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Abstract  The physical world has nothing to do with complex numbers and fields. These are only mathematical 

conveniences for describing the physical phenomena of Quantum Mechanics and Fields. Real fields and real space are the 

true foundations. This leads to new models for the structure of elementary particles. It is shown here that fermions are made of 

real coupled scalar fields. This formalism provides an explanation of familiar quantum phenomena such as interference, 

Planck constant and spin. Quantum mechanics should be revised, so that a direct real field interpretation will replace the 

current convention of complex fields. 
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1. Foreword 

One can represent quantum mechanics with real fields. 

Using real fields (wave functions) leads to interpretation of a 

single particle as made of two (or more) entities represented 

as coupled fields [2]. Probability distributions are shown to 

be preserved for coupled real wave functions just as in the 

case of a single complex function. 

Assuming a string model, a double coupled string 

description is suggested, whereby the Schrödinger equation 

emerges naturally. This double-string description assumes a 

time-dependent tension in the strings. If the time pattern is 

similar for both tension and interaction, their ratio is shown 

to be ℏ/2. This leads to explanation of the origin of Planck's 

constant as the outcome of strings coupling interaction. 
Recent attempts [4,5] to disprove real quantum 

description were published, where they base their arguments 

on the outcome of EPR and entanglements experiments and 

simulations. However, one cannot come with new arguments, 

based on previous failed explanations. No explanation yet is 

given to the non-local requirements put by the entanglements 

assumptions. Until a logical sound resolution is given,   

any attempt to explain EPR and entanglement by using 

imaginary numbers as a true participant in physics is as valid 

as claims about the existence of ghosts. 

Complex fields in quantum mechanics are the result of 

hidden mechanism behind the true nature (coupled fields)  

of the particle, and are like a smoke screen obscuring our 

understanding of basic phenomena. 
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Nevertheless, complex presentation makes our equations 

simpler and the results will always be the same whether real 

or complex approach are used. It is however important to 

realize that physics does not contain any imaginary numbers. 

This point should be stressed especially to freshmen of 

Physics at universities and colleges. 

2. Introduction 

The fact that some logical issues of quantum concepts are 

yet unresolved (entanglement), leads some physicists to 

suggest spooky concepts of complex numbers in physics 

[3,4,5]. 

Though it all started in the early days of the 20th century, 

with the introduction of the Schrödinger equation, followed 

by the works of Heisenberg and others. People struggled to 

understand how complex wave functions can represent our 

reality. 

It is quite puzzling, in my opinion, how physicists     

still believe that Quantum physics has anything to do    

with complex numbers, and hence using Hilbert space and 

Hermitian operators. 

How can one accept an imaginary number i to participate 

in the description of reality? 

The only reason for complex numbers description of 

Quantum is the Schrödinger equation [1]. 

Based on this equation the whole concept of Quantum 

description started in the works of Schrödinger, Heisenberg 

and others.  

The Schrödinger equation is a mathematical equation  

that describes changes over time of a physical system in 

which quantum effects, such as wave–particle duality,    

are significant. These systems are referred to as quantum 

(mechanical) systems. The equation is considered a central 
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result in the study of quantum systems, and its derivation was 

a significant landmark in the development of the theory of 

quantum mechanics. It was named after Erwin Schrödinger, 

who derived the equation in 1925 and published it in 1926 

[1]. 

Schrödinger have derived his formalism by suggesting a 

wave equation of real fields only. It was just a matter of 

mathematical convenience that made him introduce complex 

exponentials and as he suggested, only the real part of the 

equations should be considered. 

Because of the success of Quantum formulation in 

describing experimental results, physicists have not bothered 

to pay attention to the fact that imaginary numbers do not 

exist in reality (not more than ghosts). 

In this work, a formulation of quantum fields without the 

use of complex numbers is given and it is shown to be 

equivalent to the complex fields formulation. 

Moreover, dealing with the real and imaginary parts 

separately, a single particle shows a 2-componentss  

behavior (and 4-components in the relativistic case). As a 

result, a coupled double-string description is suggested,   

out of which, the Schrödinger equation emerges naturally. 

This double-string description assumes a time-dependent 

decaying tension in the strings, together with a 

time-dependent interaction between the two strings. 

Interference phenomena emerges naturally for a single 

particle in a slot experiment. If the decay pattern is similar 

for both tension and interaction, their ratio is shown to be  

ℏ/2. Thereof, the origin of Planck constant [6-12] comes 

naturally. 

As will be shown, the Schrödinger equation and also the 

Dirac equation are representations of real fields, coupled 

together. 

Furthermore, under interaction with an external magnetic 

field, the spin emerges in the form of energy levels 

differences between spin-up and spin-down states. 

Finally, this approach allows us to observe a remarkable 

similarity between Dirac equation and Maxwell equations. 

3. Schrödinger Equation 

In non-relativistic quantum mechanics, a particle (such  

as an electron or proton) is described by a complex 

wave-function, ψ(x, t), whose time-evolution is governed by 

the Schrödinger Equation: 

−𝑖ℏ
𝜕

𝜕𝑡
 𝜓 𝑥, 𝑡 =  ℋ𝜓 𝑥, 𝑡 = −

ℏ

2𝑚
 
𝜕2𝜓 𝑥,𝑡 

𝜕𝑥 2
+ 𝑉 𝑥 𝜓 𝑥, 𝑡 (1) 

Here m is the particle's mass and V(x) is the applied 

potential. Physical information about the behavior of the 

particle is extracted from the wave function by constructing 

expectation values for various quantities; for example,    

the expectation value of the particle's position is given by 

integrating ψ*(x) x ψ(x) over the entire space, and the 

expectation value of the particle's momentum is found by 

integrating −iħ ψ*(x) ψ/x. The quantity ψ*(x)ψ(x) is itself 

interpreted as a probability density function. This treatment 

of quantum mechanics, where a particle's wave function 

evolves against a classical background potential V(x),     

is sometimes called first quantization. 

𝜓 𝑥, 𝑡  may be written as a linear combination of    

the Eigen functions 𝜑𝑖 𝑥, 𝑡  which are solutions of 

ℋ𝜑𝑖 𝑥, 𝑡 =  𝜔𝑖𝜑𝑖 𝑥, 𝑡 . 
𝜑𝑖 𝑥, 𝑡 dx may be interpreted as the probability density 

of a single particle, in the ith energy state 𝜔𝑖 , to be found at 

an interval dx around position x. 

The basic equation of quantum mechanics is the one 

particle time-dependent Schrödinger Equation: 

−𝑖ℏ
𝜕

𝜕𝑡
 𝜓 𝑥, 𝑡 =  ℋ𝜓 𝑥, 𝑡           (2) 

By separating Eq. (2) into real and imaginary components 

[2] 

 𝜓 𝑥, 𝑡 = 𝛹 =  𝜑1+𝑖𝜑2          (3) 

the Schrödinger equation becomes: 

+ℏ
𝜕

𝜕𝑡
𝜑2  =  ℋ𝑟𝜑1 − ℋ𝑖𝜑2         (4) 

−ℏ
𝜕

𝜕𝑡
𝜑1  =  ℋ𝑖𝜑1 + ℋ𝑟𝜑2          (5) 

Where ℋ𝑟  and ℋ𝑖  are the real and imaginary parts of the 

Hamiltonian. For a time-independent classical Hamiltonian 

of a free particle, with mass m, it is equivalent to: 

𝜕𝜑1

𝜕𝑡
= + 

ℏ

2𝑚
 
𝜕2𝜑2

𝜕𝑥 2              (6) 

𝜕𝜑2

𝜕𝑡
=  −

ℏ

2𝑚
 
𝜕2𝜑1

𝜕𝑥 2              (7) 

Applying time-derivatives on both, we obtain two 

decoupled equations: 

 
𝜕2

𝜕𝑡2 +  
ℏ

2𝑚
 

2

 
𝜕4

𝜕𝑥 4 𝜑1 = 0        (8) 

 
𝜕2

𝜕𝑡2 +  
ℏ

2𝑚
 

2

 
𝜕4

𝜕𝑥 4 𝜑2 = 0        (9) 

Thus φ1  and φ2  should both be solutions to the same 

form of wave equation, with 4th order derivative in x. Yet, 

the fields φ1 and φ2 are not independent of each other, as 

can be seen from their coupling equations (Eqs. 6,7). 

