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Abstract  Tin oxide, SnO2 has potential applications in many research areas. Using a chemical vapor deposition CVD 
method, high-quality single crystalline SnO2 nanowire (NW) was synthesized on a large scale. Individual SnO2 nanowire 
based ultraviolet photodetector was fabricated by simply transferring individual nanowire to Pt interdigital electrodes. The 
photodetector exhibited excellent photoconductive performance in terms of high sensitivity to the ultraviolet 375 nm and 
infrared 750 nm UV illuminations, fast response and recovery time. It also has perfect stability and reliability, revealing 
n-type semiconducting behaviour of the tin oxide ultraviolet and infrared photodetecors as an excellent material not only for 
fabricating highly sensitive photodetecors but also valuable additives that provide new functionality in photodetecors, which 
will enable the development of high-performance photodetecors. 
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1. Introduction 
One dimensional (1-D) nanostructures had a great 

potential for applications in the fields of the optoelectronic 
and sensor device. Tin oxide (SnO2) is an n-type 
semiconductor with a wide-band gap (Eg = 3.62 eV, at 300 
K). Furthermore, because of the wide-band gap, very large 
surface to volume ratios, low cost, high responsive, strong 
radiation hardness and high chemical stability. 
Photodetectors can be used for a variety of applications in the 
military, scientific, civil applications, security, medicine, 
industrial, automotive areas and communications. Common 
applications using UV/IR detectors include rail safety, gas 
leak detection, flame detection, alcohol level testing for 
DUI’s, anesthesiology testing, petroleum exploration, space 
operations, temperature sensing, water and steel analysis [1] 
[2] [3]. 

Several approaches to fabricating photodetector based on 
a single nanowire have been reported; among them, the use 
of single indium phosphide nanowires for photodetection 
with highly polarized photoluminescence (Jianfang Wang  
et al.) [4], high sensitive and ultrafast UV photodetector 
based on ZrO2 single crystals (Xing Jie et al.) [5], 
high-performance ultraviolet photodetectors based on an 
individual Zn2SnO4 single crystalline nanowire (Yanjun 
Zhang et al.) [6], single p-type/intrinsic/n-type silicon  
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nanowires as nanoscale avalanche photodetectors (Chen 
Yang et al.) [7], single nanowire-based UV photodetectors 
for fast switching (Kamran ul Hasan et al.) [8] …ect. 

In this paper, we reported a fabrication of UV 
photodetector based on a single SnO2 nanowire. SnO2 
nanowires were synthesized by CVD method. High 
photocurrent to dark current ratio was achieved. Fast 
response and recovery time were observed for the device 
under ultraviolet 375 nm and infrared 750 nm UV 
illuminations. Light measured at room temperature in air 
atmosphere. The mechanism that determines the 
photoresponse is analyzed and discussed. 

2. Experimental 
SnO2 nanowires were fabricated by a chemical vapor 

deposition process in a horizontal tube furnace. The source 
material is 0.3g SnO2 powder, which was put in an alumina 
boat at the center of the tube furnace. A silicon (100) 
substrate was placed on the alumina boat. The distance 
between the tin powder and the substrate was about 0.5 cm. 
The pressure in the quartz tube was maintained at the 
standard atmospheric pressure. The temperature of the 
system was raised to 900°C at 10°C/min at a fixed flow rate 
of 100 sccm nitrogen, kept at that temperature (900°C) for 1 
h under a mixed gas of nitrogen (98.5-99.5 sccm) and oxygen 
(1.5-0.5 sccm) with a total flow rate of 100 sccm, and then 
cooled to room temperature without any O2 being introduced 
and a white layer of product was found on the silicon 
substrate.  

In order to investigate the current-voltage (I-V) 
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characteristics of SnO2 nanowire, we fabricated a simple 
device based on a single SnO2 nanowire, as shown in Figure 
3. The SnO2 nanowires were grown initially dispersed in 
ethanol with assistance of ultrasonic, and then an individual 
nanowire was carefully transferred through a self-made 
micro-manipulating system onto a SiO2/Si substrate 
provided with interdigitated Pt electrodes (20μm gap) on the 
insulating side. The SnO2 nanowire has a length between 40 
to hundred microns and a diameter between 300 nm to 600 
nm. In order to remove the residual ethanol and to ensure a 
good adherence of the SnO2 nanowire to the substrate; the 
device was heated in a tube furnace at 180℃ for 2 h. The 
electrical measurement was performed by an Agilent 
B1500A semiconductor device analyzer at room temperature 
and air atmosphere. 

