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Abstract  With the increasing demand for electrical energy worldwide and the proportionate inflation of natural resources, 

it is important to predict the electrical power output from baseload combined cycle power plants and the factors affecting the 

yield per hour. Finding reliable factors not only improves the performance of the power plant in terms of production or 

distribution but also ensures the proper utilization of natural resources (or fuels) with minimal effect on the environment and 

effective cost management. Though there are sophisticated machine learning models for predicting full load electrical power 

output, often these deployed models are unable to draw inferences. Thermodynamic models on the other hand are oftentimes 

too complex, are valid only under a set of assumptions, and are generally non-linear in nature adding to the computation time. 

Keeping these limitations in mind, the objectives of this study are to find potential predictor variables that affect the power 

output yield per hour and then use these inferences to construct a simple yet effective model to predict the electrical power 

output in combined cycle power plants. The dataset used for this study is from a combined cycle power plant over a span of 

six years (2006-2011), with the power plant operating in a full load. A combined cycle power plant is composed of gas 

turbines, steam turbines, and heat recovery steam generators. The gas and steam turbines generate the electricity which is 

combined in one cycle and is transferred from one turbine to another. The input features of the dataset considered for this 

study consist of average ambient variables: ambient temperature, ambient pressure, relative humidity, and exhaust vacuum 

which are used to predict the average hourly electrical power output. 

Keywords  Combined cycle power plant, Linear modelling, Regression, Power generation, Statistical inference, 

Prediction 

 

1. Introduction 

Steam turbines systems generate most of the electrical 

power generated worldwide. The prediction of the real 

power output of such baseload plants is important for    

the effective operation of the electric grid, especially in 

countries where the electric grid is still developing, and 

natural resources are in limited quantities.  

Gas turbine power output mainly depends on the ambient 

parameters such as ambient temperature, atmospheric 

pressure, and relative humidity whereas steam turbine 

power output has a direct relationship with the vacuum at 

the exhaust. [1,2,3]. Gas turbine derivatives, such as 

combined cycle power plants (CCPP) are being established 

all over the world to fulfill the demand for electrical energy 

considering both economic and environmental concerns. It 

has been found that the three ambient predictor variables: 

ambient temperature (AT), ambient pressure (AP), and 
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relative humidity (RH) affects while exhaust vacuum (V) 

affects the production of steam turbines. 

Hence, the objective of this paper is to study the 

association of the average ambient variables with the hourly 

yield of electrical power output and find out reliable 

predictors for CCPP that would help inefficient production. 

This in turn would help in the proper utilization of resources 

in terms of maximum yield and minimum cost of 

production. 

The main motivation for this study is that there exist 

thermodynamical studies to predict the output of a     

CCPP. However, detailed analysis of a system by using 

thermodynamical approaches [5,6] is a computationally 

intense effort, and sometimes the result of such analysis 

might be inaccurate due to the interaction of several 

assumptions being considered and the nonlinear nature of the 

governing equations. On the other hand, machine learning 

models have gained steam in recent years [7,8,9]. The 

inability to draw inferences from these wide-scale 

sophisticated state-of-the-art models remains a concern. 

To overcome these obstacles, the analysis here is 

undertaken using a statistical approach of first drawing an 

inference from the data about the potential predictors, and 
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then using the inferences a predictive model would be 

constructed for predicting the output of a thermodynamic 

system, which is a CCPP with two gas turbines, one steam 

turbine, and two heating systems in full load.  

The remainder of the paper is organized as follows: 

section 2 highlights the statistical methods used in this study 

along with a description of the data source and general model 

assumptions. Section 3 presents a preliminary analysis of the 

potential predictors and a brief summary of the response 

variable. Section 4 throws light on the multicollinearity 

between the different predictor variables and explores the 

model selection and validation. Section 5 presents an 

overview of the goodness of fit test. Section 6 present a 

discussion of the statistical findings of the study, before 

ending with a concluding remark in section 7. 

2. Statistical Methods 

The primary objective of this study is to investigate the 

potential predictors, that is the average ambient variables, 

that affect the electrical power output in a CCPP; which 

would then be used to predict the electrical power output. 