It is always possible to have real operators instead of 

Hermitian ones and always use real space and not a Hilbert 

space [2]. The benefit of using complex presentation in a 

Hilbert space is that it makes presentations simpler. However, 

this comes at the cost of obscuring internal structures.  

4. A Double String Analog to        
the Schrödinger Equation 

As shown [2], the two strings description leads to the 

following assumptions: 

1.  A Fermion is made up of two interacting string-like 

entities. 

2.  Tension in the strings is proportional to the coupling 

between the two strings. 

3.  The coupling between the two strings is proportional 

to the amount of time the exchange lasts. 
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One is lead to conclude, that Planck's constant ℏ , is    

the proportionality constant, between the total exchange   

(of some sort) between the two strings, and the tension in 

these strings. 

Assume a coupling between these two strings, given by   

a proportionality constant which will be denoted by ks .  

The coupling is then described by the following coupled 

differential Equations: 

𝜕𝜑1

𝜕𝑡
 =  +𝑘𝑠

𝜕2𝜑2

𝜕𝑥 2             (10) 

𝜕𝜑2

𝜕𝑡
 =  −𝑘𝑠

𝜕2𝜑1

𝜕𝑥 2             (11) 

We will also assume, without loss of generality, that the 

coupling constant between the two strings is proportional to 

the mass m. This is a reasonable assumption as we may think 

that the more mass, the stronger the coupling. 

Therefore, 𝑘𝑠 = m 𝑘0𝑠 and so: 

𝑚 𝑘0𝑠
𝜕𝜑2

𝜕𝑡
=  

𝜕𝜏𝑠

𝜕𝑡
 
𝜕2𝜑1

𝜕𝑥 2            (12) 

𝜕𝜑2

𝜕𝑡
=  

1

𝑚 𝑘0𝑠

𝜕𝜏𝑠

𝜕𝑡
 
𝜕2𝜑1

𝜕𝑥 2            (13) 

By same reasoning, in the opposite direction, the equation 

will read 

𝜕𝜑1

𝜕𝑡
=  −

1

𝑚 𝑘0𝑠

𝜕𝜏𝑠

𝜕𝑡
 
𝜕2𝜑2

𝜕𝑥 2            (14) 

Assume next: 

1

 𝑘0𝑠

𝜕𝜏𝑠

𝜕𝑡
= − 

ℏ

2
               (15) 

The above coupled equations now read 

𝜕𝜑1

𝜕𝑡
=  +

ℏ

2𝑚
 
𝜕2𝜑2

𝜕𝑥 2               (16) 

𝜕𝜑2

𝜕𝑡
= − 

ℏ

2𝑚
 
𝜕2𝜑1

𝜕𝑥 2               (17) 

These are the coupled real presentation of Schrödinger 

Equation. 

Equation 15 provides a physical meaning to the Planck 

constant, namely, independent of a particle's mass, the 

Planck constant ℏ is derived from the internal quality of the 

real fields [7]. It represents somehow the reaction of the 

internal tension of the string fields to perturbations. Up to a 

proportionality constant, 

ℏ ≈ −
1

 𝑘0𝑠(𝑡)

𝜕𝜏𝑠

𝜕𝑡
             (18) 

In order for this equation to make sense, one must have 

 𝒌𝟎𝒔  as a time-dependent variable. 

This leads to the conclusion: 

𝜏𝑠 𝑡 = −ℏ  𝑘0𝑠 𝑡  𝑑𝑡         (19) 

So, the tension in the strings is proportional to the Planck 

constant ℏ, and to the coupling between the two strings. 

This derivation of the Planck constant was made possible 

by the assertion of real fields coupling. 

5. Probabilistic Interpretation 

We remember that 𝜓 𝑥, 𝑡 𝑑𝑥 is the probability density of 

finding a single particle at an interval dx around position x. 

Likewise, since 𝜓 𝑥, 𝑡 =  𝜑1 + 𝑖 𝜑2  

and  𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡 𝑑𝑥 = 1 

then 

  (𝜑1 − 𝑖 𝜑2) ∗  (𝜑1 + 𝑖 𝜑2) 𝑑𝑥  

=    (𝜑1
2 + 𝜑2

2)  𝑑𝑥 = 1           (20) 

Therefore, one may interpret this, as two interacting 

particles, whose probability densities 𝜑1
2 , and 𝜑2

2 , are 

affected by each other, and yet, together it is 1, but we cannot 

tell their probabilities apart. 

The Schrödinger equation is now interpreted as two 

probability density functions coupled according to Eqs. 16 

and 17. 
The complex wave equation of a single particle,        

as described by Schrödinger Equation, is actually a 

mathematical description of two real waves functions, which, 

a single particle may be interpreted actually as two coupled 

entities. 

Use of the imaginary number i, and hence complex wave 

functions (and Hermitian operators), is just a mathematical 

convenience, obscuring the true internal structure of the 

particles. 

By multiplying [16] and [17] by 𝝋𝟐 and 𝝋𝟏 respectively 

and integrating over x, imposing the mixed boundary 

conditions /x,  = 0, on both functions at L  ± ∞ it is 

immediately shown that (up to a normalization factor): 

  𝜑1
2 + 𝜑2

2 𝑑𝑥 = 1        (21) 

Hence,  

 𝜓∗ 𝑥, 𝑡 𝜓 𝑥, 𝑡 𝑑𝑥 = 1       (22) 

Thus, the classical coupled string system may be 

interpreted as a quantum mechanical single particle, 

described by a wave function 𝝍 𝒙, 𝒕  being a probability 

distribution function. 

This complex wave function describes a free particle of 

momentum 

 𝑝 = −𝑖ℏ
𝜕

𝜕𝑥
              (23) 

When substituted in 

𝑖ℏ
𝜕𝜓

𝜕𝑡
= − 

ℏ2

2𝑚
 
𝜕2𝜓

𝜕𝑥 2             (24) 

The result is 

𝑖ℏ
𝜕𝜓

𝜕𝑡
=  ℋ𝜓             (25) 

Where ℋ =
p2

2m
=  

∂2

∂x2 , is a free particle Hamiltonian 

operator. 

This interpretation of a particle as made up of two     

real coupled strings, which tensions and interaction are 

connected, is equivalent to a single particle complex wave 

function, described by Schrödinger Equation. 

When the original Schrödinger Equation is used with 

complex wave function, the internal string-like characteristic 

does not show because we treat real and imaginary parts as a 

single entity. However, when the equation is separated into 

real and imaginary parts, they can be treated as two coupled 
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strings interacting with each other, where both tension and 

interaction diminish abruptly, inversely proportional to time. 

