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1. Introduction 

Linear complementary dual (LCD) codes are widely used 

in communication systems, storage systems, cryptography, 

and consumer electronics. In 1992, Massey [1] introduced 

the concept of LCD codes. In [2], Sendrier proved that LCD 

codes meet the asymptotic Gilbert-Varshamov bound. In [3], 

Yang and Massey provided a sufficient and necessary 

condition for a cyclic code to be an LCD code. In [4], Dinh 

showed that if 𝜆2 ≠ 1, then any λ−constacyclic code over 

F_q is an LCD code. In [5], J. Qian et al. constructed MDS 

LCD codes of length q^2+1 and so on. Extensive work has 

been done on the construction of LCD codes using different 

methods (see, for example, [6,7]). 

In addition, there is a close connection between LCD 

codes and entanglement-assisted quantum codes. If the 

intersection of a nontrivial α−constacyclic code and its 

Hermitian dual code is empty, then maximal entanglement 

EAQEC codes can be constructed and achieve the EA-hashing 

bound asymptotically [8]. For more information on EAQEC 

codes, see [9-14]. 

In this paper, based on the above results, we first 

construct three types of maximal distance separable (MDS) 

linear complementary dual codes. Then we construct some 

maximal entanglement MDS EAQEC codes from LCD 

codes. 

The paper is organized as follows. In Section 2, some 

basic definitions and properties of linear codes and 

constacyclic codes are given. In Section 3, the constructions 

of MDS LCD codes are presented. In Section 4, some MDS 

EAQEC codes with maximal entanglement are constructed. 

Section 5 gives a summary. 

 

* Corresponding author: 

lijiantao@lnu.edu.cn (Jiantao Li) 

Received: Jun. 29, 2023; Accepted: Jul. 12, 2023; Published: Jul. 24, 2023 

Published online at http://journal.sapub.org/ijtmp 

2. Preliminaries 

Let 𝐹𝑞2  be a finite field with 𝑞2 elements, where 𝑞 is a 

power of a prime 𝑝. Now, we present some basic notions and 

facts about linear codes and constacyclic codes. 

Definition 2.1 A code 𝐶 is cyclic if for any cyclic shift of 

a codeword is also a codeword, i.e., 

𝑐 = (𝑐0, 𝑐1, ⋯ , 𝑐𝑛−1) ∈ 𝐶 ⇒ (𝑐𝑛−1, 𝑐0, ⋯ , 𝑐2) ∈ 𝐶. 

It is well-known that a cyclic code of length 𝑛 over 𝐹𝑞  

can be identified with an ideal in the residue ring 𝐹𝑞  𝑥 /

(𝑥𝑛 − 1) . It follows that 𝐶  is generated by a monic 

polynomial 𝑔 𝑥 , of lowest degree in 𝐶. This polynomial 

𝑔 𝑥  is called the generator polynomial of 𝐶, and 𝑔 𝑥  is a 

monic divisor of 𝑥𝑛 − 1. The dimension of 𝐶  is 𝑛 − 𝑘 , 

where 𝑘 = deg 𝑔 𝑥  . 

A code 𝐶  is called a 𝜆 -constacyclic code if 

(𝑐0, 𝑐1, ⋯ , 𝑐𝑛−1) ∈ 𝐶 ⇒ (𝜆𝑐𝑛−1, 𝑐0, ⋯ , 𝑐𝑛−2) ∈ 𝐶. 

It is well known that the 𝜆-constacyclic code 𝐶 of length 

𝑛 over 𝐹𝑞2  is an ideal of the quotient ring 𝐹𝑞2 𝑥 /(𝑥𝑛 − 𝜆). 

Let 𝑟 be the order of 𝜆 in the multiplicative group 𝐹𝑞2  
∗ . 

Then, there exists a primitive 𝑟𝑛-th root 𝛽 of unity in some 

extension field of 𝐹𝑞2  such that 𝛽𝑛 = 𝜆 . Therefore, the 

roots of 𝑥𝑛 − 𝜆  are precisely the elements 𝛽1+𝑟𝑖 , where 

0 ≤ 𝑖 ≤ 𝑛 − 1 . Define 𝛥𝑟,𝑛 = {1 + 𝑟𝑖 | 0 ≤ 𝑖 ≤ 𝑛 − 1} . 