2.1. Material and Methods: Data Source 

The dataset was obtained online in Microsoft excel format 

[10]. 

The dataset was collected over a period of six years (2006 

- 2011) from a combined cycle power plant when the plant 

was set to operate on full load. A sample size n = 9568 was 

collected and shuffled five times; the data generated from 

each of these shuffles was provided in separate spreadsheets. 

For each shuffling 2-fold cross-validation (CV) [11] was 

carried out and the resulting ten measurements are used   

for statistical testing. For data analysis, only one of the 

spreadsheets is considered among the collection of five 

spreadsheets. The dataset consists of hourly average ambient 

variables per second taken from various sensors located 

around the plant. Variables in the data set include ambient 

temperature (AT) ranging from 1.81°C to 37.11°C, ambient 

pressure (AP) ranges from 992.89 − 1033.30 millibar, 

relative humidity (RH) in the range 25.56% to 100.16%, 

exhaust vacuum (V) range from 25.36 − 81.56 cm Hg and net 

hourly electrical energy output (PE) 420.26 − 495.76 MW.  

2.2. Material and Methods: Statistical Analysis 

The data analysis is conducted using the statistical 

software R version 3.5.2 (2018-12-20) and the study focuses 

mainly on multiple linear regression. A significance value (α) 

= 0.05 is considered in this study. The input features are 

continuous variables, which are summarized using the five 

summary statistics (mean, median, minimum, maximum, 

and standard deviation). The original dataset is divided into 

90:10 training - testing sets.  

Each of the predictor variables is explored individually 

and the preliminary investigation is conducted on the 

training dataset. No missing values were found in the dataset.  

The automatic model selection method has been used on 

the training set to arrive at the final model. The final model is 

validated using model diagnostics and the goodness of fit 

tests. The model assumptions including homoskedasticity, 

normality, and independence of error terms, as well as 

linearity of the association between the outcome and the 

ambient variables, are checked before finalizing the 

estimated fitted regression function. The finalized model is 

then used on the test set to find the predicted values and 

compared to the observed value at a 95% prediction interval. 

3. Preliminary Data Analysis  

Preliminary data analysis help in detecting skewness, 

presence of outliers or can also suggest if transformations are 

necessary to fit a better model. Preliminary data analysis also 

gives an idea about the association of the potential predictors 

with the outcome. 

3.1. Analysis of the Potential Predictors 

Figure 1 illustrates the distribution while Table 1 presents 

the summary statistics of the individual ambient variables: 

ambient temperature (AT), ambient pressure (AP), relative 

humidity (RH), and exhaust vacuum (V). Figure 1 (a), (b), 

and (d) shows that ambient temperature (AT), ambient 

pressure (AP), and exhaust vacuum (V) appear to be 

approximately symmetrical while Figure 1 (c) shows 

relative humidity (RH) to be a little skewed (left or 

negatively skewed). Some outliers can also be detected in 

ambient pressure (AP) and relative humidity (RH) (Figure 1 

(b) and (c)).  

 

Figure 1.  Analysis of predictors using box and whisker plots 

3.2. Analysis of the Electrical Power Output 

Preliminary data analysis on the electrical power output 
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(PE) shows that the response variable is positively skewed as 

the whiskers to the right are longer than the ones on the left. 

The presence of outlying values is not observed in Figure 2. 

The summary statistics of PE have been presented in Table 1. 

3.3. Effect of Ambient Temperature (AT) on the 

Electrical Power Output (PE) 

Figure 3 illustrates the scatter plot for the ambient 

temperature (AT) and electrical power output (PE) with the 

fitted regression line. The resultant predictive model can be 

written as (1), where 𝑌𝑖  represents the electrical power 

output (PE) and 𝑋1𝑖  is the ambient temperature (AT). The 

model states that for every 1°C rise in ambient temperature 

(AT), the electrical power output (PE) drops by 2.171 MW 

per hour. 