This may be a result of weakening due to increased distance 

between the two strings, together with tension drop inside 

strings. 

Just like in the case of hadrons, where it is assumed their 

building blocks are quarks, interacting via gluons, we will 

assume now that leptons have some internal structure, yet to 

be discovered. 

6. Massless and Massive Particles in  
the Classical Limit  

Our universe is made of matter (massive particles, termed 

fermions with half spins with mass m>0) and of interactions 

between them. 

Interactions take place via massless entities (termed 

massless bosons of whole spins and mass m=0). 

These names are after the physicists who described their 

statistical qualities when considered as an ensemble. The 

Fermions obey Fermi statistics while Bosons obey Bose 

statistics. Physically, it means that fermions can never be put 

together at same energy state (this is related to their internal 

spin) while for bosons there is no limit on the number of 

bosons which can occupy the same energy state. 

When trying to show that the quantum description 

becomes classical, one uses 𝑚 →  ∞  as an argument. 

However, such an argument is wrong. 

The reason is, that a particle cannot have an infinite mass. 

Elementary particles are limited in their mass m. It is only a 

collection (ensemble) of a large number of elementary 

particles which collectively represents a single large classical 

(non-elementary) mass. 

Thus, we cannot test the coupled equations in the limit   

of m ≫ ℏ. (equivalently 𝑚 →  ∞). 

Indeed, if we do so, we get  

𝜕𝜑1

𝜕𝑡
= 0                (26) 

𝜕𝜑2

𝜕𝑡
=  0                (27) 

which is meaningless. 

The correct way of going to the classical limit (m ≫ ℏ) is 

by treating a large mass M as a collection of a large number 

N>>1, of elementary particles, and then sum over the 

coupled equations. 

𝑀 =   𝑚𝑖
𝑁
𝑖=0                   (28) 

 
𝜕𝜑𝑖1

𝜕𝑡𝑖 = +  
ℏ

2𝑚 𝑖
 
𝜕2𝜑𝑖2

𝜕𝑥 2𝑖          (29) 

 
𝜕𝜑𝑖2

𝜕𝑡𝑖 = −  
ℏ

2𝑚 𝑖
 
𝜕2𝜑𝑖1

𝜕𝑥 2𝑖          (30) 

and for mi  ≈ M/N =m: 

  
𝜕𝜑𝑖1

𝜕𝑡𝑖 = +
ℏ

2𝑚
   

𝜕2𝜑𝑖2

𝜕𝑥 2𝑖           (31) 

 
𝜕𝜑𝑖2

𝜕𝑡𝑖 = − 
ℏ

2𝑚
  

𝜕2𝜑𝑖1

𝜕𝑥 2𝑖           (32) 

Define the collective wave functions 𝚿1 =  φi1i  and 

𝚿2 =  φi2i , and thus: 

𝜕𝜳1

𝜕𝑡
= +

ℏ

2𝑚
 
𝜕2𝜳2

𝜕𝑥 2               (33) 

𝜕𝜳2

𝜕𝑡
= +

ℏ

2𝑚
 
𝜕2𝜳1

𝜕𝑥 2               (34) 

This shows that one can no longer assume that on the limit 

of classical mechanics m  ∞ since all known massive 

particles must have finite infinitesimal mass m>0. All matter 

in the universe is made of elementary constituents 

(elementary particles). Their masses vary, but all of those 

that we know of have masses (rest) in the ranges of 0.511 

MeV of the lightest (electron) ((≈8.6x10-32 Kg) to hundreds 

of GeV (quarks). The heaviest known is the top quark with 

mass of 173 GeV (≈3x10-26 Kg).  

Statistically, for a large N, the functions 𝜳  can be 

assumed non-coherent, and therefore Ψ1 =  φ
i1i   0 and 

Ψ2 =  φ
i2i   0. 

Thus, the quantum effect cancels out at the classical limit. 

Compare these masses to Planck's constant 6.582x10-16 

eV·sec, it is of an order of magnitude of 10-3 – 10-5 [m2/sec]. 

So, even for the heaviest elementary particle, the 

Schrödinger coupled equations are valid. 

7. Interference 

One of the main arguments for complex probability 

densities is the explanation of interference. 

However, based on the above concept of real two coupled 

entities (2 fields), we show that interference can be explained 

with real distributions. 

Assume 2 slits experiment, where the separation between 

the two slits in the y direction is d and the particle pass 

through two slits. 

We assume now that 𝜑1 goes through slit 1 and 𝜑2 goes 

through slit 2. 

As was shown earlier, in Eqs. 15,16, a solution for a free 

particle is 

𝜑1 = 𝑠𝑖𝑛 𝑘𝑥 − 𝜔𝑡            (35) 

𝜑2 = 𝑐𝑜𝑠 𝑘𝑥 − 𝜔𝑡           (36) 

 

Figure 1.  The interference experiment. Two slits at separation D apart, 

allow for two incoming particles to interfere on P(x,y) at distance A 
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In two dimensions, the variations are in the y-direction 

while the interference plane is at a distance A in the x 

direction (see figure 1). 

The fields are then: 

𝜑1 𝑦 =
𝑠𝑖𝑛  𝑘𝑦−𝑤𝑡  

𝐴2+ (𝑦−𝐷/2)2          (37) 

𝜑2 𝑦 =
𝑐𝑜𝑠  𝑘𝑦−𝑤𝑡  

𝐴2+ (𝑦+𝐷/2)2          (38) 

Here we assumed x to be irrelevant in 𝜑1  and 𝜑2  and 

that the intensity of the field falls of inversely proportional to 

the distance. 

The combined field at point P(x=A, any y) is then given by 

𝑎𝑏𝑠 𝜑1 +  𝜑2 =  
𝑠𝑖𝑛  𝑘𝑦−𝑤𝑡  

 𝐴2+  𝑦−𝐷/2 

+  
𝑐𝑜𝑠  𝑘𝑦−𝑤𝑡  

 𝐴2+  𝑦+𝐷/2 

  (39) 

The resulting pattern looks like in the following (Figure 

2): 

 

Figure 2.  An interference pattern example 

This is an explanation of interference patterns, without 

using complex wave functions and it is based on the 

identification of a single particle as made of two coupled 

fields. It comes instead of the duality interpretation of 

particles as waves-particles. 

Thus, even a single electron will create an interference 

pattern, on passage through two slits. 

8. Dirac Equation with Real Fields 

The relativistic Dirac Equation, describing a free Fermion 

of mass m is given by: 

 𝑖ℏ𝛾𝜇𝜕𝜇 − 𝑚𝑐 𝛹 = 0            (40) 

One may separate the Dirac operator iℏγμ ∂μ − mc and 

the complex wave function Ψ into their real and imaginary 

parts 

𝛹 =   𝜙 +  𝑖 𝜒               (41) 

One will get two separate equations where  ϕ  and  χ  
are real 4- vectors. 