Let  𝐶 =  𝑔(𝑥)  be an 𝜆 -constacyclic code of length 𝑛 . 

Then the set 𝑇 =  𝑗 ∈ Δ𝑟,𝑛    𝑔 𝛽𝑗  = 0}  is called the 

defining set of 𝐶.  

Let 𝑛  be a positive integer with gcd(𝑛, 𝑞) = 1 . For 

𝑖 ∈ 𝛥𝑟,𝑛 , the 𝑞2-cyclotomic coset modulo 𝑟𝑛 containing an 

element 𝑖  is defined as ℂ𝑖 = {𝑖, 𝑖𝑞2, 𝑖𝑞4, ⋯ , 𝑖𝑞2(𝑡−1)} , 

where 𝑡  is the smallest positive integer such that 𝑖𝑞2𝑡 ≡
𝑖 𝑚𝑜𝑑 𝑟𝑛 . It is easy to see that the defining set 𝑇 is a union 

of some 𝑞2-cyclotomic cosets. The cyclotomic cosets are 

very important in constructing cyclic codes [15,16]. 

Definition 2.2 For any 𝑥 ∈ 𝐹𝑞2 , the conjugate 𝑥  of 𝑥 is 

defined as  𝑥𝑞 . For two vectors 𝑥 =  𝑥1, 𝑥2, ⋯ , 𝑥𝑛  and 
 𝑦 = (𝑦1, 𝑦2, ⋯ , 𝑦𝑛) in 𝐹𝑞2

𝑛 , their Hermitian inner product is 
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defined as 

 𝑥, 𝑦 ℎ = 𝑥1𝑦 1 + 𝑥2𝑦 2 + ⋯ + 𝑥𝑛𝑦 𝑛 = 𝑥1𝑦1
𝑞

+ 𝑥2𝑦2
𝑞

+

⋯ + 𝑥𝑛𝑦𝑛
𝑞
. 

And  𝐶⊥ℎ =  𝑥 ∈ 𝐹𝑞2
𝑛  |  𝑥, 𝑦 ℎ = 0, 𝑦 ∈ 𝐶  is called the 

Hermitian dual code of 𝐶. 

Definition 2.3 If 𝐶 ∩ 𝐶⊥ℎ = {0}, then the linear code 𝐶 is 

called a Hermitian linear complementary dual code. 

The following results are often used to construct LCD 

codes, see [4,5] for example. 

Lemma 2.1 Let 𝛼 ∈ 𝐹𝑞2
∗   be a primitive 𝑟-th root of unity 

and 𝐶 be a nontrivial 𝛼- constacyclic code of length 𝑛 over 

𝐹𝑞2 . If 𝛼 = 𝛼 −1, i.e., 𝑟 ∤ (𝑞 + 1), then 𝐶 ∩ 𝐶⊥ℎ = {0}. 

Proposition 2.1 (Singleton bound) If an [𝑛, 𝑘, 𝑑]𝑞  linear 

code 𝐶 exists, 1 ≤ 𝑑 ≤ 𝑛 − 1, then 𝑛 ≥ 𝑘 + 𝑑 − 1. 

If 𝑑 = 𝑛 − 𝑘 + 1, then 𝐶 is called a maximum distance 

separable (MDS, for short) code. 

Proposition 2.2 (BCH bound) Assume that 𝑛 and 𝑞 are 

relatively prime. Let 𝐶 be an 𝛼- constacyclic code of length 

𝑛  over 𝐹𝑞2 . If the generator polynomial 𝑔(𝑥)  of 𝐶 has 

roots {𝛽1+𝑟𝑖  | 0 ≤ 𝑖 ≤ 𝛿 − 2}, where 𝛽 is a primitive 𝑟𝑛-th 

root of unity, then the minimum distance of 𝐶 is at least 𝛿. 

3. Constructions of MDS LCD Codes 

3.1. MDS LCD Codes for q ≡ 1 (mod 4) 

In this subsection, assume that 𝑞 ≡ 1 𝑚𝑜𝑑 4 , 𝑛 =
𝑞2−1

4
, 

𝑟 = 4. Obviously, 𝑟 ∤  𝑞 + 1 , 𝑟|𝑞 − 1. Let 𝛼 ∈ 𝐹𝑞2
∗  be a 

primitive 𝑟 -th root of unity. Notice that 𝑛 =
𝑞2−1

4
, 

𝑜𝑟𝑑𝑟𝑛  𝑞
2 = 1 , so the 𝑞2 -cyclotomic coset modulo 𝑟𝑛 

contains only one element. Let 𝑢 =
𝑛

2
. Then 

𝐶𝑢 =  𝑢 , 𝐶𝑢−𝑟𝑖 =  𝑢 − 𝑟𝑖 , 1 ≤ 𝑖 ≤  
𝑢−1

𝑟
 . 

