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Abstract  A well-behaved electric power system requires both the frequency and voltage to remain at standard values 

during the operation. The active power and reactive power balance should be maintained between the generation and 

utilization of the AC power. Any change in the supplied voltage from its rated value may damage the components that are 

connected in the electric power network since they are designed to operate at a certain rated voltage. Keeping the generator 

terminal voltage at a rated value is done through the field current in the generator exciter. A Proportional-Integral-Derivative 

(PID) controller has been used in the Automatic Voltage Regulator (AVR) system to keep the voltage approximately at the 

rated value. Several solutions were proposed on how to tune the PID gains, including the classical Ziegler and Nichols 

methods. In this paper, we adopt three methods to tune the parameters of the PID controller. Neural networks based online 

tuning, Particle Swarm Optimization (PSO) based offline tuning and Water Cycle Algorithm (WCA) based offline tuning. 

The three tuning methods are applied for a single power area system. Two types of IEEE recommended standard excitation 

system models, DC2A and AC4A, are considered. The three proposed tuning methods are compared with each other in terms 

of the overshoot, undershoot and settling time. All of them show good performance, while the PID controller tuned by WCA 

provides superior performance in terms of the overshoot and settling time against any voltage deviation compared to the other 

two methods. 

Keywords  Proportional-Integral-Derivative (PID), Automatic Voltage Regulator (AVR), Particle Swarm Optimization 

(PSO), Water Cycle Algorithm (WCA), Neural Network (NN) 

 

1. Introduction 

Keeping the voltage in a power grid at its rated value is a 

big challenge. The instability of the terminal voltage may 

lead to losses in the reactive power and in the real line [1]. 

Also, the deviation of the terminal volt from its rated volt 

will affect all the equipment connected to the grid and may 

reduce its performance and life span [2]. Hence, the 

Automatic Voltage Regulator (AVR) needs to be applied  

to prevent the terminal volt deviation, improve voltage 

stability, and control the reactive power [3]. The AVR 

dynamic responses such as the rise time, overshoot and the 

steady state error of terminal volt are the control objectives 

for a better system performance. A controller is generally 

added into the AVR system to get the desired response and 

improve the robustness of the AVR against any dynamic 

parameter change or system disturbance [4]. So far, many 

control strategies such as adaptive control and optimal 

control have been proposed for AVR. A fixed gain 

proportional,  integral, and derivative (PID)  controller is 
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widely used due to its simplicity and success in many 

industrial applications. The PID controller parameters are 

normally tuned based on trial and error. However, the 

system generally shows poor dynamic response if the 

system parameters change with time and the PID 

parameters need to be re-tuned [5]. Furthermore, the 

uncertainties and nonlinearities of power grids make the 

tuning of PID parameters more difficult. Several 

metaheuristic optimization tuning methods such as genetic 

algorithms (GA) and differential evolution (DE) algorithms 

have been proposed to attain the optimal gains of the PID 

[6,7]. However, these methods are time consuming and the 

dynamic response of the AVR system is usually still poor 

based on recent studies. A Neural network-based controller, 

Narma-L2, has been proposed to approximate the model of 

the AVR. However, this method may not guarantee a good 

performance subject to the system parameter changes or 

system disturbance due to approximation [8]. To overcome 

the previously mentioned problems, three methods have 

been developed here to optimize the PID controller gains. 

The first method is used to tune the gains in real time based 

on neural networks, while the Particle Swarm Optimization 

(PSO) and Water Cycle Algorithm (WCA) are used to tune 

the PID gains offline.  

The main goal of this paper is to examine the voltage 
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instability problem for the AVR system connected to      
a generator in a synchronous machine, taking into 

consideration the type of excitation system that is used to 

excite the generator. The operation conditions and load 

changes of the grid are examined. The three proposed 

controllers are simulated and tested in Matlab/Simulink. 

Comparisons of the three proposed controllers are conducted 

to show their effectiveness on the AVR terminal volt. 

The main contribution of this paper is to apply intelligent 

PID controllers to the AVR system to achieve a desired 

performance including acceptable dynamic responses over 

various system parameter changes. Using Neural Networks 

as a real time tuning method, Water Cycle Algorithms and 

Particle Swarm Optimization as offline tuning methods in 

the intelligent PID controller, we achieve AVR system 

improvements in the overshoot, delay in settling time as well 

as the steady state error over the other PID tuning methods. 