 𝑖ℏ   𝛾0
𝜕

𝑐𝜕𝑡
+ 𝛾1𝜕𝑥 + 𝛾2𝜕𝑦 + 𝛾3𝜕𝑧 − 𝑚𝑐   

  𝜙 +  𝑖 𝜒  = 0              (42) 

In general, for a complex matrix operator D acting on a 

complex vector Ψ =  𝜙 +  𝑖𝜒: 

𝐷𝛹 =   𝐷𝑟 + 𝑖𝐷𝑖 ( 𝜙 +  𝑖 𝜒 ) = 0    (43) 

 𝐷𝑟𝜙 − 𝐷𝑖𝜒 = 0             (44) 

 𝐷𝑟𝜒 + 𝐷𝑖𝜙 = 0             (45) 

where 

𝐷𝑟 ≡ 𝑖𝛾2𝜕𝑦 −
𝑚𝑐

ℏ
=  𝛾′2 𝜕𝑦 −

𝑚𝑐

ℏ
       (46) 

𝐷𝑖 ≡ 𝛾0 𝜕

𝑐𝜕𝑡
+ 𝛾1𝜕𝑥 + 𝛾3𝜕𝑧             (47) 

Where 𝜸′𝟐 = 𝑖𝜸𝟐 = 𝑖  
0 𝜎𝑦

−𝜎𝑦 0
 =   

0 0
0 0

0 1
−1 0

0 −1
1 0

0 0
0 0

  

Thus, 

 𝛾 ′ 2 𝜕𝑦 −
𝑚𝑐

ℏ
  𝜙 =   𝛾0 𝜕

𝑐𝜕𝑡
+ 𝛾1𝜕𝑥 + 𝛾3𝜕𝑧  𝜒    (48) 

 𝛾 ′ 2 𝜕𝑦 −
𝑚𝑐

ℏ
  𝜒 =  −  𝛾0 𝜕

𝑐𝜕𝑡
+ 𝛾1𝜕𝑥 + 𝛾3𝜕𝑧  𝜙  (49) 

Since ϕ and χ are each a real 4-vector, they can be 

written as 

 𝜙 =  
𝜙𝐴

𝜙𝐵
  and 𝜒 =   

𝜒𝐴

𝜒𝐵
         (50) 

ϕA , ϕB , χ
A

, χ
𝐵

 are real 2-vectors each, and the real 

fields equations gets the following structure: 

−𝑐𝜎′𝑦𝜕𝑦𝜙𝐵 −
𝑚𝑐2

ℏ
𝜙𝐴 =  𝜕𝑡  𝜒𝐴 + 𝑐𝜎𝑥𝜕𝑥𝜒𝐵 + 𝑐𝜎𝑧𝜕𝑧𝜒𝐵 (51) 

+𝑐𝜎′𝑦𝜕𝑦𝜙𝐴 −
𝑚𝑐2

ℏ
𝜙𝐵 =  −𝜕𝑡  𝜒𝐵 − 𝑐𝜎𝑥𝜕𝑥𝜒𝐴 − 𝑐𝜎𝑧𝜕𝑧𝜒𝐴(52) 

−𝑐𝜎 ′
𝑦𝜕𝑦𝜒𝐵 −

𝑚𝑐2

ℏ
𝜒𝐴 =  −𝜕𝑡  𝜙𝐴 − 𝑐𝜎𝑥𝜕𝑥𝜙𝐵 − 𝑐𝜎𝑧𝜕𝑧𝜙𝐵 (53) 

+𝑐𝜎 ′
𝑦𝜕𝑦𝜒𝐴 −

𝑚𝑐2

ℏ
𝜒𝐵 =  +𝜕𝑡  𝜙𝐵 + 𝑐𝜎𝑥𝜕𝑥𝜙𝐴 + 𝑐𝜎𝑧𝜕𝑧𝜙𝐴 (54) 

In a system where the particle is moving along the +x 

axis alone (𝑝𝑦 , 𝑝𝑧 = 0 →  𝜕𝑦 , 𝜕𝑧=0) one obtains: 

−
𝑚𝑐2

ℏ
𝜒𝐵 =  +𝜕𝑡  𝜙𝐵 + 𝑐𝜎𝑥  𝜕𝑥𝜙𝐴       (55) 

 −
𝑚𝑐2

ℏ
𝜙𝐴 =  +𝜕𝑡  𝜒𝐴 + 𝑐𝜎𝑥  𝜕𝑥𝜒𝐵       (56) 

 −
𝑚𝑐2

ℏ
𝜒𝐴 =  −𝜕𝑡  𝜙𝐴 − 𝑐𝜎𝑥  𝜕𝑥𝜙𝐵       (57) 

 −
𝑚𝑐2

ℏ
𝜙𝐵 =  −𝜕𝑡  𝜒𝐵 − 𝑐𝜎𝑥  𝜕𝑥𝜒𝐴       (58) 

These are in fact 8 different real fields, interacting via 

some coupling form. 

Define 2-vectors 

𝛹1 =  ϕ𝐴 +  ϕ𝐵 

𝛹2 =  ϕ𝐴 −  ϕ𝐵 

𝛹3 =  χ𝐴 +  χ𝐵  

𝛹4 =  χ𝐴 −  χ𝐵 

and the equations take the form: 

−
𝑚𝑐2

ℏ
𝛹1 =  +𝜕𝑡  𝛹4 − 𝑐𝜎𝑥  𝜕𝑥𝛹4        (59) 

−
𝑚𝑐2

ℏ
𝛹4 =  −𝜕𝑡  𝛹1 − 𝑐𝜎𝑥  𝜕𝑥𝛹1        (60) 

0

0.05

0.1

0.15

Interference pattern
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−
𝑚𝑐2

ℏ
𝛹2 =  +𝜕𝑡  𝛹3 + 𝑐𝜎𝑥  𝜕𝑥𝛹3        (61) 

−
𝑚𝑐2

ℏ
𝛹3 =  −𝜕𝑡  𝛹2 + 𝑐𝜎𝑥  𝜕𝑥𝛹2        (62) 

9. Eight Real Components 

The Ψ𝑖  above are real 2-vectors with real components. 

Thus, the Dirac Equation represents actually eight equations 

of eight real components 𝑈1. . . 𝑈4 𝑎𝑛𝑑 𝐷1. . . 𝐷4. They define 

4 real vectors: 

 𝛹1 =   
𝑈1

𝐷1
  𝛹2 =  

𝑈2

𝐷2
   𝛹3 =   

𝑈3

𝐷3
  𝛹4 =  

𝑈3

𝐷3
   (63) 

The pairs Ψ1, Ψ4 and Ψ2, Ψ3  are coupled as is evident 

from Eqs. 59-62. 

By applying a time derivative to the first equation of each 

pair and using the second of each pair (Eqs. 59-62), one 

obtains: 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2  𝑈1 + 𝑐𝜕𝑥𝜕𝑡𝑈1 = −

𝑚𝑐3

ℏ
𝜕𝑥𝑈4     (64) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2 𝐷1 − 𝑐𝜕𝑥𝜕𝑡𝐷1 = +

𝑚𝑐3

ℏ
𝜕𝑥𝐷4      (65) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2  𝑈4 − 𝑐𝜕𝑥𝜕𝑡𝑈4 = +

𝑚𝑐3

ℏ
𝜕𝑥𝑈1     (66) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2 𝐷4 + 𝑐𝜕𝑥𝜕𝑡𝐷4 = −

𝑚𝑐3

ℏ
𝜕𝑥𝐷1      (67) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2  𝑈2 + 𝑐𝜕𝑥𝜕𝑡𝑈2 = −

𝑚𝑐3

ℏ
𝜕𝑥𝑈3      (68) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2 𝐷2 − 𝑐𝜕𝑥𝜕𝑡𝐷2 = +

𝑚𝑐3

ℏ
𝜕𝑥𝐷3      (69) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2  𝑈3 + 𝑐𝜕𝑥𝜕𝑡𝑈3 = −

𝑚𝑐3

ℏ
𝜕𝑥𝑈2      (70) 

  
𝑚𝑐2

ℏ
 

2

+ 𝜕𝑡
2 𝐷3 − 𝑐𝜕𝑥𝜕𝑡𝐷3 = +

𝑚𝑐3

ℏ
𝜕𝑥𝐷2      (71) 

These establish the couplings: U1  U4, D1  D4 and 

U2  U3, D2  D3. 