Theorem 3.1 Let 𝑞 ≡ 1 𝑚𝑜𝑑 4 , 𝑛 =
𝑞2−1

4
, 𝑟 = 4 , 

𝛼 ∈ 𝐹𝑞2 
∗  be a primitive 𝑟-th root of unity. Then there exists 

an 𝛼 -constacyclic MDS LCD code with parameters 

  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 ,  0 ≤ 𝛿 ≤  
𝑢−1

𝑟
 . 

Proof Let 𝛼 ∈ 𝐹𝑞2
∗  be a primitive 𝑟-th root of unity. Let 𝐶 

be an 𝛼-constacyclic code with defining set 

𝑇 = ⋃𝑖=0
𝛿 𝐶𝑢−𝑟𝑖 , 0 ≤ 𝛿 ≤  

𝑢−1

𝑟
 . 

It follows from 𝑟 ∤  𝑞 + 1  that 𝐶 is an LCD code. Note 

that 𝐶𝑢 =  𝑢 , 𝐶𝑢−𝑟𝑖 =  𝑢 − 𝑟𝑖 . So, the dimension 𝑘 

of  𝐶 is  𝑛 − 𝛿 − 1 . According to Proposition 2.2, the 

minimum distance 𝑑 ≥ 𝛿 + 2. It follows from Proposition 

2.1 that  𝑑 = 𝛿 + 2. Hence 𝐶 is an MDS LCD code with 

parameters  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 . 

Example 3.1 Let  𝑞 = 13 , 𝑛 = 42 , 𝑟 = 4 ,  𝛼  be a 

primitive 4-th root of unity. Let 𝐶  be an 𝛼 -constacyclic 

code with defining set 𝑇 = ⋃𝑖=0
𝛿 𝐶21−𝑟𝑖 ,  0 ≤ 𝛿 ≤ 5 .    

Then there exists MDS LCD codes with parameters 
  42, 41 − 𝛿, 𝛿 + 2 𝑞2 , 0 ≤ 𝛿 ≤ 5. In particular, let  𝛿 = 5, 

we can obtain MDS LCD codes with parameters [42, 36, 7]. 

3.2. MDS LCD Codes for q ≡ 3 (mod 4), q ≠ 3 

In this subsection, let 𝑞 ≡ 3 𝑚𝑜𝑑 4 , 𝑞 ≠ 3, 𝑛 =
𝑞2−1

𝑟
, 

𝛼 ∈ 𝐹𝑞2
∗  be a primitive 𝑟th root of unity. Let 𝑟 =

𝑞−1

2
. Then 

𝑟 ∤  𝑞 + 1 , 𝑟|𝑞 − 1, 𝑜𝑟𝑑𝑟𝑛  𝑞
2 = 1, so the 𝑞2-cyclotomic 

coset modulo 𝑟𝑛  contains only one element. Let  𝑢 =
𝑛

2
. 

Then 𝐶𝑢 =  𝑢 , 𝐶𝑢−𝑟𝑖 =  𝑢 − 𝑟𝑖 , 1 ≤ 𝑖 ≤  
𝑢−1

𝑟
 . 

Theorem 3.2 Let 𝑞 ≡ 3 𝑚𝑜𝑑4 ,  𝑞 ≠ 3 , 𝑛 =
𝑞2−1

𝑟
, 

𝑟 =
𝑞−1

2
, 𝛼 ∈ 𝐹𝑞2

∗  be a primitive 𝑟-th root of unity. Then 

there exists an 𝛼 -constacyclic MDS LCD code with 

parameters  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 , 0 ≤ 𝛿 ≤  
𝑢−1

𝑟
 . 