3. Results and Discussion 
Figure 1 is a typical electronic microscopy image of the 

as-synthesized SnO2 nanowires. These have diameters of 
400–600 nm and are several hundreds of micrometers in 
length. The schematic diagram is shown in figure 2, whereas 
the SnO2 nanowire based UV sensor with the similar 
configurations can be found in the previous studies [9], as 
well. It can be confirmed from the electronic microscope 
image in figure 1 that the grown SnO2 nanowire has 
sufficient length to bridge the gap between two pads. The 
high magnification electronic microscope image in figure 3 
shows that the single nanowire is contacted to form the 
photoconductive SnO2 nanowire channel [10]. 

 
Figure 1.  The electronic microscopy image of SnO2 nanowires 

To study the influence of the surface on the electrical and 
photon-sensing properties of the as-prepared nanowires, an 
equivalent circuit for a fabricated SnO2 based photodetector 
was constructed, as shown in figure 2 [11].  

The current-voltage (I-V) characteristics for the single 

SnO2 nanowire device measured at room temperature in 
ambient condition with bias from −10 V to 10 V in the dark 
and under UV illumination 375 nm. Figure 4 is typical I-V 
curves of the device before and after irradiated with UV 
lights with wavelengths of 375 nm. From the curves, we can 
clearly see that, upon UV illumination, the photodetector 
exhibited a remarkable increase in the current which is 
indicated that the obtained SnO2 nanowires UV 
photodetector has the characteristic of high-sensitivity [12]. 
Both the I–V curves, both in the dark and under UV 
illumination, resulting in the nonlinear I–V curves, 
indicating that good an Ohmic contact was made is caused 
by the Schottky barriers formed between the semiconductor 
and the metal electrodes [13][14]. 

 
Figure 2.  Schematic diagram of the fabricated photodetector based on a 
single nanowire SnO2 

 
Figure 3.  Image of the fabricated photodetector based on a single 
nanowire SnO2 
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Figure 4.  I-V characteristics of the fabricated photodetector based on a 
single nanowire SnO2 in dark and under UV light 

 
Figure 5.  Photoresponse characteristics of a single SnO2 nanowire 
photodetector with a 375 nm illuminating UV 

The photoresponse is observed with periodic switching of 
UV/IR light illumination at room temperature and air 
atmosphere. Remarkably, photocurrent was measured under 
applied bias voltage of 5 V as shown in the figure 5 (UV 375 
nm) and figure 6 (IR 750 nm). A reducing current is seen 
during each illumination. This phenomenon is involved with 
the oxygen-adsorption process in the dark and 
oxygen-desorption process upon UV/IR illumination are 
generally thought to be associated with the generation of free 
carriers [15]. In ambient conditions, oxygen molecules are 
absorbed onto the nanowire surface and capture free 
electrons from the nanowire, making a low-conductivity 
depletion layer near the surface. When SnO2 nanowire is 
illuminated by UV light, it is likely that electron–hole pairs 
are generated, and the holes can neutralize the negatively 
charged oxygen molecules which then desorb at the surface 
of the SnO2 nanowire. The holes migrate to the surface to 
desorb the oxygen adsorbates, resulting in a reduction in the 
depletion barrier thickness and an increase in the free-carrier 
concentration. Hence, photocurrent increases dramatically 
upon the UV/IR light illumination. After turning off the 

UV/IR illumination, oxygen molecules readsorb on the 
nanowire surfaces, returning the nanowires to their initial 
low-conductivity state. Given the absorbed oxygen on the 
SnO2 nanowire, the Schottky contact of the photodetector 
device is affected by the interfacial states [16] [17]. 

