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Abstract  Historical wildfire patterns have experienced a recent shift in terms of its scale and intensity. Through the 

continuing advancements in electrical protection technology, statistical forecasting methodologies, availability of 

meteorological field data, and regional risk-modelling, wildfire management practices can be made more proactive in the 

United States and around the globe. To create a comprehensive and practical operating framework, an advanced seasonal 

autoregressive integrated moving average time series modelling technique for wildfire forecasting is explored. These 

regressive models, due to their mathematical accuracy has been used in many engineering and scientific applications. The 

study presented here was done using a qualitative investigation approach to wildfire data. Computer automated grid search 

techniques were developed to determine suitable seasonal regressive model hyper-parameters. With the usage of power 

transforms to fit skewed statistical models under study, it is found that a much more accurate and computationally efficient 

model can be generated. Statistical forecasts and regional risk mapping techniques can influence strategic operational 

practices for regional and local fire authorities. Concepts that can enhance power system protection and electrical grid 

hardening are explored and practical guidelines to help electrical utilities improve electrical grid operations are provided. 

Many benefits of using distributed energy resources are discussed and an optimal power flow involving these resources is 

formulated to help grid operators preserve system stability under these wildfire scenarios. 

Keywords  Grid maintenance planning, SARIMA, Auto-regressive models, Forecasting, Wildland-urban interface, 

Risk-model, Distributed energy resources 

 

1. Introduction 

Effective wildfire policies are of paramount importance 

for natural resource management and to ensure public 

health and safety. In the US, historical patterns of these  

fires were mostly caused due to lightning or burning by  

the native population. However, recently these historical 

patterns have shown significant changes in terms of the size, 

intensity, and duration of the wildfires [1,2]. The changes in 

the historical patterns are mostly attributed to a synergy of 

natural and human causes. Changes in rainfall patterns and 

snowpack, increased periods of drought, and replacement of 

native grasslands with invasive species are rapidly 

increasing the potential of future wildfires. To add to the 

problem, population growth is pushing residential 
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development into forested and semi forested areas which 

are recurrent spots for wildfires [3–5]. One key issue of 

these wildland-urban developments is the growing need for 

electrification of these areas with transmission, distribution, 

and substation assets. The inherent risk of fires due to 

electrical faults and other maintenance issues of these  

assets makes the management of the wildfires in these 

urban fringe areas challenging and costly. For instance, 

from 2000-2016, the electrical asset-related damages for 

utilities in California is in upwards of $700 million [6] 

mostly reported along these wildlife-urban fringe areas. 

Understanding and statistical forecasting of these wildfire 

time-series trends can demonstrate a pathway for future 

energy policies and utility level decision making on 

electrical maintenance and planning. 

A risk event frequency study [7] from 2015-2017 over 

the high fire threat districts (HFTD) of California, US has 

revealed the key contributing element for over four  

hundred wildfire events as summarized in Table 1. As one 

can observe, contact of live conductors with vegetation,  

and equipment and hardware failures are reasons that are 
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potentially controllable with human interference yet have 

contributed greatly to the cause of massive wildfires. From 

this observation greater focus has been given to the role of 

vegetation in increasing forest fire risk and preventive 

maintenance solutions have been likewise investigated. 

A vast amount of literature has been focused on the 

application of autoregressive integrated moving average 

(ARIMA) models or somewhat of its improved form in 

areas ranging from wind speed forecasting [8], to 

commercial commodities and electricity price forecasting 

[9–11]. On the contrary, most of the studies that have been 

done in the area of wildfire prediction have been from a 

statistical standpoint, without any traceable link to future 

energy policy recommendations. For instance, in reference 

[12], a comparison has been made between the relative 

performance of an ARIMA approach versus a Holt-Winter 

(HW) approach, for forecasting meteorological factors 

conducive for forest fires. The authors of this study    

have established a causal relationship between forest fires 

and meteorological parameters as wind speed, ambient 

temperature, precipitation rate, ambient pressure, and 

relative humidity. 

In another interesting study [13], the combination of 

meteorological and remote sensing satellite data was used to 

detect potential terrestrial hot-spots, a precursor of most 

forest fires. A series of hot-spots were observed from a 

combination of sources and a time series hot-spot model 

was created. As such, the time-series forecasting model in 

this study applies the Box-Jenkins approach to build 

regressive models. The authors in this study investigate  

the different models and their corresponding information 

criterion scores. Relative model performance was 

investigated by dividing the data set into training and 

testing data and mean absolute error performance metric 

was used to evaluate overall model performance. 