The rest of paper is organized as follows. In Section 2, the 

model of the automatic voltage regulator is provided. In 

Section 3, the PID controller design based on the three 

proposed methods are explained. Simulation and discussion 

of the results are presented in Section 4. Section 5 provides 

conclusions and directions for future work. 

2. Automatic Voltage Regulator 
Modelling 

The Automatic Voltage Regulator generally consists of 

four main components: amplifier, exciter, generator, and 

sensor as shown in Figure 1. The amplifier computes the 

error between the rated volt (V Reference) and terminal volt (VT) 

and amplifies it for the exciter. The excitation system is the 

heart of the AVR system. Exciter supplies a direct current to 

the generator field winding of the synchronous machine. 

Also, through the exciter, we can control the flow of the 

reactive power and hence control the volt. The sensor senses 

the terminal volt and converts the AC to a DC form to 

compare it with the reference volt. An excitation system can 

be classified into DC, AC and Static excitation system. Many 

excitation models have been standardized in block diagram 

representations by the IEEE [9]. Two types of IEEE 

excitation system standards from the AC and DC exciters 

family are considered in this paper. The DC2A and AC4A 

exciters are chosen for the sake of simplicity to simulate 

them in the system.  

 

Figure 1.  The block diagram of AVR with an exciter [9] 

 

Figure 2.  The block diagram of a DC2A exciter [9] 
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Figure 3.  The block diagram of an AC4A exciter [9] 

 

Figure 4.  The block diagram of a PID controller [10] 

2.1. IEEE Excitation System Type DC2A 

This type of exciter supplies a DC current to the field 

winding. The block diagram of a DC2A exciter is shown in 

Figure 2. The terminal volt (VT) is sensed and subtracted 

from the set point voltage (V Reference). The (Vs) of the power 

system stabilizer is considered to be zero during the steady 

state operation. The error signal is fed to the exciter to 

produce the required field voltage (EFD). 

2.2. IEEE Excitation System type AC4A 

Figure 3 shows the block diagram of the type AC4A 

exciter system. In this type, a small alternator mounted on  

the shaft and is used as a voltage source. The output of   

this exciter is rectified to form a DC voltage. The voltage 

regulator regulates the field of the AC exciter and regulates 

the field of the main alternator. 

3. Proposed PID Controllers 

A PID or PI controller can be used to solve the voltage 

deviation problem in the AVR system. The controller can 

provide a control signal designed for specific excitation 

requirements. The response of the controller can be 

characterized in terms of the responsiveness of the controller 

to the error. Application of the PID controller involves 

choosing KP, Ki and KD that provide satisfactory closed-loop 

performance. These parameters should be selected so that the 

characteristic response speed, settling time and proper 

overshoot rate, are minimized to guarantee the system 

stability. The proportional term KP produces an output value 

that is proportional to the current error, the integral term Ki 

accelerates the movement of the system output towards the 

setpoint and eliminates the residual steady-state error that 

occurs with a pure proportional controller, and the derivative 

action KD predicts the system behaviour and thus improves 

the settling time and the stability of the system. Figure 4 

shows the general block diagram of a PID controller. The 

dynamic model of the controller is as follows 

𝑢 𝑡 = 𝐾𝑝𝑒 𝑡 + 𝐾𝑖  𝑒 𝑡 𝑑𝑡 + 𝐾𝑑
𝑑

𝑑𝑡
𝑒(𝑡)    (1) 

where  

e(t): The difference between the target and system output 

KP: Proportional gain  

Ki: Integral gain 

Kd: Derivative gain 

The objective is to tune the PID controller to minimize the 

error between (V reference) and (VT), as shown below 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝐽 =
1

2
(𝑉𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 − 𝑉𝑇)2       (2) 

3.1. PID Controller Based on Neural Network (NN-PID) 

A fixed gain PID controller is commonly used because its 

structure is simple, and it is easy to implement [10] [11]. 