𝑌𝑖 = 497.03 − 2.171𝑋1𝑖           (1) 

Table 1.  Basic statistics for dataset variables 

 AT V AP RH PE 

Min 1.81 999.8 25.56 25.36 420.2 

1st quartile 13.51 1009.1 63.32 41.74 439.75 

Mean 19.65 54.3 1013.25 73.30 454.36 

3rd quartile 25.72 1017.2 84.83 66.54 468.43 

Max 37.11 1033.3 100.16 81.56 495.76 

Standard 

deviation 
7.45 5.93 14.6 12.708 17.06 

Variance 55.53 35.26 213.16 161.49 291.28 
 

 

Figure 2.  Distribution of electrical power output through (a) box and 

whisker plot, (b) histogram 

3.4. Effect of Ambient Pressure (AP) on the Electrical 

Power Output (PE) 

Figure 4 illustrates the scatter plot for the ambient pressure 

(AP) and electrical power output (PE) with the fitted 

regression line. The resultant predictive model can be shown 

as (2), where 𝑌𝑖  represents the electrical power output (PE) 

and 𝑋2𝑖  is the ambient pressure (AP).  

𝑌𝑖 = −1055.26 + 1.49𝑋2𝑖           (2) 

The model states that for every 1 mb (or millibar) rise in 

ambient pressure (AP), the electrical power output (PE) 

increases by 1.49 MW per hour. 

3.5. Effect of Relative Humidity (RH) on the Electrical 

Power Output (PE) 

The scatter plot of relative humidity (RH) and electrical 

power output (PE) is illustrated in Figure 5 with the fitted 

regression model. Thus, the resultant predictive model is 

represented by (3), where 𝑌𝑖  represents the electrical power 

output (PE) and 𝑋3𝑖  is the relative humidity (RH). It can 

thus be inferred that for every one percent rise in relative 

humidity (RH) increases the electrical power output by 0.456 

MW per hour. 

𝑌𝑖 = 420.96 + 0.456𝑋3𝑖         (3) 

 

 

Figure 3.  Prediction of PE (MW) with reference to AT (°C) 

 

Figure 4.  Prediction of PE (MW) with reference to AP (mb) 

3.6. Effect of Exhaust Vacuum (V) on the Electrical 

Power Output (PE) 

Figure 6 illustrates the scatter diagram of exhaust vacuum 

(V) and electrical power output (PE) produced after fitting 

the linear regression model. The resultant predictive model 

can be represented by (4), where 𝑌𝑖  represents the electrical 

power output (PE) and 𝑋4𝑖  is the exhaust vacuum (V). The 

predictive model can thus infer that for every 1 cm Hg rise  

in exhaust vacuum, the electrical power output decreases by 

1.168 MW per hour. 

𝑌𝑖 = 517.802 −  1.168𝑋4𝑖         (4) 

Table 2 shows the summary statistics for each the fitted 

regression model (1), (2), (3), and (4) along with the model 

fit statistics: coefficient of determination (R2), F statistics, 

adjusted R2 (𝑅𝑎
2), and MSE is in Table 2. 
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Figure 5.  Prediction of PE (MW) with reference to RH (%) 

 

Figure 6.  Prediction of PE (MW) with reference to V (cm Hg)

Table 2.  Summary statistics of four separate models: outcome and each of the predictors 

 Dependent variables: 

 Electrical power output (PE) 

 Model 1 lm(PE~AT) Model 2 lm(PE~AP) Model 3 lm(PE~RH) Model 4 lm(PE~V) 

AT 
-2.170*** 

(0.007) 
   

AP  
1.490*** 

(0.025) 
  

RH   
0.456*** 

(0.011) 
 

V    
-1.170*** 

(0.007) 

Constant 
497.000*** 

(0.156) 

-1055.0*** 

(25.5) 

421.0*** 

(0.823) 

518.0*** 

(0.378) 

Observations 8,611 8,611 8,611 8,611 

R2 0.899 0.269 0.152 0.757 

Adjusted R2 0.899 0.269 0.152 0.757 

Residual std. error (df=8609) 5.43 14.6 15.7 8.42 

F statistics (df=1;8609) 84,098*** 3,516*** 1,714*** 29,722*** 

Note: ∗p<0.01; ∗∗p<0.05; ∗∗∗p<0.01 

 