Proof Let 𝛼 ∈ 𝐹𝑞2
∗  be a primitive 𝑟-th root of unity. Let 𝐶 

be an 𝛼-constacyclic code with defining set 

𝑇 = ⋃𝑖=0
𝛿 𝐶𝑢−𝑟𝑖 , 0 ≤ 𝛿 ≤  

𝑢−1

𝑟
 . 

It follows from 𝑟 ∤  𝑞 + 1  that 𝐶 is a LCD code. Note 

that 𝐶𝑢 =  𝑢 , 𝐶𝑢−𝑟𝑖 =  𝑢 − 𝑟𝑖 .  So, the dimension 𝑘 

of  𝐶 is  𝑛 − 𝛿 − 1 . According to Proposition 2.2, the 

minimum distance 𝑑 ≥ 𝛿 + 2. It follows from Proposition 

2.1 that 𝑑 = 𝛿 + 2. Hence  𝐶  is an MDS LCD code with 

parameters  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 . 

3.3. MDS LCD Codes for q = 3
m

 (m ≥ 2) 

In this subsection, let 𝑞 = 3𝑚   𝑚 ≥ 2 , 𝑛 = 𝑞2 + 1 , 

𝛼 ∈ 𝐹𝑞2
∗  be a primitive 𝑟-th root of unity. Let 𝑟 =

3𝑚−1

2
. 

Then 𝑟 ∤  𝑞 + 1 ,  𝑟|𝑞 − 1 , and 𝑜𝑟𝑑𝑚 𝑞2 = 1 𝑜𝑟 2 . So,  

the 𝑞2 -cyclotomic coset modulo 𝑟𝑛  contains one or    

two elements. Let  𝑣 =
 2𝑟+1 𝑛

3
. Then 𝐶𝑣 =  𝑣 ,  𝐶𝑣−𝑟𝑗 =

 𝑣 − 𝑟𝑗, 𝑣 + 𝑟𝑗 , 1 ≤ 𝑗 ≤
𝑛−1

3
. 

Theorem 3.3 Let  𝑞 = 3𝑚   𝑚 ≥ 2 , 𝑛 = 𝑞2 + 1 ,  𝛼 ∈

𝐹𝑞2
∗  be a primitive 𝑟-th root of unity. Let 𝑟 =

3𝑚−1

2
,  𝑣 =

 2𝑟+1 𝑛

3
. Then there exists an 𝛼-constacyclic MDS LCD code 

with parameters  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 , 1 ≤ 𝛿 ≤
𝑛−1

3
. 

Proof Let 𝛼 ∈ 𝐹𝑞2
∗  be a primitive 𝑟-th root of unity. Let 𝐶 

be an 𝛼-constacyclic code with defining set 

𝑇 = ⋃𝑗=0
𝛿 𝐶𝑣−𝑟𝑗 , 0 ≤ 𝛿 ≤

𝑛−1

3
. 

It follows from 𝑟 ∤  𝑞 + 1  that 𝐶 is a LCD code. Note 

that 𝐶𝑣 =  𝑣 , 𝐶𝑣−𝑟𝑗 =  𝑣 − 𝑟𝑗, 𝑣 + 𝑟𝑗  . So, the dimension 

𝑘 of  𝐶  is  𝑛 − 2𝛿 − 1. According to proposition 2.2, the 

minimum distance 𝑑 ≥ 2𝛿 + 2. It follows from Proposition 

2.1 that 𝑑 = 2𝛿 + 2. Hence 𝐶 is an MDS LCD code with 

parameters  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 . 

Example 3.2 Let  𝑚 = 2 ,  𝑞 = 9 ,  𝜔 be a primitive 

 (𝑞2 − 1)-th root of unity. 𝐹𝑞2 = {0, 𝜔, 𝜔2, … , 𝜔𝑞2−1}. 

Assume that 𝛼 = 𝜔20, 𝛼  is a primitive 4-th root of unity. 

Let 𝑟 = 4, 𝐶  be an 𝛼- constacyclic code of length 𝑛 over 

 𝐹𝑞2   with defining set 𝑇 =∪𝑗=0
𝛿 𝐶246−4𝑗 ,  1 ≤ 𝛿 ≤ 27 .  

Then we can get MDS LCD codes with parameters 

  𝑛, 𝑛 − 2𝛿 − 1, 2𝛿 + 2 , 1 ≤ 𝛿 ≤ 27. 