However, this method has a few limitations. If the controlled 

plant parameters change over time, the PID controller could 

hardly handle the changing environment. Hence, the neural 

network based online method is adopted here to tune the PID 

controller gains [12] for the AVR system in a synchronous 

machine. The ability of the neural network to approximate a 

nonlinear function with at least one hidden layer as reported 

in [13]. In this paper, we apply the neural network to adjust 

the PID controller gains online, namely NNPID. The tuning 

of controller gains is done by propagating the voltage error 

between V reference and VT on a two-layer neural network at 

each sampling time which can be specified by the user taking 

into consideration the time for the neural network algorithm 

to update the PID gains. In this method, the neural network 

coefficients (weights and biases) are modified at each 

sampling time to regulate the PID parameters to achieve the 



4 Abdulhamid Zaidi et al.:  Intelligent PID Controller for Automatic Voltage Regulation  

 

 

smallest error between V reference and VT. The two-layer 

network shown in Figure 5 has 4 nodes for the inputs in the 

form of (3) - (6), 3 nodes for the outputs representing the PID 

gains and 8 nodes in the hidden layer. The neural network 

activation functions f1 and f2 are in (7) and (8). 

𝑥1 = e(𝑘) − 𝑒(𝑘 − 1)             (3) 

𝑥2 = 𝑒(𝑘)                  (4) 

𝑥3 = (𝑘) − 2𝑒(𝑘 − 1) + 𝑒(𝑘 − 2)          (5) 

𝑥4 = (𝑘 − 1)                  (6) 

                  (7) 

                 (8) 

 

Figure 5.  A two-layer Neural Network architecture 

Algorithm 1.  NN-PID controller 

Input: Initial weights, bias and α 

Output: Optimal 𝑲𝑷, 𝑲𝒊, 𝑲𝑫 

while t < stop time  

{ 

obtain the voltage error and compute (3)-(8); 

compute the new 𝑲𝑷, 𝑲𝒊, 𝑲𝑫 gains; 

update the neural network weights based on (9)-(11) 

} 

The weights of the neural network are updated as follows 

𝐒2 = −2𝐅 2 𝐳2 𝐗               (9) 

𝐒1 = 𝐅 1 𝐳1 (𝑾𝟐)𝑻𝑺𝟐            (10) 

𝑾𝑚  𝑘 + 1 = 𝑾𝑚  𝑘 − 𝛼𝑺𝑚(𝑰𝑚−1)𝑇   (11) 

Where m ={1,2} indicates the first or second layer, W is 

the set of neural network weights, z is the sum of weighted 

inputs at each layer, 𝑭 1 and 𝑭 2 are the derivative of the neural 

network functions, I is the input at each layer and s is the 

neural network sensitivity to voltage error. Algorithm 1 

shows the steps of updating (tune) the PID gains with the 

neural network. 

3.2. PID Controller Based on Particle Swarm 

Optimization (PSO-PID) 

Particle Swarm Optimization (PSO) is an optimization 

algorithm introduced by Kennedy and Eberhart in 1995 [14]. 

The PSO methodology is considered as a very powerful 

technique to optimize nonlinear functions and nowadays is 

used in many applications [15]. The main concept of PSO 

was drawn to emulate the social behavior of a school of fish 

or a flock of birds when seeking food. The PSO theory is 

based on the movement of intelligent swarms to find the 

optimum solution of optimization problems [14]. The PSO 

technique obtains the best solution (candidate) inside the 

population. The optimum solution is obtained by updating 

particle locations after being assigned random initial 

locations [15]. In this paper, the particles are the PID 

controller gains. Each particle position (P) represents the Kp, 

Ki and Kd values. The position of each particle (controller 

gains) is updated at each iteration by minimizing the mean 

square voltage error (9) for the whole simulation time. 