10. Solving the Equations 

A possible solution to these coupled differential 

equations will be of the form: 

𝑈1 = 𝑐𝑜𝑠 𝑝𝑥 − 𝜔𝑡             (72) 

𝐷1 = 𝑠𝑖𝑛(𝑝𝑥 − 𝜔𝑡)             (73) 

𝑈4 = 𝑠𝑖𝑛(𝑝𝑥 − 𝜔𝑡)             (74) 

𝐷4 = 𝑐𝑜𝑠(𝑝𝑥 − 𝜔𝑡)             (75) 

𝑈2 = 𝑐𝑜𝑠 𝑝𝑥 − 𝜔𝑡              (76) 

𝐷2 = 𝑠𝑖𝑛(𝑝𝑥 − 𝜔𝑡)             (77) 

𝑈3 = 𝑠𝑖𝑛(𝑝𝑥 − 𝜔𝑡)             (78) 

𝐷3 = 𝑐𝑜𝑠(𝑝𝑥 − 𝜔𝑡)             (79) 

When inserted in the 8-componenents equations and 

solving, one obtains 

 𝜔0
2 − 𝜔2  + 𝑐𝜔𝑝 = −𝑐𝜔0𝑝        (80) 

 𝜔0
2 − 𝜔2 − 𝑐𝜔𝑝 = +𝑐𝜔0𝑝         (81) 

 𝜔0
2 − 𝜔2  − 𝑐𝜔𝑝 = +𝑐𝜔0(−𝑝)     (82) 

 𝜔0
2 − 𝜔2 + 𝑐𝜔𝑝 = −𝑐𝜔0 −𝑝       (83) 

The fields are then (Table 1): 

Table 1.  Summary of the possible suggested solutions 

𝑈1 = 𝑐𝑜𝑠 𝑝𝑥 − (𝜔0 + 𝑐𝑝)𝑡  𝜔 = 𝜔0 + 𝑐𝑝 
𝛹1 

𝐷1 = 𝑠𝑖𝑛(𝑝𝑥 − (𝜔0 − 𝑐𝑝)𝑡) 𝜔 = 𝜔0 − 𝑐𝑝 

𝑈4 = 𝑠𝑖𝑛(𝑝𝑥 + (𝜔0 + 𝑐𝑝)𝑡) 𝜔 = −𝜔0 − 𝑐𝑝 
𝛹4 

 𝐷4 = 𝑐𝑜𝑠(𝑝𝑥 + (𝜔0 − 𝑐𝑝)𝑡) 𝜔 = −𝜔0 + 𝑐𝑝 

𝑈2 = 𝑐𝑜𝑠 𝑝𝑥 − (𝜔0 + 𝑐𝑝)𝑡  𝜔 = 𝜔0 + 𝑐𝑝 
𝛹2 

𝐷2 = 𝑠𝑖𝑛(𝑝𝑥 − (𝜔0 − 𝑐𝑝)𝑡) 𝜔 = 𝜔0 − 𝑐𝑝 

𝑈3 = 𝑠𝑖𝑛(𝑝𝑥 + (𝜔0 − 𝑐𝑝)𝑡) 𝜔 = −𝜔0 + 𝑐𝑝 
𝛹3 

𝐷3 = 𝑐𝑜𝑠(𝑝𝑥 + (𝜔0 + 𝑐𝑝)𝑡) 𝜔 = −𝜔0 − 𝑐𝑝 

With 𝑝 ≡
p𝑥

ℏ
, where p𝑥  is the x component of the 

momentum. 

When boosted to the rest system (where 𝜕𝑥 = 0) we can 

see that for all components 

 𝜕2
𝑡 +  

𝑚𝑐2

ℏ
 

2

  𝛹𝑖 = 0         (84) 

Solving this equation by setting 𝛹 = 𝑐𝑜𝑠(𝜔𝑡)  or 

𝛹 = 𝑠𝑖𝑛(𝜔𝑡) shows that all components of this fermion at 

the rest frame, are oscillating at a rate given by  

𝜔0 =  
𝑚𝑐2

ℏ
 ≈  7.7𝑥1011  𝐺𝐻𝑧 

At such high oscillating rate, the spin cannot be 

determined apriori, and depends on the random outcome of 

the instance of measurement. As a result, the measured spin 

outcome is random, with equal probabilities for being up or 

down. 

The necessary conclusion is that each particle with spin, 

must have a definite time dependent spin. This spin oscillates 

at a fixed rate 𝜔𝑒,𝑝 ≈  7.7x1011  GHz for an electron. 

Hence, pending on the instance of creation we will get a 

certain result – up or down. It looks like a mixture of states 

merely because the temporal resolution is insufficient. 

Since in an electron-positron creation, both are created 

simultaneously, their spins will be correlated. 

Thus, there are two particles states involved. One, denoted 

by (+) precessing around the x axis in a positive right 

direction, and the other, denoted by (-), precessing around 

the x axis in the opposite (left) direction: 

𝜃+ 𝑡 =  𝜔0𝑡 Right rotation 

𝜃− 𝑡 =  −𝜔0𝑡 Left rotation 

With 𝜃+ 𝑡 =  −𝜃− 𝑡   

At a boosted system, where p=0: 

Ψ1 =  
cos 𝜃+ 𝑡  

sin 𝜃− 𝑡  
  Ψ4 =  

sin(𝜃+ 𝑡 )

cos(𝜃+ 𝑡 )
  

Ψ2 =  
cos(𝜃+ 𝑡 )

sin(𝜃− 𝑡 )
  Ψ3 =  

sin 𝜃+ 𝑡  

cos 𝜃+ 𝑡  
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11. Spin under a Magnetic Field 

We will use now the results for a boosted system, that is, 

we move with the massive elementary particle. Define 𝑢𝑈𝑃 , 

𝑢𝐷𝑁 , and 𝑣𝑈𝑃 , 𝑣𝐷𝑁  4-vectors as follows: 

𝑢𝑈𝑃 =
1

2
 𝛹1 + 𝜎𝑥𝛹4 = 

1

2
  

𝑐𝑜𝑠 𝜃+ 𝑡  

𝑠𝑖𝑛 𝜃− 𝑡  
 +  

0 1
1 0

  
sin 𝜃+ 𝑡  

cos 𝜃+ 𝑡  
  =   𝑐𝑜𝑠 𝜃+ 𝑡  

0
 (85) 

𝑢𝐷𝑁 =
1

2
 𝛹1 − 𝜎𝑥𝛹4 = −  

0
𝑠𝑖𝑛 𝜃+ 𝑡       (86) 

𝑣𝑈𝑃 =
1

2
 𝛹2 + 𝜎𝑥𝛹3 =   𝑐𝑜𝑠 𝜃+ 𝑡  

0
       (87) 

𝑣𝐷𝑁 =
1

2
 𝛹2 − 𝜎𝑥𝛹3 = −  

0
𝑠𝑖𝑛(𝜃+ 𝑡 

      (88) 

To find their spin state in the +z direction we apply 

𝜎𝑧 =   
1 0
0 −1

  to find: 

𝜎𝑧𝑢
𝑈𝑃 =  +1 𝑢𝑈𝑃             (89) 

𝜎𝑧𝑢
𝐷𝑁 =  −1 𝑢𝐷𝑁             (90) 

𝜎𝑧𝑣
𝑈𝑃 =  +1 𝑣𝑈𝑃               (91) 

𝜎𝑧𝑣
𝐷𝑁 =  −1 𝑣𝐷𝑁              (92) 

This verifies the fact that the measured eigenvalues of 

these states are indeed ±1. It represents two eigenfunctions  

of spin-up and spin-down for the u solution and two 

eigenfunctions of spin-up and spin-down for the v solution. 