Photoluminescence is believed to be an effective way to 
study the optical properties of semiconducting 
nanostructures. Room-temperature photoluminescence (PL) 
spectra of the SnO2 nanowires were studied and shown 
agood results to infrared light with a peak wavelength 
position of around 750 nm (corresponding to 1.65 eV) is 
dominantly observed. The infrared light emission is known 
to be related to defecting levels within the band gap of SnO2, 
associated with oxygen vacancies or Sn interstitials that 
have formed during the the growth of the SnO2 nanowires 
[18-20]. A similar work has been reported in the case of 
room-temperature PL spectra of the as-prepared Zn-doped 
SnO2 nanorods and the pure SnO2 nanorods [21], 
Laser-Ablation Growth and Optical Properties of Wide and 
Long Single-Crystal SnO2 Ribbons [18], SnO2 nanorods 
synthesized by solution phase growth [19], Synthesis and 
low-temperature photoluminescence properties of SnO2 
nanowires [22], Raman spectroscopic and photoluminescen
ce study of single-crystalline SnO2 nanowires [23], Direct 
growth of oxide nanowires on CuOx thin film [24], 
nanobelts and direct growth of SnO2 nanowires on WOx 
thin films [25], and Ultrahigh responsivity UV/IR 
photodetectors based on pure CuO nanowires [26]. This 
finding indicates that the SnO2 nanowires were sensitive to 
UV/IR illumination intensity as is shown in figure 5 and 
figure 6. 

 
Figure 6.  Photoresponse characteristics of a single SnO2 nanowire 
photodetector with a 750 nm illuminating IR 

For Pt electrode and SnO2 nanowire photodetector, there is 
additional conducting mechanism that is contributing to the 
UV/IR response and recovery. The mechanism for the metal 
semiconductor metal structured Pt electrode and SnO2 
nanowire photodetector can be attributed to the Schottky 
contact at the Pt electrode and SnO2 nanowire interfaces [27] 
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Generally, the Pt electrode and SnO2 nanowire can form a 
schottky contact. When the photodetector is exposed to 
UV/IR light illumination, photogenerated electrons and hole 
in the schottky barriers interface region are separated by the 
strong electric field there. The electron-hole recombination 
rates decrease and the carrier lifetime increase and the 
schottky barriers height between semiconductor and the 
metal electrode decreases, resulting in an increase in free 
carrier density [28]. However, the schottky barriers play an 
important role in the high UV/IR photo response and rapid 
response time. To investigate the device speed, we recorded 
the signals over a time interval 0.002 second in our 
measurement system. Table 1 illustrates recorded signals of 
the response and recovery time from a single ON/OFF cycle 
at the rise and fall points to clarify the device speed. Figure 7 
shows fast response and recovery characteristics with a 
response time ≈ 0.001 second and a recovery time ≈ 0.001 
second in average, knowing that Agilent B1500A has 
zero-second delay time [29]. 

 

Figure 7.  Enlarged view of a single ON/OFF cycle 

Table 1.  Illustrates the response and recovery times 

Response Time Recovery time 

Time (S) Current (A) Time (S) Current (A) 

0.19 2.11E-05 9.996 1.29E-04 

0.192 2.11E-05 9.998 1.29E-04 

0.194 2.11E-05 10 1.29E-04 

0.196 2.11E-05 10.002 2.11E-05 

0.198 2.11E-05 10.004 2.11E-05 

0.2 1.29E-04 10.006 2.11E-05 

0.202 1.29E-04 10.008 2.11E-05 

0.204 1.29E-04 10.01 2.11E-05 

4. Conclusions 
In conclusion, we have fabricated the highly sensitive and 

ultrafast UV/IR photodetectors based on single SnO2 
nanowire. We have successfully synthesized SnO2 
nanowires via chemical vapor deposition method. I–V 
curves under dark and light response were studied. Upon 
UV/IR illumination, the UV/IR photodetectors based on 
single SnO2 nanowire exhibits high sensitivity under (UV 
375 nm and IR 750 nm) illumination light with low voltage 
bias 5V at room temperature in the air atmosphere, fast 
response and recovery time. It also has perfect stability and 
reliability. 
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