Algorithm 2.  PSO-PID algorithm 

Input: swarm size, initial particle positions (𝐾𝑃 , 𝐾𝑖 , 𝐾𝐷), initial 

velocities 

Output: Optimal 𝐾𝑃 , 𝐾𝑖 , 𝐾𝐷  

while t < max iterations  

{ 

update particle positions using (13); 

evaluate objective function (mean square voltage error) for each 

particle; 

find the global best particle 𝑮𝑏𝑒𝑠𝑡 ; 

if     𝐽 (𝑮𝑏𝑒𝑠𝑡 ) < tolerance then 

     STOP; 

else 

       find the best position 𝑷𝑏𝑒𝑠𝑡 ,𝑖 𝑡  with minimum objective 

value for each particle 𝑷𝑖 𝑡 ; 

       if     𝐽  𝑷𝑖 𝑡   < 𝐽 (𝑷𝑏𝑒𝑠𝑡 ,𝑖 𝑡 ) then 

         𝑷𝑏𝑒𝑠𝑡 ,𝑖 𝑡 = 𝑷𝑖 𝑡   ; 

update the velocity 𝑽𝑖 𝑡  for each particle using (12): 

        end 

   end 

   } 

The steps for updating the particle positions are shown as 

follows and summarized in Algorithm 2  

𝑽𝑖 𝑡 + 1 = 𝑽𝑖 𝑡 + 𝒄1  𝑷𝑏𝑒𝑠𝑡 ,𝑖 𝑡 − 𝑷𝑖  𝑡   

+𝒄2(𝑮𝑏𝑒𝑠𝑡 − 𝑷𝑖 𝑡 )            (12) 

𝑷𝑖 𝑡 + 1 = 𝑷𝑖 𝑡 + 𝑽𝑖 𝑡 + 1         (13) 

where 

𝑽𝑖 : The velocity vector 

𝑷𝑖: The position of particle 

𝑷𝑏𝑒𝑠𝑡 : The personal best position 

 𝑮𝑏𝑒𝑠𝑡 : The global personal best 
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𝒄1 and 𝒄1: The positive acceleration constant 

3.3. PID Controller Based on Water Cycle Algorithm 

(WCA-PID) 

The Water Cycle Algorithm (WCA) is an algorithm 

introduced by Eskander and Sadollah in 2012 to solve 

unconstrained and constrained optimization engineering 

problems [16]. The algorithm is considered as a powerful 

metaheuristic optimization method to find the global 

optimum solution for convex and nonconvex functions [17]. 

The main concept of WCA was to emulate the cycle and 

movement of water under and above the earth surface [18]. 

In nature, the sea is considered as the most downhill place 

where the water ends up and stays. The sea consumes the 

water from the rivers and streams and the streams flow into 

the rivers. In this method, the sea is defined as the global 

optimum solution. The rivers and streams are defined as   

the individual solutions. The matrix in (14) is randomly 

generated and represents the sea, rivers and streams 

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 =  

 
 
 
 
 
 
 
 
 
 
 
 

𝑠𝑒𝑎
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𝑁𝑝𝑜𝑝  ×𝑁

   (14) 

where 𝑁𝑝𝑜𝑝  is the population size. The cost function of each 

stream and river is given bellow, 

𝑐𝑜𝑠𝑡𝑖 = 𝑓(𝑥1
𝑖 , 𝑥2

𝑖 , 𝑥3
𝑖 , ……… , 𝑥𝑁

𝑖 ) 𝑖 = 1,2,3,…… . . , 𝑁𝑝𝑜𝑝 (15) 

The lowest value of the individuals is taken as the sea and 

rivers based on an integer number 𝑁𝑠𝑟   specified by the user, 

𝑁𝑠𝑟 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑖𝑣𝑒𝑟𝑠 + 1 (𝑠𝑒𝑎)        (16) 

Then the number of streams can be calculated as,  

𝑁𝑠𝑡𝑟𝑒𝑎𝑚𝑠 = 𝑁𝑝𝑜𝑝 − 𝑁𝑠𝑟              (17) 

Each river and sea will consume water from the 

designated streams based on their magnitude 𝑁𝑆𝑛  given by, 

𝑁𝑆𝑛 = 𝑟𝑜𝑢𝑛𝑑   
𝑐𝑜𝑠𝑡 𝑛

 𝑐𝑜𝑠𝑡 𝑖
𝑁𝑠𝑟
𝑖=1

 × 𝑁𝑠𝑡𝑟𝑒𝑎𝑚   𝑛 = 1,2, … , 𝑁𝑠𝑟  (18) 