 



 International Journal of Theoretical and Mathematical Physics 2023, 13(1): 15-19 17 

 

 

In Table 1, some examples of MDS LCD codes from the 

above three theorems are given. 

Table 1.  Some α-constacyclic MDS LCD codes 

q r n MDS LCD codes 

7 3 16 [16,15- δ, δ+2] 0≤δ≤2 

9 4 20 [20,19- δ, δ+2] 0≤δ≤2 

15 7 32 [32,31- δ, δ+2] 0≤δ≤2 

17 4 72 [72,71- δ, δ+2] 0≤δ≤8 

19 9 40 [40,39- δ, δ+2] 0≤δ≤2 

21 4 110 [110,109- δ, δ+2] 0≤δ≤13 

23 11 48 [48,47- δ, δ+2] 0≤δ≤2 

27 13 730 [730,729- 2δ, 2δ+2] 0≤δ≤243 

29 4 210 [210,209- δ, δ+2] 0≤δ≤26 

33 4 272 [272,271- δ, δ+2] 0≤δ≤33 

45 4 506 [506,505- δ, δ+2] 0≤δ≤63 

49 4 600 [600,599- δ, δ+2] 0≤δ≤75 

4. Constructions of 
Entanglement-Assisted  
Quantum MDS Codes 

In this section, we will use the MDS LCD codes in section 

3 to construct entanglement-assisted quantum MDS codes. 

Basic concepts and facts about entanglement-assisted 

quantum error-correcting codes can be referred to 

[5,9,17-18,20]. 

Definition 4.1 An EAQEC code, denoted by [[𝑛, 𝑘, 𝑑;  𝑐]], 
encodes 𝑘  logical qubits into 𝑛  physical qubits using 𝑐 

copies of maximally entangled Bell states, and 𝑑  is the 

minimum distance of the code.  

Suppose that 𝐻 =  𝑎𝑖𝑗  𝑘×𝑛
 is a  𝑘 × 𝑛 matrix, 𝐻  is 

defined as  𝐻 ≔  𝑎 𝑖𝑗  𝑘×𝑛
=  𝑎𝑖𝑗

𝑞 
𝑘×𝑛

, and 𝐻†  is the 

transpose matrix of 𝐻 .  

Lemma 4.1 If  𝐶 =  𝑛, 𝑘, 𝑑 𝑞2  is a linear code 

over 𝐹𝑞2  with a parity check matrix  𝐻 , then there exists   

an   𝑛, 2𝑘 − 𝑛 + 𝑐, 𝑑; 𝑐  
𝑞

 MDS EAQEC code, where 

 𝑐 = 𝑟𝑎𝑛𝑘 𝐻𝐻† . 
Proposition 4.1 Assume that 𝐶  is an 

entanglement-assisted quantum code with parameters 

[[𝑛, 𝑘, 𝑑; 𝑐]]𝑞 . If 𝑑 ≤ (𝑛 + 2)/2 , then 𝐶  satisfies the 

entanglement-assisted Singleton bound 𝑛 + 𝑐 − 𝑘 ≥ 2(𝑑 −
1) . If 𝐶  satisfies the equality 𝑛 + 𝑐 − 𝑘 = 2(𝑑 − 1)  for 

𝑑 ≤ (𝑛 + 2)/2, then it is called an entanglement-assisted 

quantum MDS code. 

Lemma 4.2 If 𝐶 =  𝑛, 𝑘, 𝑑 𝑞2  is a linear code over  𝐹𝑞2   

with parity check matrix 𝐻 , generator matrix 𝐺 , then 

 𝑟𝑎𝑛𝑘 𝐻𝐻† = 𝑛 − 𝑘 − 𝑑𝑖𝑚 𝐻𝑢𝑙𝑙ℎ 𝐶  , where  

 𝐻𝑢𝑙𝑙ℎ 𝐶 = 𝐶 ∩ 𝐶⊥ℎ . 

Lemma 4.3 Let 𝐶  is an LCD code over  𝐹𝑞2 , then 

𝑟𝑎𝑛𝑘 𝐻𝐻† = 𝑛 − 𝑘. 

Definition 4.2 Let    𝑛, 𝑘, 𝑑; 𝑐  
𝑞

 be a 𝑞 -ary EAQEC 

code. Then the parameters satisfy the Singleton bound for 

EAQEC codes: 2 𝑑 − 1 ≤ 𝑛 −  𝑘 − 𝑐 . An EAQEC code 

meeting this bound is called an MDS EAQEC code. 