Table 1.  Key contributing elements for wildfire events under study 

Factors 
Percentage 

contribution 
Nature of the event 

Vegetation 

contact 
49 

Contact of line conductor with 

vegetation 

Equipment or 

other failure 
27 

Failure of equipment like power 

transformers, conductors 

Other 

inadvertent 

contact 

13 Accidents/ sabotage 

Animal contact 8 
Bird flights and burrowing animal 

contact 

Unknown 2 Causes of unknown origin 

Fuse operation 1 Fire ignition from fuse blowout 

Usage of remote sensing and geographic information 

system technologies was outlined in [14] for a case study in 

Hubei province in China. The study implemented historical 

ignition points along the power line corridor of Hubei 

province from 2009-2014 as its training set and used 

logistical regression to produce ignition probability maps. 

The conclusion found from this study confirms high 

dependence of wildfire behaviour on the type of ground 

vegetation, the dynamic and challenging nature of the  

input variables as multi-temporal satellite imaging and   

the importance of accurate meteorological data and field 

stations for data acquisition. 

The authors in [15] used a combination of data science 

and big data techniques for a wildfire emergency 

management plan. The wildfire monitoring and emergency 

management plan tie meaningful data from people on the 

ground and earth-observing satellites in near-earth orbit for 

an early fire warning system. Some of the other decision 

inputs discussed by the authors are data from the weather 

forecast, visible-infrared earth mapping and risk impact 

mapping, with the final goal of providing a continuous 

stream of information both to the authorities and the public. 

A theoretical stochastic study as in [16] has assessed  

the vulnerability of power grids using a probabilistic 

progression estimation model. The underlying idea 

presented is the de-rating of the at-risk transmission line to 

counter the heat gained from the fire plume. Effect of wind 

direction and speed has been factored in to develop a 

probabilistic optimal power flow subject to constraints as 

voltage, generator capacity, and spinning reserve. 

From the literature review, a clear research gap is found 

that no research study has provided a satisfactory 

framework to analyse the risk and trends of these  

wildfires and related it to fire mitigation strategies that 

utilities, fire departments, and distributed energy resource 

owners can collectively implement in order to slash these 

fire risks dramatically. This paper establishes a statistical 

seasonal autoregressive integrated moving average 

(SARIMA) prediction structure and a regional fire risk 

modelling-framework to understand the implication of these 

wildfires on energy policies and is organized as follows. 

Section 2 focuses on statistical forecasting and develops a 

comparison between an automated grid search approach for 

selection of the SARIMA model hyperparameters versus 

power transformation on the data prior to fitting the model. 

Merits of using power transform on similarly skewed data 

set has been presented. Section 3 presents the numerical 

testing results obtained from Section 2. Finally, Section 4 is 

inspired by the high importance of the domain of wildfire 

predictions on governing future energy policies and is 

approached from three different angles: from the standpoint 

of local and regional fire departments, from the standpoint 

of transmission and distribution asset owners, and from the 

standpoint of distributed energy system asset owners. A DC 

optimal power flow formulation have been proposed in this 

section, that combines de-rated transmission line operation, 

and dispatch support from distributed energy systems. 

Finally, conclusions are given in Section 5. 
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2. Automated Grid Search and       
the Use of Power Transforms 

2.1. Data Acquisition and Pre-processing 

The study employs a time series data spanning from 1992 

to 2015, collected out of Forest Service Research Data 

Archive, United States Department of Agriculture [17]. The 

wildfire records of this data set were acquired from federal, 

state and local fire organizations. The available data-set has 

over one million forty-eight thousand entries with the 

granularity at a day level. From the given data-set, the dates 

at which a given wildfire was observed and the size of the 

burnt area are the primary area of interest for this study. Most 

commonly available data-sets suffer from random missing 

observations. The common approach to deal with random 

missing observations is to insert an estimated value. For this 

study, the weighted average of p observation points before 

and after the missing values has been used, as shown in 

Equation 1. Furthermore, for a discussion on observations 

with systematic missing patterns [18] provides an excellent 

reference. 

𝑧 𝑡 = −𝑑0
−1  𝑑𝑗  𝑧𝑇−𝑗 + 𝑧𝑇+𝑗    

𝑝
𝑗=1     (1) 

where 𝑑𝑗 =  ∅𝑖∅𝑖−𝑗 ,∅0 = −1
𝑝
𝑖=𝑗 , and 𝑑0 = 1 +  ∅𝑖

2𝑝
𝑖=1 . 

Following the data pre-processing steps, some descriptive 

statistical tools were used to visualize the data. Figure 1 

shows a box and whisker plot of the monthly wildfire trend, 

with a clear indication of high median count for the  

summer and early fall season, and a near-zero median count 

during the winter season. This observation would be of  

some importance for the structuring the energy policy 

recommendations later in Section 4 of this study. 