Each stream will move towards its designated sea and 

rivers at each iteration based on the following equations, 

𝑿𝑠𝑡𝑟𝑒𝑎𝑚
𝑡+1 = 𝑿𝑠𝑡𝑟𝑒𝑎𝑚

𝑡 + 𝑟𝑎𝑛𝑑 × 𝐶 ×  𝑿𝑅𝑖𝑣𝑒𝑟
𝑡 − 𝑿𝑠𝑡𝑟𝑒𝑎𝑚

𝑡   (19) 

𝑿𝑅𝑖𝑣𝑒𝑟
𝑡+1 = 𝑿𝑅𝑖𝑣𝑒𝑟

𝑡 + 𝑟𝑎𝑛𝑑 × 𝐶 ×  𝑿𝑆𝑒𝑎
𝑡 − 𝑿𝑅𝑖𝑣𝑒𝑟

𝑡        (20) 

where C∈[1,2] and t is the iteration steps. 

Figure 6 shows the schematic view of the streams 

movements.  

 

Figure 6.  Schematic drawing for WCA movement [16] 

In this paper, each individual  𝑥1  𝑥2 𝑥3   represents the 

three gains Kp, Ki and Kd values. The objective here is to 

minimize the mean square voltage error between Vreference 

and VT in (2) for the whole simulation. The steps for 

updating each stream and river are illustrated in Algorithm 3. 

Algorithm 3.  WCA-PID algorithm 

Input: 𝑁𝑝𝑜𝑝 , initial population positions 𝐾𝑃 ,  𝐾𝑖 , 𝐾𝐷 , iteration number 

t, 𝑁𝑠𝑟 ; 

Output: Optimal 𝐾𝑃 , 𝐾𝑖 , 𝐾𝐷  

evaluate the objective function for all individuals giving in (15) and 

sort them; 

calculate (16) and (17); 

while t < max iterations  

{ 

update particle positions using (14); 

if     𝐽 (𝑿𝑆𝑒𝑎
𝑡 ) < tolerance then 

     STOP; 

else 

     Update the streams based on (19); 

       if     𝐽  𝑿𝑠𝑡𝑟𝑒𝑎𝑚
𝑡   < 𝐽 (𝑿𝑠𝑡𝑟𝑒𝑎𝑚

𝑡−1 ) then 

         𝑿𝑠𝑡𝑟𝑒 𝑎𝑚
𝑡−1 = 𝑿𝑠𝑡𝑟𝑒𝑎𝑚

𝑡  ; 

      end 

      Update the rivers based on (20); 

      if     𝐽  𝑿𝑟𝑖𝑣𝑒𝑟
𝑡   < 𝐽 (𝑿𝑟𝑖𝑣𝑒𝑟

𝑡−1 ) then 

         𝑿𝑟𝑖𝑣𝑒𝑟
𝑡−1 = 𝑿𝑟𝑖𝑣𝑒𝑟

𝑡   ; 

      end 

evaluate the objective function (mean square voltage error) for all 

individuals and sort them; 

end 

} 

4. Simulations and Results 

The PID controller applied to the AVR system is shown in 

Figure 7. In order to demonstrate the response of the AVR 

with the proposed controllers, the three algorithms are coded 

in Matlab and linked to the AVR system which is built in 

Simulink. As in any metaheuristic optimization problem, the 

population size and convergence criterion need to be chosen 
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carefully. The population size for the PSO is chosen to be 50 

while that for the WCA is 40. In the NN-PID algorithm, the 

number of neural network layers, weights and biases are 

chosen as mentioned in Section 3.1. The stopping criterion 

for all the algorithms is chosen to be 1 × 10−6.  

The assigned parameters for the two exciters DC2A and 

AC4A based on IEEE recommendation [9] are provided in 

Tables 1 and 2. 

