additional reactance at 

the generator terminal. 

 

Figure 5.  Responses of the System with the proposed MCS 

10. Conclusions 

An adaptive controller based on the MCS algorithm has 

been developed for a SMIB power system. The design 

method is simple and it avoids the massive amount of 

calculations and computations. The control is constructed so 

that the closed loop system is asymptotically hyper stable, 

which guarantees the dynamical stability improvement of the 

power system. Two separate changeable gains act as the 

adaptive mechanisms. For the power system investigated 

MCS algorithm relaxes positivity condition of the feed 

forward block normally imposed by MRAC since the 

positive definite matrix P always exists. Simulation result 

shows that the proposed controller works well under the face 

of parameter changes or disturbances. Hyperstability has 

nice links with the passivity so the proposed method can be 

applied to large scale interconnected power systems using 

the concept of system passivity. 
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