 

Figure 1.  Box and whisker plot summary of the US monthly wildfire 

count 

2.2. Automated Grid Search Approach to Determine 

SARIMA Model Hyperparameters 

The building blocks of an ARIMA (p,d,q) model are the 

autoregressive order p: AR (p) model and moving average 

order q: MA (q) model. An AR (p) model is a discrete time 

series linear equation, as described by Equation 2, where p is 

the model order and 𝛼𝑖  are the coefficients with 𝜀𝑡  as error 

term. 

𝑋𝑡 = 𝛼1𝑋𝑡−1 + 𝛼2𝑋𝑡−2 +⋯+ 𝜀𝑡      (2) 

With L defined as a lag operator 𝐿𝑘𝑥𝑡 = 𝑥𝑡−𝑘 , we can 

generalize AR (p) model from Equation 2 as shown in 

Equation 3.  

 1 − 𝛼𝑘𝐿
𝑘

𝑝

𝑘=1
 𝑋𝑡 = 𝜀𝑡                  (3) 

A MA (q) model is a linear regression of the current value 

of a time series with current and previous random shocks, 

which are assumed to be mutually independent. This can be 

generalized into Equation 4 with L being a lag operator as 

defined earlier. 

𝑋𝑡 =  1 + 𝛽𝑘
𝑟

𝑘=1
𝐿𝑘 𝜀𝑡               (4) 

An ARIMA (p,d,q) model, a particular case of ARMA 

(p,q) model, is a discrete time linear equation, as shown in 

Equation 5, where p, d, and q are the ARIMA model orders, 

α and β are the real number coefficients, 𝜀𝑡  as error term. 

 1 − 𝛼𝑘𝐿
𝑘

𝑝

𝑘=1
 (1 − 𝐿)𝑑𝑋𝑡 =  1 + 𝛽𝑘𝐿

𝑘
𝑞

𝑘=1
 𝜀𝑡  (5) 

The classical approach [19] of identifying the ARIMA 

model hyper-parameters (p,d,q) involves performing 

stationary tests as augmented Dickey-Fuller (ADF) or 

Kwiatkowski–Phillips–Schmidt–Shin (KPSS) [20,21] with 

an application of necessary differencing to make the series 

stationary. The d term in ARIMA (p,d,q) indicates the  

order of differencing required to make the series   

stationary. Further, an AR (p) order is detected if the partial 

auto-correlation plot (PACF) cuts off after p lags, with the 

auto-correlation plot (ACF) tailing off. On the other hand, a 

MA(q) order is detected, if the ACF plot cuts off after q lags, 

with the PACF plot tailing off. Tailing off of both ACF and 

PACF plots confirms an ARMA (p,q) order. 

Selecting an ARMA (p,q) model order from the ACF and 

PACF plot is not straightforward and these plots at best 

suggest that the series under investigation is not a pure AR (p) 

or MA (q) series. Some of the other academic approaches 

involves the usage of extended sample auto-correlation 

function (ESACF) and inverse auto-correlation function 

(IACF) [22]. 

On the other hand, the objective of the automated grid 

search of these ARIMA model hyper-parameters is to avoid 

manually looking at the ACF and PACF plots, a process 

which is cumbersome, time-consuming and prone to human 

errors. The grid search described here deploys a nested loop 

approach to determine p, d, and q, by running a maximum of 

p× d× q cases. Improvement in computation time has been 

observed by using selection criterions which penalizes more 

complex models if they fail to show significantly better 

performance over simpler models. From the commonly 

available criteria in the literature, the Akaike information 

criterion (AIC) and Bayesian information criterion (BIC), 

Equations 6a and 6b has been selected to gauge model 

performance in this study. 
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𝐴𝐼𝐶 = 2𝑘 − 2ln(𝐿 )             (6a) 

𝐵𝐼𝐶 = ln(𝑛)𝑘 − 2ln(𝐿 )          (6b) 

In both Equations 6a and 6b, 𝐿  is the maximum value of 

the likelihood function of the model, n is the number of data 

points and k is the number of free parameters to be estimated. 

The second term in Equations 6a and 6b penalizes the 

ARIMA model for too many parameters. As such, to 

improve computation efficiency the approach used here is to 

exit the nested grid search loop if the numerical value of the 

AIC or BIC converges to a high number after several 

iteration steps. 

A final step before a grid search simulation is executed to 

establish if the given data has a seasonal trend. From several 

decomposition techniques that are discussed in the literature 

[23,24] a seasonal and trend decomposition using loess (STL) 

technique was used to verify seasonality. The relative merit 

of this decomposition technique is that its robust to outliers, a 

property ideal to analyse wildfire data. With seasonality 

observed in the data-set three more hyperparameters, P, D, 

and Q are defined for the seasonal component of the model. 

