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Abstract  This paper derives and clarifies the accurate physical meaning of Planck’s constant h through analyzing and 

calculating the integrals of energy over one wave cycle of various waves. Thus discover that the energy of one wavelength of 

any wave is proportional to distinctive constant and its frequency respectively. These constants are different respect to 

different waves, and the constant of EM wave is prevailingly called Planck’s constant h. 
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1. Introduction 

The accurate physical meaning of Planck’s constant h 

must be found 

Since Max Planck has proposed the new theory of 

quantum hypothesis and Planck’s constant h in 1904, until 

nowadays, the accurate physical meaning of Planck’s 

constant h has not yet been found or not properly explained, 

therefore it is always abused indiscriminately in many 

obvious unsuitable wave applications such as matter waves 

and even in some not wave matter subjects. 

Therefore, it is factually necessary to research, to seek and 

to clarify what is the accurate true nature physical meaning 

of the Planck’s constant h. 

To find or seek the true accurate physical meaning of 

Planck’s constant h, there two or three key viewpoints must 

be taken into account. 

The point 1 is that we must notice that the quanta energy 

E = hν of EM wave being produced or being absorbed by 

electrons is the measurable smallest energy unity.  

The point 2 is that we must be objectively aware of 

Planck’ constant h is originally generated from research of 

black radiation; it could be a same value and universally 

applicable in calculating energies of EM waves and light 

waves, however, before the accurate physical meaning has 

been found, it cannot be applied universally indiscriminately 

in some waves other than EM wave and light wave. 

The point 3 is the difference between the wave energy 

from the point mass energy lies in that the instantaneous 

measurable energy of a point mass is the total energy, whilst 

the instantaneously measured energy of a wave may not be 
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the total energy of a wave, not be the mean energy of a wave, 

not be the average energy of a wave. Because wave energy 

generally is composed of at least two kinds of energy being 

transformed each other. Then, when we count the wave 

energy, we must measure the integral of one cycle energy 

(e.g., ET, E𝜆 or KT, K𝜆). 

Therefore, we will try to break through research and 

analyze on the true values of total energy over one cycle of 

different kinds of waves to try to find the accurate physical 

meaning of Planck’s constant h in the following sections. 

1.1. Further Derivation of the Energy over One Wavelength 

of Sound Wave with Respect to Frequency 

1.1.1. Briefing the Prevailing Description (Cited from the 

Book Fundamentals of Physics) 

“As the sound wave propagates away from the piston, the 

displacement of any volume of air in front of the piston is 

given by Equation 17.2. To evaluate the kinetic energy of 

this volume of air, we need to know its speed. We find the 

speed by taking the time derivative of Equation 17.2:  

𝑣 𝑥, 𝑡 =
𝜕𝑦

𝜕𝑡
𝑠 𝑥, 𝑡 =

𝜕𝑦

𝜕𝑡
 𝑠𝑚𝑎𝑥 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)  

= 𝜔𝑠𝑚𝑎𝑥 𝑠𝑖𝑛(𝑘𝑥 − 𝜔𝑡) 

Imagine that we take a “snapshot” of the wave at the 

kinetic energy of a given volume of air at this time is 

𝛥𝐾 =
1

2
𝛥𝑚𝑣2 =

1

2
𝛥𝑚 𝜔𝑠𝑚𝑎𝑥 sin 𝑘𝑥 2 

=
1

2
𝜌𝐴𝛥𝑥 𝜔𝑠𝑚𝑎𝑥 sin 𝑘𝑥 2 

=
1

2
𝜌𝐴𝛥𝑥 𝜔𝑠𝑚𝑎𝑥  

2 s in2 𝑘𝑥 

where A is the cross-sectional area of the moving air and A 

Δx is its volume. Now, as in Section 16.8, we integrate this 

expression over a full wavelength to find the total kinetic 
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energy in one wavelength. Letting the volume of air shrink 

to infinitesimal thickness, so that Δx → dx, we have 

𝐾𝜆 =  𝑑𝐾 =  
1

2
𝜌𝐴 𝜔𝑠𝑚𝑎𝑥  

2 s in2 𝑘𝑥𝑑𝑥
𝜆

0

 