Table 1.  IEEE DC2A parameters [9] 

Parameter Value 

 

Parameter Value 

𝐾𝐴 300 𝐾𝐸  1.0 

𝑇𝐴 0.01 𝐾𝐹 0.1 

𝑇𝐵 0 𝑇𝐹 0.675 

𝑇𝐶  0 𝑉𝑅 𝑚𝑎𝑥  4.95 

𝑇𝐸  1.33 𝑉𝑅 𝑚𝑖𝑛  -4.9 

 

 

 

Figure 7.  The block diagram of the AVR system with a PID controller [5] 

 

Figure 8.  The block diagram of a PID controller with PSO and WCA 

 

Figure 9.  The block diagram of a PID controller based on neural network 
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Table 2.  IEEE AC4A parameters [9] 

Parameter Value 

 

Parameter Value 

𝐾𝐴 200 𝑉𝑅 𝑚𝑎𝑥  5.64 

𝑇𝐴 0.04 𝑉𝑅 𝑚𝑖𝑛  -4.53 

𝑇𝐵 12 𝑉𝐼 𝑚𝑎𝑥  1.0 

𝑇𝐶  1.0 𝑉𝐼 𝑚𝑖𝑛  -1.0 

Figures 8 and 9 show the block diagram for each controller. 

Each proposed controller is tested separately. The three 

tuned systems are firstly tested when there is no disturbance 

or change in the load. Then, a random load change of 10% 

within a limited time is assumed to test the robustness of the 

proposed controllers in terms of tracing the change of load as 

well as to test the voltage deviation damping. 

4.1. AVR Responses with the DC2A Exciter 

DC2A AVR system responses are shown in Figures 10  

to 16 for the three proposed controllers. Firstly, Figure 10 

shows that the PSO-PID algorithm starts to converge by the 

fifth iteration while the WCA-PID algorithm converges by 

the tenth iteration. The two algorithms run for more than   

40 iterations to obtain a smaller voltage deviation with the 

smallest damping. In the NN-PID case, the system voltage 

error reduces at each sampling time. Secondly, the voltage 

deviation of using the three controllers are shown in  

Figures 11 and 13. The overshoot, settling time and system 

response speed are greatly reduced by applying the 

optimized controllers using the WCA and PSO compared to 

the NN-PID. From Table 3, there is no overshoot in the    

AVR response with the PSO-PID and WCA-PID while in 

Many Optimizing Liaisons PID (MOL-PID) and Ziegler 

Nichols PID (ZN-PID) the overshoot is 4.3% and 53.6%, 

respectively [19], in NN-PID, the overshoot is about 15% 

higher than that of PSO-PID and WCA-PID, but still does 

much better than ZN-PID. The rise time of the AVR 

response of the three proposed controllers is between 0.102 

sec and 0.371 sec. This range of rising time is considered as 

fast enough for the AVR terminal volt to rise. Regarding the 

settling time, PSO-PID controller and WCA-PID push the 

terminal volt of the AVR system to settle in less than 1.2 sec 

which makes them the fastest two controllers to settle 

compared to NN-PID and ZN-PID. The NN-PID controller 

is slower to settle because this controller works online and  

its settling time depends on the sampling time. Thirdly,   

the robustness of the DC2A AVR system with the three 

proposed controllers is superior as all the three controllers 

could maintain the terminal volt for a range of 0% to 10% 

random load change as shown in Figures 14, 15 and 16.  

 

Figure 10.  The convergence of the WCA-PID and PSO-PID algorithms for the DC2A AVR system 

 

Figure 11.  AVR response with exciter DC2A in the case of no load change 
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Figure 12.  AVR overshoot response with DC2A exciter in the case of no change in the load 

 

Figure 13.  AVR response with exciter DC2A with the NN-PID controller in the case of no load change 

 

Figure 14.  AVR response with exciter DC2A with up to 10% random load change 

 

Figure 15.  AVR response with exciter DC2A with up to 10% random load change zoom in 
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Figure 16.  AVR response with exciter DC2A with up to 10% random load change for the NN-PID controller 

 

4.2. AVR Response with the AC4A Exciter 

 

 