Thus, the complete SARIMA (p,d,q)(P,D,Q,m) model under 

investigation have trend component parameters of p, d and,  

q for the autoregression, difference and moving average 

portions and P, D, Q and, m due to the seasonal component 

for autoregression, difference, moving average and seasonal 

period. 

With a grid search simulation on the wildfire data-set with 

288 entries, with an aggregated granularity at a monthly level, 

the hyper-parameters for this SARIMA model are found to 

be (0,1,1)(1,0,1,12) along with a total computation time of 

38.76 seconds on standard Intel i5 hardware. The model 

performance in terms of standard statistical metrics and 

numerical values of AIC, BIC are summarized in Table 2. 

Figure 3 shows the prediction performance for 24 months 

with seasonal high during the summer months. 

2.3. SARIMA Model Parameter Selection Using Power 

Transforms 

Real-life data as obtained from [17] rarely tend to be 

normally distributed and is typically skewed. The issue with 

trying to fit a regression model on a skewed data is often 

complicated and not encouraged since the regression 

assumptions are violated. Decision tree-based classification 

techniques can be used to fit this kind of data, without 

requiring the data to be transformed, as noted in reference 

[25]. 

For auto-regressive based models, power transforms   

like Box-Cox or Yeo-Johnson transformations [26,27] are 

typically used to normalize a skewed distribution. We can 

use these transforms to our advantage to normalize our 

data-set for better fitting our model. A two-parameter 

Box-Cox transformation as defined in Equation 7 is used to 

transform the wildfire study data. The transformed data is 

sequentially fitted into a SARIMA model using the same 

grid search technique described in Section 2.2. Once the 

transformation is applied and the grid-search algorithm is 

executed, it is imperative to re-transform the data back to get 

to the original scale. 

𝑦 𝜆 =  
( 𝑦+𝜆2 

𝜆1−1

𝜆1
     𝑖𝑓 𝜆1 ≠ 0

log 𝑦 + 𝜆2      𝑖𝑓 𝜆1 = 0

        (7) 

 

(a) Time series statistics of the untransformed data-set 

 

(b)Time series statistics of the Box-Cox transformed data-set 

Figure 2.  Critical statistics of the time series data 

 

Figure 3.  Forecast performance of SARIMA and transformed SARIMA 

models 

In Equation 7, y is the response variable and 𝜆1, 𝜆2 are 

the transformation parameter. It should be noted that 𝜆1= 0 

requires a special definition and is the log of the data itself. 

Statistical analysis on the original data-set from [17] reveals 

skewness in Figure 2a, as expected with phenomenon like 

wildfires. The given data-set is normalized with a Box-Cox 

transformed, as described by Equation 7 and is shown in 
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Figure 2b. Readers should be aware that due to the nature  

of the Box-Cox transformation, only positive valued data-set 

or data-set with non-negative values can be transformed  

which is ideal for wildfire data-set. With a grid search 

simulation on the Box-Cox transformed wildfire data-set 

with 288 entries, aggregated to a monthly granularity   

level, the hyper-parameters for the Box-Cox transformed 

SARIMA model were found to be (2,0,0)(2,0,1,12) with a 

total computation time of 101.13 seconds on standard Intel  

i5 hardware. The model performance in terms of standard 

statistical metrics and numerical values of AIC, BIC are 

summarized in Table 2. Figure 3 shows the prediction 

performance for 24 months with a seasonal high during the 

summer months. 

3. Numerical Performance Evaluation 

Before evaluating model performance, some notes on 

forecasting very long and extremely granular times series are 

presented. It is a general observation that most time series 

model do not work well for a long and extremely granular 

data-set. Wildfire data obtained from [17] consists of 

multiple entry for each date-time index and recorded at     

a twenty-four-hour level of granularity. These individual 

entries should be aggregated to an acceptable level of 

granularity, to improve computation time and retain 

forecasting objective. For this study, the time stamp data 

were aggregated to the level of granularity at a monthly level, 

which aligns well with the objective of this study. 

Table 2.  Relative model performance and forecast error 

Simulation 

type 
AIC BIC Mean RMSE 

Simulation 

time (s) 

Grid search 8541 8560 211230 6802 38.75 

Box-Cox & 

Grid search 
590 620 211230 1144 101.13 

For model evaluation, the entire data-set is broken into 

training and testing data and the model is trained on the 

initial eighty percentage of the data. The forecasting 

performance of both the SARIMA (0,1,1)(1,0,1,12) model 

and the Box-Cox transformed SARIMA (2,0,0)(2,0,1,12) 

model has been measured by root mean square error  

(RMSE) on the test set of the wild fire data-set. For a  

detailed discussion of these evaluation metrics, readers are 

encouraged to refer [28]. The improvement of the proposed 

Box-Cox transformed SARIMA (2,0,0)(2,0,1,12) model 

over the benchmark regular SARIMA (0,1,1)(1,0,1,12) 

model can be seen from Table 2. It is observed that without 

the transformation, a straightforward nested grid search 

algorithm yields a relatively high information criterion and 

higher root mean square error on the test data. Also, the 

overall performance of the two models is superior, given  

the low RMSE compared to the data mean. From these 

observations, it can be suggested that suitable transformation 

methods should be explored before fitting naturally skewed 

data-set for robust model fitting. An initial descriptive 

statistical analysis should also be conducted, as discussed 

above, on skewed data-sets to establish whether the data is 

left or right-skewed. 