Definition 4.3 A 𝑞-ary EAQEC code    𝑛, 𝑘, 𝑑; 𝑐  
𝑞
 with 

𝑐 = 𝑛 − 𝑘, is called a maximal entanglement EAQEC code. 

Such quantum codes have better properties and efficiency, 

and can gradually reach the EA-hashing bound [19]. 

4.1. MDS EAQEC Codes for q ≡ 1 (mod 4) 

Theorem 4.1 Let 𝑞 ≡ 1 𝑚𝑜𝑑 4 , 𝑛 =
𝑞2−1

4
, 𝑟 = 4 , 𝑢 =

𝑛

2
,  𝛼 ∈ 𝐹𝑞2  be a primitive 𝑟 -th root of unity. Then there 

exists a maximal entanglement MDS EAQEC code with 

parameters   𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2; 𝛿 + 1  
𝑞
, 0 ≤ 𝛿 ≤  

𝑢−1

𝑟
 . 

Proof According to Theorem 3.1, there exists an 

𝛼 -constacyclic MDS LCD code 𝐶  with parameters 

  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 . Assume the check matrix is  𝐻. So, 

𝑟𝑎𝑛𝑘 𝐻𝐻† = 𝑛 − 𝑘 = 𝛿 + 1. Then there exists an EAQEC 

code with parameters    𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2; 𝛿 + 1  
𝑞

, 

0 ≤ 𝛿 ≤  
𝑢−1

𝑟
 . 𝑛 −  𝑘 − 𝑐 = 2 𝛿 + 1 = 2 𝑑 − 1  

reaches the Singleton bound for EAQEC code, and 

 𝑐 = 𝑛 − 𝑘. 

4.2. MDS EAQEC Codes for q ≡ 3 (mod 4), q ≠ 3 

Theorem 4.2 Let 𝑞 ≡ 3 𝑚𝑜𝑑 4 , 𝑞 ≠ 3 , 𝑛 =
𝑞2−1

𝑟
, 

𝑟 =
𝑞−1

2
, 𝑢 =

𝑛

2
, 𝛼 ∈ 𝐹𝑞2  be a primitive 𝑟th root of unity. 

Then there exists a maximal entanglement MDS EAQEC 

code with parameters   𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2; 𝛿 + 1  
𝑞

, 

0 ≤ 𝛿 ≤  
𝑢−1

𝑟
 . 

Proof According to Theorem 3.2, there exists an 

𝛼 -constacyclic MDS LCD code 𝐶  with parameters 

  𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2 𝑞2 . Assume the check matrix is  𝐻 . 

Then 𝑟𝑎𝑛𝑘 𝐻𝐻† = 𝑛 − 𝑘 = 𝛿 + 1, there exists an EAQEC 

code with parameters    𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2; 𝛿 + 1  
𝑞

, 

0 ≤ 𝛿 ≤  
𝑢−1

𝑟
 . 𝑛 −  𝑘 − 𝑐 = 2 2𝛿 + 1 = 2 𝑑 − 1  

reaches the Singleton bound for EAQEC code, and 

 𝑐 = 𝑛 − 𝑘. 

4.3. MDS EAQEC Codes for q = 3
m

 (m ≥ 2) 

Theorem 4.3 Let 𝑞 = 3𝑚 𝑚 ≥ 2 ,  𝑛 = 𝑞2 + 1 ,  𝑟 =
3𝑚−1

2
, 𝑣 =

 2𝑟+1 𝑛

3
, 𝛼 ∈ 𝐹𝑞2

∗  be a primitive 𝑟-th root of unity. 

Then there exists a maximal entanglement MDS EAQEC 

code with parameters   𝑛, 𝑛 − 2𝛿 − 1,2𝛿 + 2; 2𝛿 + 1  
𝑞
 

0 ≤ 𝛿 ≤  
𝑛−1

3
 . 

Proof According to Theorem 3.3, there exists an 

𝛼 -constacyclic MDS LCD code 𝐶  with parameters 

  𝑛, 𝑛 − 2𝛿 − 1, 2𝛿 + 2 𝑞2 . Assume the check matrix is 𝐻. 