4. Multicollinearity, Model Selection and 
Validation 

In a typical scenario, multicollinearity [12] makes data 

analysis complicated. The association between predictors is 

often observed by considering the coefficient of correlation 

or Pearson correlation (r). Values of r closer to ±1 indicate 

that the predictors are highly correlated. Figure 7 and Table 3 

show the correlation matrix or pairwise Pearson’s correlation 

coefficients. The r values between the electrical power 

output (PE) and all the ambient variables are greater than ±5, 

except relative humidity (RH). The r value between ambient 

temperature (AT) and exhaust vacuum (V) seems to be high 

(0.84). Once the model has been finalized, the effect of 

multicollinearity on the final model fit can be analyzed using  

 

 

 

 

the variation inflation factor (VIF) [13]. In case the values  

of VIF exceed 10, it is often regarded as the presence of 

multicollinearity and measures need to be taken. 

Table 3.  Correlation matrix for the dataset 

 AT AP RH V PE 

AT 1.00 -0.508 -0.543 0.844 -0.948 

AP -0.508 1.00 0.100 -0.414 0.518 

RH -0.543 0.100 1.00 -0.312 0.390 

V 0.844 -0.414 -0.312 1.00 -0.870 

PE -0.948 0.518 0.390 -0.870 1.00 
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Figure 7.  Pairwise Pearson’s correlations coefficients for the ambient variables 

4.1. Model Selection: Automatic Variable Selection 

Method  

The automatic variable selection method is a starting point 

to eliminate the redundant variables from the model. The 

“regsubsets” function from the “leap” package in R is used. 

The best model is selected based on Mallow’s Cp, BIC, and 

𝑅𝑎
2 [15,16]. The automatic variable selection method selects 

the model which has the least value for Mallow’s Cp and 

BIC, while the model with the largest value of 𝑅𝑎
2  is 

considered best. For this particular data set, the best model 

includes all four ambient variables. Refer to Table 4 for a 

summary of the automatic selection method. 

Thus, the final model can be expressed as (5).  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑋3𝑖 + 𝛽4𝑋4𝑖 + 𝜖𝑖     (5) 

where,  

Yi is the electrical power output 

X1i  is the ambient temperature 

X2i is the exhaust vacuum 

X3i is the ambient pressure 

X4i is the relative humidity 

𝜖𝑖  is the error term; 𝜖𝑖~N (0, σ2) 

i = 1,2,3 …, 8611 

𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4, σ2 are the unknown parameters to be 

estimated which is discussed in section 6. However, the 

model assumptions must be checked and validated before 

diving into the model parameter estimates. Thus, the 

remainder of this section is dedicated to model validation 

and diagnostics. 

4.2. Model Validation 

4.2.1. Added Variable Plots (Residual Plots) 

The added variable, also known as partial residual plots, 

are useful to detect the significance of a particular variable in 

the presence of the other covariates. It can also be useful in 

detecting outliers or in case any transformations are required 

in the model predictors [15]. Figure 8 represents the partial 

residual plot suggesting that no transformations are required 

in the current model. However, the presence of outliers is 

detected. 

4.2.2. Outliers and Influential Points 

To detect outliers in this study, a studentized residual plot 

and cook’s distance are considered. For a more rigorous 

treatment of Cooks distance, including a modification of the 

classical form in the context of regression models, readers 

are encouraged to refer [14]. As per standards, 99% of the 

data points should be within the range of ±3 [15] which is 

confirmed by Figure 9 (a). Fifteen outliers are detected in the 

study as evident from Figure 9 (b). To check if these outliers 

are influential to the model fit, a linear model is considered 

excluding these data points. It is found that the final model is 

robust to these data points since no significant changes in 

model statistics are observed (Table 5), hence these fifteen 

observations are included in the final model.  
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Figure 8.  Added variable plots (showing component and residual plots) 

 