4. Recommendations on Future Energy 
Policies 

4.1. Operating Framework for Local and Regional Fire 

Departments 

This section deals with developing a workable risk-model 

for the local and regional fire departments. The proposed 

risk-model for regional risk assessment is divided into three 

parts: the working voltage level of the electrical asset being 

analysed, the position of the active zone of the flame in 

regard to the electrical conductors, and the effect of 

temperature, relative humidity and ionization in form of air 

pollution. 

The idea of the first component of the risk-model is to 

establish transmission security for important 500, 345 and 

138 kV lines since an outage on these lines have major 

impacts on grid stability and on public welfare. Since the 

voltage levels and power carrying capacity of electrical 

networks are typically non-linear, a logarithmic scale is 

used for this model. In Equation 8, 𝛼𝑖  is the sensitivity 

factor to be chosen by fire analyst and n represents a scaled 

integer corresponding to a voltage level. 

𝑅𝑖𝑠𝑘 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒  

=  𝛼𝑖  ×  𝑙𝑜𝑔 𝑛   ∀𝑛 ∈  [1,10]        (8) 

The second part of the model evaluates the breakdown 

risk of the electrical conductors/bus of electrical assets 

based on the relative position of the flame. For example, a 

345 kV transmission line with a typical height ranging 

between 49 to 180 ft has a lower risk than a bus at a 

switching substation at the same voltage level due to its 

proximity to the general terrain. In Equation 9, 𝛽𝑖  is the 

sensitivity factor to be chosen by fire analyst and 𝐻𝑐−𝑡  
represent the height of the energized electrical asset from 

the terrain level. 

𝑅𝑖𝑠𝑘 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑠𝑝𝑎𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑓 𝑓𝑖𝑟𝑒 

=  𝛽𝑖 ×
1

𝐻𝑐−𝑡
                (9) 

The last portion of the risk-model deals with the risk 

components due to environmental factors: temperature, 

relative humidity, and ionization in the form of air pollution. 

This model considers the result from the study [29] which 

found the effect of temperature on electric field breakdown 

to have an inverse relation. Also, areas with higher forest 

coverage (𝜈𝑓𝑐 ) typically tend to increase the temperature 

factor by providing forest fuel for a wildfire burn and is 

included as a risk-parameter. Further, higher relative 

humidity (RH) tends to reduce wildfire risk by a square 

inverse factor. Last, experimental studies in a controlled 

environment have shown a higher risk of electrical 

breakdown in the presence of atmospheric contaminants 

(τppm) [30] and is included in the risk-model. The combined 
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model with all the above parameters included is shown in 

Equation 10. Like the sub-models discussed an operator 

adjustable sensitivity factor of ϒ𝑖  is added into the 

equation. 

𝑅𝑖𝑠𝑘 𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡 𝑑𝑢𝑒 𝑡𝑜 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟 

= ϒ𝑖 × 𝜈𝑓𝑐 × 𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡 ×
𝐾1

𝑅𝐻2 × 𝜏𝑝𝑝𝑚     (10) 

Combining the three components of this risk-model, a 

heat map was generated for a 138 kV transmission line 

using a pole tower of 90’ height for the state lower 48 states 

of the US with atmospheric conditions from major regional 

cities. It should be noted that due to the nature of the risk 

components in Equations 8 and 9 multiple simulations are 

necessary to capture transmission assets at different voltage 

levels and to differentiate transmission and distribution 

assets from substation assets. Also, given to the dynamic 

nature of the environmental component of the risk-model, 

as in Equation 10, regular model updates with current 

environmental parameters is necessary. 

Figure 4 shows high risk areas in US, with county wise 

mapping of the lower 48 states using Federal Information 

Processing Standards (FIPS) codes. The mapping uses 

resources like Google Maps and global historical 

climatology network (GHCN) data-set from National 

Centers for Environmental Information [31] for this 

mapping. Equal weigh was given to all three sensitivity 

factors 𝛼𝑖 , 𝛽𝑖 , and ϒ𝑖 . The model used a scoring system 

and the heat-zones in Figure 4 represents a unique score for 

each county for all the forty-eight states. High risk areas are 

detected whenever the combination of high forest coverage 

(𝜈𝑓𝑐 ), low relative humidity (RH), high ambient temperature 

(Tambient) and high atmospheric contamination (τppm) are 

favourable from a multiplicative standpoint. As such, from 

Figure 4, US states like California, Nevada, Arizona and 

Oregon having the right mix of these factors are more 

susceptible to forest fires as compared to other US states 

like Virginia and Tennessee, where high relative humidity 

creates an unfavourable wildfire condition. 