Then 𝑟𝑎𝑛𝑘 𝐻𝐻† = 𝑛 − 𝑘 = 2𝛿 + 1 , there exists an 

EAQEC code with parameters   𝑛, 𝑛 − 2𝛿 − 1,2𝛿 +

2; 2𝛿 + 1  
𝑞

, 0 ≤ 𝛿 ≤  
𝑛−1

3
 . 𝑛 −  𝑘 − 𝑐 = 2 2𝛿 + 1 =

2 𝑑 − 1  reaches the Singleton bound for EAQEC code, 
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and  𝑐 = 𝑛 − 𝑘. 

In Table 2, Some examples of maximal entanglement 

MDS EAQEC codes from the above theorems are given. 

 

 

Table 2.  Some New maximal entanglement MDS EAQEC codes 

q r n MDS EAQEC codes 

7 3 16 [[16,15- δ, δ+2; δ+1]] 0≤δ≤2 

9 4 20 [[20,19- δ, δ+2; δ+1]] 0≤δ≤2 

11 5 24 [[24,23- δ, δ+2; δ+1]] 0≤δ≤2 

17 4 72 [[72,71- δ, δ+2; δ+1]] 0≤δ≤8 

19 9 40 [[40,39- δ, δ+2; δ+1]] 0≤δ≤2 

25 4 156 [[156,155- δ, δ+2; δ+1]] 0≤δ≤19 

27 13 730 [[730,729- 2δ, 2δ+2; 2δ+1]] 0≤δ≤243 

29 4 210 [[210,209- δ, δ+2; δ+1]] 0≤δ≤26 

37 4 342 [[342,341- δ, δ+2; δ+1]] 0≤δ≤42 

41 4 420 [[420,419- δ, δ+2; δ+1]] 0≤δ≤52 

49 4 600 [[600,599- δ, δ+2; δ+1]] 0≤δ≤75 

5. Conclusions 

In this paper, three types of maximal distance separable linear complementary dual codes are constructed as follows: 

Table 3.  Summary of new MDS LCD codes 

q n K d MDS LCD codes 

𝒒 ≡ 𝟏(𝒎𝒐𝒅𝟒) 𝑛 =
𝑞2 − 1

4
 𝑛 − 𝛿 − 1 𝛿 + 2 [𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2]𝑞2  0 ≤ 𝛿 ≤ [

𝑢 − 1

𝑟
] 

𝒒 ≡ 𝟑(𝒎𝒐𝒅𝟒) (𝒒 ≠ 𝟑) 𝑛 =
𝑞2 − 1

𝑟
 𝑛 − 𝛿 − 1 𝛿 + 2 [𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2]𝑞2  0 ≤ 𝛿 ≤ [

𝑢 − 1

𝑟
] 

𝒒 = 𝟑𝒎(𝒎 ≥ 𝟐) 𝑛 = 𝑞2 + 1 𝑛 − 2𝛿 − 1 2𝛿 + 2 [𝑛, 𝑛 − 2𝛿 − 1,2𝛿 + 2]𝑞2  0 ≤ 𝛿 ≤ [
𝑛 − 1

3
] 

Then we construct some maximal entanglement MDS EAQEC codes by the above LCD codes as follows: 

Table 4.  Summary of new maximal entanglement MDS EAQEC codes 

q n d MDS EAQEC codes 

𝒒 ≡ 𝟏(𝒎𝒐𝒅𝟒) 𝑛 =
𝑞2 − 1

4
 𝛿 + 2 [[𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2; 𝛿 + 1]]𝑞  0 ≤ 𝛿 ≤ [

𝑢 − 1

𝑟
] 

𝒒 ≡ 𝟑(𝒎𝒐𝒅𝟒) (𝒒 ≠ 𝟑) 𝑛 =
𝑞2 − 1

𝑟
 𝛿 + 2 [[𝑛, 𝑛 − 𝛿 − 1, 𝛿 + 2; 𝛿 + 1]]𝑞  0 ≤ 𝛿 ≤ [

𝑢 − 1

𝑟
] 

𝒒 = 𝟑𝒎(𝒎 ≥ 𝟐) 𝑛 = 𝑞2 + 1 2𝛿 + 2 [[𝑛, 𝑛 − 2𝛿 − 1,2𝛿 + 2; 2𝛿 + 1]]𝑞  0 ≤ 𝛿 ≤ [
𝑛 − 1

3
] 
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