Similarly, to find their spin state in the +x direction we 

apply 𝜎𝑥 =   
0 1
1 0

   

The interaction between the fermion and the magnetic 

field B is given by μ  ⋅ B   =  ℏ𝑔B𝑧𝜎𝑧  where g is the g-factor 

of the fermion.  

Under a magnetic field B   0 = k B𝑧  the change in energies 

of the above states is given by 

𝑢 𝑈𝑃𝛥𝐻𝑢𝑈𝑃 = = ℏ𝑔𝐵𝑧  𝑢 𝑈𝑃𝜎𝑧𝑢
𝑈𝑃  = = +

1

2
ℏ𝑔𝐵𝑧    (93) 

𝑢 𝐷𝑁𝛥𝐻𝑢𝐷𝑁 = −
1

2
ℏ𝑔𝐵𝑧              (94) 

𝑣 𝑈𝑃𝛥𝐻𝑣𝑈𝑃 = +
1

2
ℏ𝑔𝐵𝑧              (95) 

𝑣 𝑈𝑃𝛥𝐻𝑣𝑈𝑃 = = +
1

2
ℏ𝑔𝐵𝑧            (96) 

This demonstrates that in the presence of a magnetic field, 

there exist two spin states (up and down) for ϕ and two 

spin states (up and down) for χ. 

The energy difference between two states is given by 

𝑢 𝑈𝑃𝛥𝐻𝑢𝑈𝑃 − 𝑢 𝐷𝑁𝛥𝐻𝑢𝐷𝑁  

= +
1

2
ℏ𝑔𝐵𝑧𝑐𝑜𝑠

2 𝜃 +
1

2
ℏ𝑔𝐵𝑧𝑠𝑖𝑛

2 𝜃 = ℏ𝑔𝐵𝑧   (97) 

The energy difference between the two states is 

independent of time and of their spatial location along the 

x-axis. 

The two states are time-dependent and 

position-dependent, yet their spin does not change with time 

and in space: 

=   𝑐𝑜𝑠 𝜃+ 𝑡  

0
 =  

𝑐𝑜𝑠((𝜔0 − 𝑝𝑐)𝑡)
0

  𝜎𝑧𝑢
𝑈𝑃      (98) 

=   
0

𝑠𝑖𝑛 𝜃− 𝑡  
 =  

0
𝑠𝑖𝑛((𝜔0 − 𝑝𝑐)𝑡)

  𝜎𝑧𝑢
𝐷𝑁      (99) 

  𝑐𝑜𝑠 𝜃+ 𝑡  

0
 =  

𝑐𝑜𝑠((𝜔0 − 𝑝𝑐)𝑡)
0

  𝜎𝑧𝑣
𝑈𝑃 =    (100) 

=   
0

𝑠𝑖𝑛 𝜃− 𝑡  
 =  

0
𝑠𝑖𝑛((𝜔0 − 𝑝𝑐)𝑡)

  𝜎𝑧𝑣
𝐷𝑁     (101) 

As is obvious from the above description of states, both 

electron and positron, when created simultaneously, will 

have their spins corelated. 

The up state gives always a spin +1 but, as evident, the 

state itself varies with cos() between  
−1
0

  to  
+1
0

 . 

The rate of change is (for electron) 

ω0 =  
mc2

ℏ
 ≈  7.7x1011  GHz 

Obviously such high oscillations rate is beyond our 

current detection capabilities. 

We notice, that the spin state is an energy state. We 

differentiate between spin up and spin down by their 

energies compared to their state without magnetic field 

interaction. So, as long as the energy state remains 

unchanged, the phase is irrelevant. 

Recall that 

 𝛹2 =  
𝑈2

𝐷2
   𝛹3 =   

𝑈3

𝐷3
   𝛹1 =   

𝑈1

𝐷1
  𝛹4 =  

𝑈4

𝐷4
  (102) 

Therefore: 

𝑢𝑈𝑃 =
1

2
 𝛹1 + 𝜎𝑥𝛹4 =

1

2
  

𝑈1

𝐷1
 + 𝜎𝑥   

𝑈4

𝐷4
  =

 
1

2
 
𝑈1 + 𝐷4

𝐷1 + 𝑈4
          (103) 

𝑢𝐷𝑁 =
1

2
 𝛹1 − 𝜎𝑥𝛹4 =

1

2
  

𝑈1

𝐷1
 − 𝜎𝑥   

𝑈4

𝐷4
  =

 
1

2
 
𝑈1 − 𝐷4

𝐷1 − 𝑈4
         (104) 

𝑣𝑈𝑃 =
1

2
 𝛹2 + 𝜎𝑥𝛹3 =

1

2
  

𝑈2

𝐷2
 + 𝜎𝑥   

𝑈3

𝐷3
  =

 
1

2
 
𝑈2 + 𝐷3

𝐷2 + 𝑈3
          (105) 

𝑣𝐷𝑁 =
1

2
 𝛹2 − 𝜎𝑥𝛹3 =

1

2
  

𝑈2

𝐷2
 − 𝜎𝑥   

𝑈3

𝐷3
  =

 
1

2
 
𝑈2 − 𝐷3

𝐷2 − 𝑈3
          (106) 

Notice, that prior to the interaction with an external 

magnetic field, one cannot say anything about the spin of 

the electron. All we know is that it is made up of 4     

real fields 𝑈1 ,  𝐷1 𝑈2  and 𝐷2 , that can be combined 

mathematically into 2 complex vector fields 𝛹1 and 𝛹4. 

These can in turn be combined to form 2 different states 

with eigenvalues +1 or –1 when operated upon with the 𝜎𝑧  
operator. Likewise, there is another particle which is made 
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up of 4 real fields 𝑈3, 𝐷3 𝑈4 and 𝐷4, that can be combined 

mathematically into 2 complex vector fields 𝛹2 and 𝛹3. 

These can in turn be combined to form two different states 

with eigenvalues +1 or –1 when operated upon with the 𝜎𝑧  
operator.  

It is the interaction with a magnetic field that reveals the 

difference between an up state and a down state. 

All above calculations were made using real fields alone. 

No need for complex representations.  

12. Other Fermions 

As can be seen, solution to the Dirac Equation results in  

8 real constituents altogether. They create 4 coupled pairs. 

Two coupled pairs connect in either symmetric or anti 

symmetric states, to create a spin-up or a spin down 

fermion. 

An electron is made of symmetric (spin-up) and 

antisymmetric (spin down) combinations of U2 D4 D1 U4.  