 

Figure 4.  Heat map showing modelled risk of wildfires in US for 138 kV 

transmission lines 

4.2. Operating Framework for Entities Managing 

Transmission and Distribution 

4.2.1. Upgrade System Protection and Relaying Schemes 

The strategical operational practices: combining 

forecasting wildfires from time series analysis of historical 

data and accurate regional risk mapping can help shape 

local and regional fire management policies. However, grid 

operators can do much more than solely relying on these 

strategic practices for grid operation and can invest to 

upgrade system protection and harden the overall system, as 

would be discussed next. 

The issue of wildfires as seen in the introductory section 

of this article revealed that a major portion of these 

incidents is caused due to broken or downed conductors. 

Fault scenarios arising from these faults are typically  

single line to ground (SLG) in nature. These SLG faults are 

unbalanced and must be analysed using symmetrical 

component analysis technique. An excellent discussion of 

symmetrical component analysis can be found in [32], and 

the results from such an analysis is summarized in Equation 

11a-c, where Vf is the pre-fault voltage, Zf is the fault 

impedance and 𝑍0 , 𝑍1 , 𝑍2  are the zero, positive and 

negative sequence impedance.  

𝐼𝑎 = 𝐼0 + 𝐼1 + 𝐼2 = 3𝐼1 =
3𝑉𝑓

𝑍0+𝑍1+𝑍2+3𝑍𝑓
   (11a) 

𝐼𝑏 = 0                   (11b) 

𝐼𝑐 = 0                   (11c) 

As can be seen from Equation 11a, the problem with these 

SLG faults is the fact that high fault impedance can make 

these faults seem benign, though they have a huge potential 

of causing a wildfire. Adding to the complication of 

detecting SLG faulted conductor and subsequent tripping 

under these high impedance fault (HIF) scenarios is the fact 

that poor insulation maintenance or insulator degradation can 

also cause a high-impedance fault scenario, with current 

trickling out of the conductors at these weak spots. Typically, 

time and frequency domain signatures are analysed to detect 

high impedance faults [33], which are otherwise difficult to 

detect. The challenge is to design a protection system that 

can combine the detection of high-impedance faults along 

with some signals from the field of an actual downed 

conductor. To accomplish this, a feeder protection relay with 

an internal logic set to detect high-impedance fault will have 

to be combined with wireless signals obtained from its 

downstream feeder lines. This combination logic can be used 

to send a block signal to the reclosers controlling the feeder. 

In general, the above combination logic must detect both 

high impedance fault and a downed conductor by analysing 

the negative sequence current signature obtained from the 

wireless signal of its downstream feeder lines. As such, a 

broken phase conductor will have a high negative to positive 

sequence current ratio [34]. 

To prevent the cost of maintenance and ensure reliable 

operation without an additional power source, field 

clampable current transformers module (FCCTM) can be 

used to generate these wireless signals, using the power from 

a distribution feeder line itself. Use of an internal Lithium 

cell battery would make them a standalone sensor and adding 

a wireless antenna can report loss of current to its parent 

station. 
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Figure 5.  Flowchart to guide disabling reclosure and fast acting fuse 

switching 

 

Figure 6.  Guided reclosing using field FCCTM signals 

The method under discussion of disabling reclosure 

operation can be implemented in conjunction with slight 

configuration of the distribution feeder relay to either use or 

bypass an extreme time inverse fuse: a decision that the 

SCADA operator can make remotely, as can be seen from 

the working flowchart in Figure 5 and network configuration 

in Figure 6. The overall protection philosophy is to detect 

down conductor signal (high negative to positive sequence 

current ratio) from these FCCTM devices and combine it 

with a high impedance fault combination logic for feeder 

relay operation on the reclosure. A benefit of having unique 

identification signatures for each of the FCCTM devices is 

that the SCADA operator can decide to engage reclosing   

if the FCCTM’s negative to positive sequence high current 

signal is not from a high-risk fire zone and to disable 

reclosing otherwise. 

4.2.2. Other Effective Techniques to Harden the Overall 

Electrical Grid 

A few non-conventional approaches are discussed in this 

section, which has the potential to harden the electrical 

network against wildfires. 