Table 4.  Automatic selection method statistics 

 Dependent variable: PE 

Predictors Cp 𝑅𝑎
2
 BIC 

AT 3988.8 0.899 -21913 

AT +RH 1040.1 0.921 -24253 

AT+V+RH 46.1 0.928 -25188 

AT+V+AP+RH 5.0 0.929 -25221 

 

4.3. Model Diagnostics 

Figure 10 shows that all the model assumptions are 

satisfied. Figure 10 (a) shows that the model follows 

homoskedasticity or equal variance. Figures 10 (b) and    

(c) confirm that the error terms follow normality. The 

independence of error terms is also quite evident in the 

sequence plot (Figure 10 (d)). However, since the dataset 

was shuffled, assessing the independence might not be 

technically possible.   

Since the model is finalized and the assumptions are 

validated, multicollinearity is assessed using the VIF. Table 

6 shows the VIF values exhibited by the final model, which 

are significantly less than 10. Thus, it can be assumed that 

multicollinearity is not significant in the finalized model (5). 

 

 

 

Table 5.  Comparison of model summary with and without outliers 

 Dependent variables: 

 Electrical power output (PE) 

 
Final model with 

outliers 

Final model without 

outliers 

AT 
-1.980*** 

(0.015) 

-1.990*** 

(0.015) 

V 
-0.234*** 

(0.007) 

-0.231*** 

(0.007) 

AP 
0.062*** 

(0.009) 

0.063*** 

(0.009) 

RH 
-0.158*** 

(0.004) 

-0.159*** 

(0.004) 

Constant 
455.000*** 

(9.750) 

454.000*** 

(9.444) 

Observations 8611 8596 

R2 0.929 0.933 

Adjusted R2 0.929 0.933 

Residual std. error 4.560 (df=8606) 4,410 (df=8591) 

F statistics 

(df=1;8609) 

31,138.000∗∗∗     

(df = 4; 8606) 

33,383.000∗∗∗      

(df = 4; 8591) 

Note: ∗p<0.01; ∗∗p<0.05; ∗∗∗p<0.01 

Table 6.  Variation inflation factor (VIF) values from the final model 

AT V AP RH 

5.98 3.940 1.450 1.710 
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Figure 9.  Detecting outliers using studentized residuals and Cook’s distance 

 

Figure 10.  Residual’s diagnostics showing a. fitted values, b. theoretical quantiles, c. residuals, and d. index 

 

5. Goodness of Fit Test and Results  

For each of the ambient variables, we test if there exists a 

linear association with power output (PE) using a two-tailed 

t-test individually. Since more than one t-test is conducted, 

Bonferroni’s multiple comparisons is considered [15]. The 

t-test considers the following hypothesis: 

* Null hypothesis: H0 : 𝛽𝑖  = 0  

* Alternative hypothesis: H1: 𝛽𝑖  ≠ 0. 

The decision is taken considering 𝑡 ∗=
𝑏𝑖−𝛽𝑖

𝑆𝐸(𝑏1)
 

where, 

-t* is the test-statistics for the t-test 

-𝑏𝑖  is the observed slope coefficient 

- 𝛽𝑖  is the expected slope coefficient of the fitted 

regression model 

- 𝑆𝐸(𝑏𝑖) is the sampling variability of 𝑏𝑖  

The t* is tested against 𝑡(1−
𝛼

2
,𝑑𝑓), 

where,  

-α is the level of significance = 0.05 

-df is the degrees of freedom, i.e., df = number of 

observations minus number of estimate parameters = (n − 2) 

If 𝑡(1−
𝛼

2
,𝑑𝑓),, H0 is rejected else the decision is taken in the 

favour of H0. The decision rule also considers the p-value 

and the R2. If, p-value ≤ α, the decision is to reject H0 else we 

fail to reject H0 [15]. 

While considering the coefficient of determination (R2), if 

the value is closer to 1, the association is considered strong  

as the percentage or proportion of explained variation in 

electrical power output (PE) is significantly higher than the 

unexplained variation. However, if R2 is closer to 0, the 

model will be not be considered as a good fit as it would 

indicate that there exists no or a weak association between 
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the ambient variables and electrical power output (PE) as the 

percentage of unexplained variation is significantly low). 