Figure 17.  The convergence of the WCA-PID and PSO-PID algorithms 

for the AC4A AVR system 

The PSO-PID and WCA-PID algorithms for an AVR 

system with the AC4A exciter take longer time to converge 

compared to the AVR with the DC2A exciter. PSO-PID 

converges at the 40th iteration while WCA-PID converges at 

about the 14th iteration as shown in Figure 17. The three 

proposed controllers are compared to each other and to the 

AC4A AVR system with ZN-PID and MOL-PID. The three 

proposed controllers show good performance in general. The 

system steady state error (ess) is about zero for all the three 

controllers. The results are shown in Figures 18 to 20 and 

Table 4. The observation is that the ZN-PID and MOL-PID 

[19] have small overshoot (0.25% and 0.22%, respectively), 

while that of the three proposed controllers is very small 

(near 0%). The terminal volt for the AC4A AVR with 

PSO-PID and WCA-PID takes a bit longer to rise than that of 

ZN-PID [19]. The range is from 1 sec to 1.3 sec while in the 

system with NN-PID it is about 3.257 sec. The settling time 

is remarkable with PSO-PID and WCA-PID, which are 

3.918 sec and 4.121sec respectively as compared to 6.748 

sec of MOL-PID. The AC4A AVR system with all the three 

controllers is robust against the disturbance or load change as 

shown in Figures 21 and 22.  

Table 3.  The transient response of the DC2A AVR system 

Intelligent 

PID Type 

Overshoot 

(%) 

Rise time 

(Sec) 

Settling 

time (sec) 

Steady 

state error 

WCA-PID 0 0.371 1.121 0 

PSO-PID 0 0.232 0.982 0 

NN-PID 15% 0.102 5.317 0 

ZN-PID 53.6% 0.161 3.563 0 

MOL-PID 4.3% 0.234 1.523 0 

Without PID 50.6% 0.185 >20 0.0909 

Table 4.  The transient response of the AC4A AVR system 

Intelligent 

PID Type 

Overshoot 

(%) 

Rise time 

(Sec) 

Settling 

time (sec) 

Steady 

state error 

WCA-PID 0 1.069 3.918 0 

PSO-PID 0 1.125 4.121 0 

NN-PID 0 3.257 5.317 0 

ZN-PID 0.27% 0.979 5.612 0 

MOL-PID 0.23% 1.114 6.748 0 

From Tables 3 and 4, it is clear that WCA and PSO 

perform the best compared to NN. WCA searches for the 

global optimum solution based on the movements of the 

rivers and streams, which are controlled by (19) and (20). 

The random numbers in these equations make the stream and 

river movements sufficiently small to search for the best 

solution when rivers become sufficiently close to the sea,  

the mechanism of precipitation and rain may prevent the 
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algorithm from converging to local optimum. PSO has the 

power of searching for the optimum solution by updating the 

particle positions based on velocity (12). The term 𝑽𝑖 𝑡   in 

(12) provides a memory of the previous iteration. If the new 

location based on 𝑽𝑖 𝑡 + 1   is not optimum with regard to 

the previous location, the new location is ignored.      

This makes sure that the PSO algorithm gives no worse 

solution for each particle in each Iteration. NN has poorer 

performance among the three proposed controllers despite 

that it is an online tuning method. This is because it is 

gradient-based and the step size α is pre-selected [20], which 

may provide local optimum solutions. 

 

 

Figure 18.  AVR response with AC4A exciter in the case of no change in load 

 

 

Figure 19.  AVR response with AC4A exciter showing the system the overshoot of ZN-PID and MOL-PID 

 

 

Figure 20.  AVR response with AC4A exciter with no load change for the NN-PID controller 
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Figure 21.  AVR response with DC2A exciter with up to 10% random load change 

 

Figure 22.  AVR response with AC4A exciter with random load change for the NN-PID controller 

5. Conclusions  

In this paper, the water cycle algorithm, particle swarm 

optimization and neural network are used to tune the gains  

of a PID controller for automatic voltage regulation in    

two types of IEEE recommended excitation systems. The 

proposed WCA-PID, PSO-PID and NN-PID controllers  

are tested with load disturbances. through the simulations, 

the system performance is evaluated in terms of dynamic 

response parameters, i.e., settling time, rise time and 

overshoot. It is concluded that the system based on the 

proposed controllers tuned by WCA, PSO or NN has a good 

transient response and is robust to change in the load.  

As a further study, the proposed controller can be used 

with the other IEEE recommended exciters. Furthermore, the 

under excitation and over excitation cases and their effect on 

the control of the AVR system are not studied in this paper. It 

will be reasonable to include them to get more practical 

response results.  
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