A positron made of symmetric (spin-up) and antisymmetric 

(spin down) combinations of U2 U3 D3 D2. 

Dirac Equation describes the electron and the positron. 

But there are other fermions such as muon, tau, proton, 

neutron and quarks. Are they Dirac particles as well? 

Irrespective of their assumed internal structure        

(3 quarks), the free nucleons can be described by the 

classical Schrödinger equation with their kinetic energy 

term described by their momentum p and rest mass m. 

Therefore, by transferring to the relativistic equation, one 

must have the Dirac Equation for nucleons as well. 

Moreover, any massive particle must answer the Dirac 

Equation. Hence, all massive elementary particles must be 

spin 1/2 particles. 

Obviously, when dealing with compounds of elementary 

particles, this no longer is true. The reason of course is that 

a compound of a large number of elementary particles is an 

assembly of wave functions which result in an average 

tending to zero. (See earlier discussion about massless and 

massive particles and classical limit). 

Based on the string interpretation, we can describe the 

internal couplings U1  U4, D1  D4, U2  U3, D2  

D3 by some exchange mechanism that binds them together. 

The fermions are then the result of combing pairs of such 

couple in either symmetric or antisymmetric states. This 

will explain then the spin half characteristics of these 

fermions. 

13. Similarity between Dirac        
and Maxwell Equations  

The symmetry between Maxwell equations and the  

Dirac equation were discussed already by others [14,15,16]. 

There, a slightly generalized classical Maxwell were 

considered. The group-theoretical properties of this equation, 

its symmetries and its unitary relationship with the Dirac 

equation were investigated. It was shown there, that slightly 

generalized classical Maxwell electrodynamics can describe 

the inner atomic phenomena with the same success as 

relativistic quantum mechanics can do. 

Due to the unitary relationship with the Dirac theory, the 

electric charge is a conserved quantity in the same sense as in 

the Dirac’s model. It may be defined similarly to the Dirac 

theory or may be derived from it on the basis of unitary 

relationship [16]. 

In the following this symmetry will be approached by the 

use of real fields in the Dirac equation. 

Recalling that σ′y =   
0 −1
1 0

   and 𝛾2′ = −𝑖𝛾2 =

 
0 𝜎′𝑦

−𝜎′𝑦 0
  and decomposing Ψ into Ψr + iΨi  (Ψr  and 

Ψi are real 4-vectors), the Dirac equation becomes 

 𝑖ℏ  𝛾0𝜕𝑡 + 𝛾1𝜕𝑥 + 𝛾3𝜕𝑧 + 𝑖𝛾′2𝜕𝑦 − 𝑚𝑐   𝛹𝑟
𝑖𝛹 𝑖

 = 0 (107) 

or, 

 𝑖ℏ   
𝐼2

−𝐼2
 𝜕𝑡 +  

0 𝜎𝑥

−𝜎𝑥 0
 𝜕𝑥 +  

0 𝜎𝑧

−𝜎𝑧 0
 𝜕𝑧

  + 

  𝑖  
0 𝜎 ′

𝑦

−𝜎 ′
𝑦 0

 𝜕𝑦 − 𝑚𝑐   𝛹𝑟
𝑖𝛹 𝑖

 = 0      (108) 

Which leads (after separation of real and imaginary parts) 

to: 

𝜕𝑡𝛹𝑖 + 𝜎′𝑦𝜕𝑦𝛹𝑟 = 0               (109) 

𝜕𝑡𝛹𝑟 − 𝜎′𝑦𝜕𝑦𝛹𝑖 = 0               (110) 

 𝜎𝑥𝜕𝑥 + 𝜎𝑧𝜕𝑧 𝛹𝑖 = −
𝑚𝑐

ℏ
𝛹𝑟          (111) 

 𝜎𝑥𝜕𝑥 + 𝜎𝑧𝜕𝑧 𝛹𝑟 = −
𝑚𝑐

ℏ
𝛹𝑖          (112) 

This leads to the conclusions: 

1. The real and imaginary components are coupled. 

2. Both real and imaginary parts have 4 components each 

Since both 𝛹𝑟  and 𝛹𝑖  are made of 2 real components 

each, there are 4 components altogether. 

𝛹𝑟 =   
ΨA

ΨB
  and 𝛹𝑖 =   

ΨC

ΨD
  

Eqs. 134-137 can then be formulated in terms of 8 real 

coupled fields as follows: 

𝜕𝑡𝛹𝐴 +  𝜕𝑦𝛹𝐷 = 0               (113) 

𝜕𝑡𝛹𝐵 −  𝜕𝑦𝛹𝐶 = 0               (114) 

𝜕𝑡𝛹𝐶 −  𝜕𝑦𝛹𝐵 = 0               (115) 

𝜕𝑡𝛹𝐷 +  𝜕𝑦𝛹𝐴 = 0               (116) 

𝜕𝑥𝛹𝐷 −  𝜕𝑧𝛹𝐶 = −
𝑚𝑐

ℏ
𝛹𝐴           (117) 

𝜕𝑥𝛹𝐶 −  𝜕𝑧𝛹𝐷 = −
𝑚𝑐

ℏ
𝛹𝐵          (118) 

𝜕𝑥𝛹𝐵 +  𝜕𝑧𝛹𝐴 = −
𝑚𝑐

ℏ
𝛹𝐶          (119) 

 𝜕𝑥𝛹𝐴 −  𝜕𝑧𝛹𝐵 = −
𝑚𝑐

ℏ
𝛹𝐷          (120) 

These equations hint to some connections between the 

possible states of the fermion. 
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Applying 𝜕𝑥  to Eqs. 117-120 results in 

𝑓𝑜𝑟 𝑖 =  𝐴, 𝐵, 𝐶, 𝐷  𝜕𝑥
2 + 𝜕𝑧

2 𝛹𝑖 =  
𝑚𝑐

ℏ
 

2

𝛹𝑖    (121) 

There are apparently 4 constituents of the Dirac particle. 

The above two groups of differential equations show the 

coupling that exists between the constituents. 

There is a clear asymmetry in the Dirac equation, as  

there is a difference between the y coordinate and the x-z 

coordinates. This is in contradiction with the expected 

isotropic spherical symmetry of the Fermions and the need 

of the results to be independent of the coordinate system. 

By applying second time derivative, Eqs. 113-116 can be 

written as 

 𝜕𝑡
2 + 𝜕𝑦

2 𝛹𝑖 = 0 for i= A,C        (122) 

 𝜕𝑡
2 − 𝜕𝑦

2 𝛹𝑖 = 0 for i= B,D        (123) 

These can be combined to give: 

 𝜕2

𝑐2𝜕𝑡 2 − 𝛻2 +  
𝑚𝑐

ℏ
 

2
  𝛹𝑖 = 0 𝑓𝑜𝑟 𝑖 =  𝐴, 𝐶  (124) 

 𝜕2

𝑐2𝜕𝑡 2 + 𝛻2 −  
𝑚𝑐

ℏ
 

2
  𝛹𝑖 = 0 𝑓𝑜𝑟 𝑖 =  𝐵, 𝐷  (125) 

We thus see, that Dirac equation becomes 4 real waves 

equations. Each is a Klein-Gordon (KG) equation. Since the 

solutions to the Klein-Gordon equations are well known,  

we can conclude and say, that the Dirac relativistic Fermion 

is actually a 4 Fermions equation. These 4 Fermions are of 

same mass m. 