To enhance electrical grid resilience regular oil filled 

instrumentation transformers can be replaced with its optical 

counterpart, in high wildfire risk zones. These compact 

optical transformers have superior seismic performance due 

to its light weight and footprint and can be used to adapt to a 

wide range of electrical turns ratio. Other major advantages 

of these systems are its linear performance due to the  

absence of iron core saturation and galvanic isolation of high 

voltage lines. Unlike a capacitor coupled voltage transformer 

(CCVT) an optical transformer relies on the physical 

phenomenon of Pockels effect [35] and can be used to 

measure harmonic contents at interfacing substations and 

point of interconnections. 

Though instrumentation transformers can be replaced   

by optical transformers in limited scenarios, oil cooled 

power transformers possess its unique challenges in terms  

of wildfire risk. Engineered K-class ester based mineral oil 

[36] with extremely low flammability can be used to replace 

existing transformer oil during routing or emergency 

maintenance, to reduce fire propagation through utility 

transformer assets in high risk areas. These engineered 

ester-based oils can have fire points as high as 680°F and can 

be tuned to comply with industry testing standards as IEEE 

C57.154 [37] for high temperature insulation systems. 

4.3. Operating Framework for Entities Managing 

Distribution Energy Storage Assets 

Distributed energy storage systems (DESS) can contribute 

in forming a bare backbone transmission and distribution 

network with decentralized energy pools. Since the 

reliability of the transmission and distribution network is 

ensured around peak wildfire period of summer and early fall, 

due to the maintenance and upgrades done in the previous 

season as outlined in Section 4.1, developers can use this 

timeframe to line up DESS projects. 

During these wildfire events, reasons to promote the use of 

DESS in enhancing grid flexibility are many. During a 

wildfire incident a DESS resource can support to maintain 

security constrained power flow, help prevent anti-islanding 

by real power support, and help system operators to 

reconfigure the network remotely and still maintain overall 

grid stability. After the course of a wildfire, a DESS cluster 

of distributed generation (DG)/ demand responsive load (DR) 

can be used to black start tripped generators and for other 

load restoration. As such these DESS clusters can help in a 

much faster recovery of the affected electrical grid. Readers 

should be aware however of the potential risks involved with 

energy storage technologies from a fire safety standpoint and 

should have these resources installed at site in accordance to 

NFPA 855: standard for the installation of stationary energy 

storage system [38]. 
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Furthermore, during daily grid operations, often time in 

practice a combination of reduced transmission line  

loading along with support from distributed generation and 

demand-responsive loads can help the grid ride-through an 

emergency condition. The rest of this section presents a 

discussion of a DC optimal power flow formulation under a 

combination of these stressed situations, to ensure the most 

economical allocation and dispatch of generations and loads. 

The formation discussed henceforth considers the presence 

of both demand-responsive loads and distributed generation 

in micro-grid nodes which are connected to the main electric 

grid. There are many DC optimal power flow formulation 

available in the literature. For instance [39] presents a DC 

optimal power flow formulation (DCOPF) to analyse N-1 

contingency analysis with optimal transmission switching. 

Each DC optimal power flow formulation has its own set of 

objective function and boundary conditions, and hence the 

corresponding primal-dual interpretation of every problem is 

unique to the situation. 

The optimization problem assumes that all generation 

costs are linear and a lower bound of zero active power 

production from these generating resources. The 

optimization problem is developed as follows: 

𝑚𝑖𝑛    𝐶𝑔 𝑡 𝑃𝑔 𝑡 

𝑔

 +   𝐶𝐷𝑅
𝑖  𝑡 𝑃𝐷𝑅

𝑖  𝑡 

𝐷𝑅

 

𝑇

𝑡=1

+   𝐶𝐷𝐺
𝑖  𝑡 𝑃𝐷𝐺

𝑖  𝑡 

𝐷𝐺

                     (12a) 

𝑠𝑡 − 𝑃𝑔
𝑚𝑖𝑛 ≥ −𝑃𝑔 ≥ −𝑃𝑔

𝑚𝑎𝑥            (12b) 

0 ≥ −𝑃𝐷𝐺 ≥ −𝑃𝐷𝐺
𝑚𝑎𝑥                  (12c) 

0 ≥ −𝑃𝐷𝑅 ≥ −𝑃𝐷𝑅
𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡               (12d) 

 
𝜃𝑎−𝜃𝑏

−𝑋𝑘
 − 𝜓𝑃𝑘 = 0                   (12e) 

 𝑃𝑘
∀𝑖𝑛𝑝𝑢𝑡𝑓𝑙𝑜𝑤

−  𝑃𝑘
∀𝑜𝑢𝑡𝑝𝑢𝑡𝑓𝑙𝑜𝑤

+ 𝑃𝑔
∀𝑔

= 𝑑𝑛               (12f) 