5.1. Effect of Ambient Temperature (AT) on the 

Electrical Power Output (PE) 

The t-test rejects 𝐻0: 𝛽𝐴𝑇 = 0 thus, concluding that there 

exists evidence of a linear association between ambient 

temperature (AT) and electrical power output (PE). The R2 

explains that model (1) can explain 89.9% of the unexplained 

variation in electrical power output (PE), indicating that the 

model is a good fit. 

5.2. Effect of Ambient Pressure (AP) on the Electrical 

Power Output (PE) 

The t-test rejects 𝐻0: 𝛽𝐴𝑃 = 0 and concludes that there 

exists evidence of a linear association between ambient 

pressure (AP) and electrical power output (PE). The R2 for 

model (2) is only 26.9%, which indicates that ambient 

pressure (AP) is not strongly associated with electrical power 

output (PE). 

5.3. Effect of Relative Humidity (RH) on the Electrical 

Power Output (PE) 

The t-test 𝐻0: 𝛽𝑅𝐻 = 0 rejects the H0. Though there exists 

sufficient evidence of a linear association between relative 

humidity (RH) and electrical power output (PE), the value   

of R2 is relatively small. Only 15.2% of the unexplained 

variation can be explained by the fitted model (3) while the 

other 84.4% remains as unexplained variation in PE. 

5.4. Effect of Exhaust Vacuum (V) on the Electrical 

Power Output (PE) 

The t-test reject the 𝐻0: 𝛽𝑉 = 0 suggesting that a linear 

association exists between exhaust vacuum (V) and electrical 

power output (PE). The percentage of explained variation is 

high for model (4). Around 75.7% of the unexplained 

variation in electrical power output (PE) is explained (4) 

while only 24.3% remains as the unexplained variation. 

5.5. Discussion of Results from the T-Test 

The results from the t-test show that a linear association 

exists between PE and all the average ambient variables (AT, 

AP, RH, and V). To find the most effective predictor variable, 

the R2 or 𝑅𝑎
2  can be referred to, which indicates the 

percentage or proportion of explained variation in electrical 

power output (PE) to the total variation in electrical power 

output (PE).  

Referring to the R2 and 𝑅𝑎
2 (Table 2) value, variables that 

can predict the maximum percentage of unexplained 

variation are the ambient temperature (AT), followed by 

exhaust vacuum (V) while the variable that explains the least 

of the unexplained variation in PE is relative humidity (RH).  

To confirm that ambient variables can significantly predict 

the electrical power output (PE), the predicted values are 

compared to the actual observed values from the test set 

(Table 7). At 95% prediction interval, it is found that the 

model performs well in estimating the average power 

electrical output using ambient variables. 

Table 7.  Validating model prediction 

Observed PE Predicted PE Predicted range 

467 468 459 ≤ 𝑌  ≤ 476 

445 442 433 ≤ 𝑌  ≤ 451 

450 448 439 ≤ 𝑌  ≤ 457 

485 490 481 ≤ 𝑌  ≤ 498 

476 474 465 ≤ 𝑌  ≤ 483 

426 425 416 ≤ 𝑌  ≤ 434 

6. Discussion  

The model estimates from (5) can be summarized as 

below:  

𝑌 𝑖 = 454.6093 −  1.9775𝑋1𝑖 −  0.2339𝑋2𝑖   

+0.0621𝑋3𝑖 −  0.1581𝑋4𝑖           (6) 

where,  

Yi is the electrical power output 

X1i is the ambient temperature 

X2i is the exhaust vacuum 

X3i is the ambient pressure 

X4i is the relative humidity 

𝜖 𝑖  is the error term; 𝜖 𝑖  ~ N (0, 𝜎 2) 

i = 1,2,3 …, 8611 

The study shows that the average ambient variables: 

ambient temperature (AT), ambient pressure (AP), relative 

humidity (RH), and exhaust vacuum (V) can predict the 

electrical power output (PE) per hour in a combined cycle 

power plant (CCPP) having both gas and steam turbines. The 

average ambient variables were explored individually, and 

the two-tailed t-test was conducted on each of the fitted 

linear regression models and a linear association was found 

in each case.  