𝜕2𝜓𝐴

𝑐2𝜕𝑡 2 − 𝛻2𝜓𝐴 = − 
𝑚𝑐

ℏ
 

2

𝜓𝐴        (126) 

𝜕2𝜓𝐶

𝑐2𝜕𝑡 2 − 𝛻2𝜓𝐶 = − 
𝑚𝑐

ℏ
 

2

𝜓𝐶         (127) 

𝜕2𝜓𝐵

𝑐2𝜕𝑡 2 + 𝛻2𝜓𝐵 = +  
𝑚𝑐

ℏ
 

2

𝜓𝐵         (128) 

𝜕2𝜓𝐷

𝑐2𝜕𝑡 2 + 𝛻2𝜓𝐷 = +  
𝑚𝑐

ℏ
 

2

𝜓𝐷         (129) 

If now 𝜓 𝐵 and 𝜓 𝐷, are the mirror functions of 𝜓𝐵 and 

𝜓𝐵 , respectively, then 𝛻2𝜓 𝐵 =  − 𝛻2𝜓𝐵 , and 𝛻2𝜓 𝐷 =
 − 𝛻2𝜓𝐷. Therefore 

𝜕2𝜓𝐴

𝑐2𝜕𝑡 2 − 𝛻2𝜓𝐴 = − 
𝑚𝑐

ℏ
 

2

𝜓𝐴         (130) 

𝜕2𝜓𝐶

𝑐2𝜕𝑡 2 − 𝛻2𝜓𝐶 = − 
𝑚𝑐

ℏ
 

2

𝜓𝐶          (131) 

𝜕2𝜓 𝐵

𝑐2𝜕𝑡 2 − 𝛻2𝜓 𝐵 = +  
𝑚𝑐

ℏ
 

2

𝜓 𝐵          (132) 

𝜕2𝜓 𝐷

𝑐2𝜕𝑡 2 − 𝛻2𝜓 𝐷 = +  
𝑚𝑐

ℏ
 

2

𝜓 𝐷          (133) 

In other words, we have four possible KG solutions. Two 

solutions (A, C) with positive energy term and two solutions 

(B, D) with negative energy term. These equations show that 

the four states can exist independently of each other. 

Suppose we define two 3 components vector fields [13] 

𝐸1
     =  (𝜓𝐶 , 𝜑1, 𝜓𝐷)               (134) 

𝐵1
     =  

𝑚𝑐

ℏ
 𝑑𝑡 (𝜑2, 𝜓𝐴 , 𝜑3)         (135) 

With 𝜑  =  (𝜑1, 𝜑2, 𝜑3) some arbitrary vector field. 

The fields 𝐸1
      and 𝐵1

     , satisfy: 

 𝛻 ×  𝐸1
     =  −

𝜕

𝜕𝑡
𝐵1
                   (136) 

for the y component. 

Same relationships exist for 

𝐸2
     =  (𝜓𝐴 , 𝜑1, 𝜓𝐵)              (137) 

𝐵2
     =  

𝑚𝑐

ℏ
 𝑑𝑡 (𝜑2, 𝜓𝐶 , 𝜑3)        (138) 

Leading to 

𝛻 ×  𝐸2
     =  −

𝜕

𝜕𝑡
𝐵2
                   (139) 

Again, for the y-component. 

This may hint to some internal structure of a Dirac fermion, 

being made of some interacting electromagnetic fields. 

Let us look at the electromagnetic field vector  

𝐴𝜇 =  (ϕ, A   ) 

It satisfies Maxwell's equations 

𝜕2𝜙

𝑐2𝜕𝑡 2 − 𝛻2𝜙 =
𝜌

𝜀0
                (140) 

𝜕2𝐴 

𝑐2𝜕𝑡 2 − 𝛻2𝐴 = 𝜇0 𝐽               (141) 

Assume the Dirac charged fermion has an internal current 

density and hence an internal vector potential. 

This particle has an internal electric charge distribution 𝜌, 

and create an internal current J . 
Because of current conservation and the definition of the 

vector potentials we have 

1

𝑐2

𝜕𝜙

𝜕𝑡
+ 𝛻 ∙ 𝐴 = 0               (142) 

𝜕𝜌

𝜕𝑡
+ 𝛻 ∙ 𝐽 = 0                 (143) 

Suppose now that the current density is proportional to the 

vector potential: 𝜌 = 𝑘1𝜙 and J = 𝑘2A   .  

Then the above conservation equations are always 

satisfied. 

This leads to: 

𝜕2𝜙

𝑐2𝜕𝑡 2 − 𝛻2𝜙 = 𝑘1𝜙            (144) 

𝜕2𝐴 

𝑐2𝜕𝑡 2 − 𝛻2𝐴 = 𝑘2𝐴             (145) 

which have the same form as the Dirac 4 real fields, Eqs. 

44-47. 

If 

𝜌 =  𝜀0   
𝑚𝑐

ℏ
 

2

𝜙              (146) 

𝐽 =  
1

𝜇0
  

𝑚𝑐

ℏ
 

2

𝐴               (147) 

and 𝑘1/𝑘2 =  𝜀0𝜇0 = 𝑐2 

Then, 

𝜕2𝜙

𝑐2𝜕𝑡 2 − 𝛻2𝜙 =  
𝑚𝑐

ℏ
 

2

𝜙         (148) 

𝜕2𝐴 

𝑐2𝜕𝑡 2 − 𝛻2𝐴 =  
𝑚𝑐

ℏ
 

2

 𝐴          (149) 

In other words, the four Dirac fields 𝜓𝐴 , 𝜓 𝐵 , 𝜓𝐶 , 𝜓 𝐷 are 
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the electromagnetic vector potential fields, ϕ, 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧  

provided that the current densities 𝜌, J𝑥 , J𝑦 , J𝑧  are related to 

the electromagnetic fields ϕ, 𝐴𝑥 , 𝐴𝑦 , 𝐴𝑧  by Eqs. 146, 147 

through the constant  
𝑚𝑐

ℏ
 

2

. 

There are no external electromagnetic fields, so these are 

confined electromagnetic fields which create the fermion 

and give it its mass m. 

Note though, that in order to keep with the signs as 

required, the currents J 𝑥  and J 𝑧  must be symmetric with 

𝐽𝑥  and 𝐽𝑧  about their spatial coordinates, so that their 

spatial derivatives change signs accordingly. 

14. Conclusions 

We assumed all quantum fields, to be real wave-functions 

in real space, acted upon by non-Hermitian operators. it  

was shown that both Schrödinger and Dirac equations 

describe the behavior of both non- relativistic and relativistic 

Fermions.  

The picture of interacting strings, leads us to conclude  

that both Schrödinger and Dirac equations describe some 

exchange mechanism between coupled strings. 

One may therefore re-consider our view of leptons as 

being elementary particles. Just like Hadrons are assumed to 

be made of quarks interacting via gluons and confined. 

This interpretation can explain interference in a similar 

manner to the explanation by standard quantum mechanics 

of complex wave functions. 

Moreover, this approach provides possible explanation to 

the Planck constant. 

Spin emerges naturally by inspecting the energy levels 

under the interactio of the reaql fields with an external 

magnetic field. 

Physics has nothing to do with neither complex space  

nor complex fields. Complex Quantum mechanics is just a 

mathematical convenience which obscures the true essence 

of elementary particles. 
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