 1 − 𝜔𝑖   𝑃𝐷𝐺
𝑖  𝑡 

𝐷𝐺

+ 𝑃𝐷𝑅
𝑖  𝑡 

𝐷𝑅

 ≥  1 − 𝜔𝑖 𝑑𝑖   (12g) 

Nomenclature 

i : nodes containing distributed generation (DG)/ demand 

responsive (DR) assets 

n : nodes containing no distributed generation (DG)/ demand 

responsive (DR) assets 

k : transmission element 

𝑐𝑔
𝑘  : linear operating cost of generator g at node k 

𝑐𝐷𝑅
𝑖  : linear unit cost associated with controllable load DR at node i 

𝑐𝐷𝐺
𝑖  : linear operating cost of distributed generator DG at node i 

𝑃𝑔
𝑘  : real power from generator g at node k 

𝑃𝐷𝑅
𝑖  : real power from controllable load DR at node i 

𝑃𝐷𝐺
𝑖  : real power from distributed-generator DR at node i 

𝑃𝑘  : real power flow in transmission element k 

𝑋𝑘  : reactance of the given transmission element 

𝜃𝑎,𝑏  : voltage phase angle 

𝜓 : operator chosen line derating factor during fire season 

𝜔𝑖  : binary islanding operator switch 

𝑑𝑛  : real power load demand at node n 

𝑑𝑖  : real power load demand at node i 

The objective function and constraints of the of the above 

optimal dispatch formulation are explained below: 

Equation 12a: Objective function - The objective 

function of this formulation is to minimize generation cost 

and hence find the most economical generation level, that 

can provide a feasible solution during grid disturbance as 

these. The first term of the minimization objective function 

represents the cost of generation from convention generating 

units. The second term of the objective function represents 

the cost of purchasing demand response reserve from a 

demand response load. Typically, these can be done through 

contractual agreements and can be renewed as required. The 

last term represents the cost of generation from the 

distributed resources which can look very different from its 

utility generation counterpart. 

Equation 12b: Utility generation constraint - This 

constraint captures the practical loading of utility generators. 

By its very nature these generators are often bound in their 

minimum and maximum real power output levels set-forth 

by manufacturer warranty agreements. 

Equation 12c: Distributed generation constraint - The 

given constraint captures the maximum power limit of the 

distributed generators. Note that since these are usually 

modular power electronic controlled devices, the lower 

operating limit is not of concern and is chosen to be zero. 

Equation 12d: Demand response contractual constraint - 

The demand response contractual constraint captures the 

contractual agreement made between the system operators 

and the owners of the demand responsive load. This 

constraint can be changed based on season agreements. 

Equation 12e: Transmission element thermal rating 

constraint - The power flow constraint is a linear 

approximation of the actual line flow constraint and consists 

of the reactance  𝑋𝑘  of the transmission element and the 

voltage phase angle between its two ends 𝜃𝑎,𝑏 . The term 𝜓 

is an active derating factor that can be chosen by the grid 

operator to de-rate certain transmission elements in the path 

of high fire risk zones. 

Equation 12f: Node power balance constraint - The node 

power balance constraint involves boundary condition 

between power inflow and outflow in a transmission element, 

generation and load levels at a node. 

Equation 12g: Island operation constraint - A feasible 

operational islanded microgrid needs to balance its load in 

case the operator must island an electric region to preserve 

grid stability. The active load demand of this microgrid 

should be less than or equal to the available real power from 

its distributed generation and demand responsive load 

resources. The term 𝜔𝑖  is a binary state indicator and equals 

zero in an active island condition. 
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As can be seen from this formulation, the system operator 

can ensure better ride-through of the electrical grid under 

system disturbance with a combination of strategies as 

reduced line loading, contractual demand responsive load 

agreements and islanded microgrid operations in a small 

scale in probable high fire risk zones. On the other hand, 

DESS developers can actively engage to increase the 

preparedness of the electric network to disturbance as these 

through simulation studies and strategic placement of DESS 

resources. 

5. Conclusions 

A combination of statistical forecasting, risk-modelling, 

and power flow optimization framework has great potential 

to improve the impacts of wildfires on public welfare and 

safety. A proactive multi-faceted approach at different  

levels and implementation of design codes and standards can 

make the bulk power system resilient to these phenomena. 

This paper explores the practical challenges of numerical 

forecasting of wildfire data and provides solutions to 

reproducible accurate forecasting. Fire operators can use the 

framework discussed in this paper at a level of granularity  

of their geographical region for future planning and related 

investment decisions. Electrical utilities can implement a 

multi-year approach to systematically upgrade its protection 

schemes with advanced protection and relaying schemes 

presented in this paper. Along with these policy 

recommendations, a feasible optimization framework of 

combined distributed generation, demand-responsive loads 

and adjusted line capacities can help system operators 

ride-through these challenging situations. 
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