The final model (6) was able to explain about 92.9% of the 

unexplained variation in the electrical power output (PE), 

indicated by both R2 and 𝑅𝑎
2  (Table 8). Further, model 

validation and residual analysis confirmed the model 

assumptions. The estimated mean squared error (MSE) or 

𝜎 2 from the final model is 20.8.  

Table 8 shows the estimated regression coefficient, the 

standard error, t value, p-value associated with each of the 

predictors, R2, 𝑅𝑎
2, MSE and F-statistics of the final model. 

Table 9 shows the ANOVA table for the final model 

Exploring the test statistics, it is found that the strongest 

association among all average ambient variables and power 

output is best explained by the linear association of ambient 

temperature and exhaust vacuum, which is evident by the 

fact that about 90% and 76% of the unexplained variation in 

the output power per hour (Table 2) and also by the 

magnitude of the 𝛽 𝑠  corresponding to ambient temperature 

and exhaust vacuum. 
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Table 8.  Statistics table for the regression model 

 Estimate Std. Error T value Pr(>|t|) 

(Intercept) 454.6093 9.7485 46.63 0.0000 

AT -1.9775 0.0153 -129.34 0.0000 

AP 0.0621 0.0095 6.56 0.0000 

RH -0.1581 0.0042 -37.92 0.0000 

V -0.2339 0.0073 -32.12 0.0000 

Observations 8,611 

R2 0.929 

Adjusted R2 0.929 

Residual std. error 4.560 (df = 8606) 

F statistics 31,138.000∗∗∗ (df = 4; 8606) 

Table 9.  ANOVA table for the regression model 

 Df Sum Sq Mean Sq F value Pr(>F) 

AT 1 2258512 2258512 108568 0.0000 

AP 1 6078 6078 292 0.0000 

RH 1 27381 27381 1316 0.0000 

V 1 42789 42789 2057 0.0000 

Residuals 8606 179029 20.8  

The study showed that except for ambient pressure all the 

other predictors exhibit a negative association with the 

response variable electrical power. Given the well-behaved 

residuals and high percentage of explained variation of  

92.9% (R2 = 𝑅𝑎
2 = 0.929) (Table 8), it can be concluded that 

the model performs well. 

At 95% prediction interval, the electrical power output 

from the predicted model was compared with the observed 

values and it confirmed that ambient variables can be used  

to predict the electrical power output in a CCPP operated  

by both gas and steam turbines (Table 7). The presence of 

outliers was detected in the model and it was found that the 

model is robust to outliers (Table 5). 

7. Conclusions  

This paper presents a statistical model for a prediction of 

the electrical power output of a baseload operated CCPP 

when it was full load. Instead of thermodynamical modeling 

which involves a substantial number of assumptions and 

nonlinear system equations, or black-box machine learning 

models with multiple neural networks with unknown 

weights and biases, a statistical approach was used which can 

not only predict but draw useful inferences. Substantiated 

with large sample size and absence of missing values, this 

study’s strength lies in less sampling variability thus 

ensuring better prediction, which is evident by the model’s 

robustness to the outliers.  

The two main purposes of this study were to discover the 

predictors which potentially have a linear association with 

full load electrical power output, and if these potential 

predictors could accurately predict the full load power output. 

Both of these objectives were achieved using multiple linear 

regression models.  

Future work may be undertaken to refine the input to this 

predictive model by first predicting the next day’s ambient 

variables more precisely and investigating the prediction of 

electrical power output for different types of power plants. 

Further, given that the ambient temperature was essentially 

found to be the most influential variable, more studies can be 

conducted on the effect of temperature on different types of 

power plants and how the temperature variance throughout 

the day affects the power output. Another interesting 

approach can involve testing the association of electrical 

power output with the relative humidity and ambient 

pressure since this study was not able to capture a strong 

association of the power output with these two ambient 

variables. 
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