=
1

2
𝜌𝐴 𝜔𝑠𝑚𝑎𝑥  

2  s in2 𝑘𝑥𝑑𝑥
𝜆

0

 

=
1

2
𝜌𝐴 𝜔𝑠𝑚𝑎𝑥  

2(
1

2
𝜆) =

1

4
𝜌𝐴 𝜔𝑠𝑚𝑎𝑥  

2𝜆 

” 

1.1.2. Further Derivation of Energy with Respect to 

Frequency 

Since the angular frequency is  

 𝜔 = 2𝜋𝑓 (1.1) 

Substituting (1.1) into the energy expression of one 

wavelength 𝐾𝜆  obtains 

 𝐾𝜆 =
1

4
𝜌𝐴 2𝜋𝑓𝑠𝑚𝑎𝑥  

2𝜆 =
1

4
𝜌𝐴 2𝜋𝑠𝑚𝑎𝑥  

2𝑓2𝜆 (1.2) 

Since velocity v is  

 𝑣 = 𝑓𝜆 (1.3) 

Substituting (1.3) into (1.2) we have the expression of 

energy in one wavelength 𝜆 as 

𝐾𝜆 =
1

4
𝜌𝐴 𝜔𝑠𝑚𝑎𝑥  

2𝜆 =
1

4
𝜌𝐴𝑣 2𝜋𝑠𝑚𝑎𝑥  

2𝑓 

where 𝑣 is the velocity of the sound wave. 

Let  

1

4
𝜌𝐴𝑣 2𝜋𝑠𝑚𝑎𝑥  

2 = ℎ𝑆𝑜𝑢𝑛𝑑𝑊𝑎𝑣𝑒  

Therefore the total energy in one wavelength of sound 

wave is  

𝐾𝜆 = ℎ𝑆𝑜𝑢𝑛𝑑𝑊𝑎𝑣𝑒 𝑓 

If we use ν to represent f then 𝐾𝜆  is written as 

 𝐾𝜆 = ℎ𝑆𝑜𝑢𝑛𝑑𝑊𝑎𝑣𝑒 𝜈 (1.4) 

1.1.3. Remarks and Conclusion 

It is worth noting that the above deduction never 

introduce any new variables and new parameters, therefore 

the deduced equation (1.4) has no difference with the 

conclusions, statements and descriptions of the cited book 

[1], the only difference lies in that the expressional form is 

changed.  

Since it is difficult to calculate the total energy of sound 

wave in an opened volume, we focus on the propagation in 

long narrow tube (as the cited book [1] discussed).  

Thus when the density 𝜌 of medium, A and v      

remain unchanged, the coefficient ℎ𝑘𝑖𝑛−𝑜𝑓−𝑠𝑜𝑢𝑛𝑑 =

 
1

4
𝜌𝐴𝑣 2𝜋𝑠𝑚𝑎𝑥  

2  is a constant, the integral total kinetic 

energy of one cycle of sound wave is 

𝐾𝜆 =
1

4
𝜌𝐴 𝜔𝑠𝑚𝑎𝑥  

2𝜆 =
1

4
𝜌𝐴𝑣 2𝜋𝑠𝑚𝑎𝑥  

2𝑓 

= ℎ𝑘𝑖𝑛−𝑜𝑓−𝑠𝑜𝑢𝑛𝑑 𝑓   

Therefore, theoretically, the total energy in one 

wavelength of one dimension sound wave is a constant 

  ℎ𝑘𝑖𝑛−𝑜𝑓−𝑠𝑜𝑢𝑛𝑑  multiplying by the wave frequency f. 

1.2. Further Derivation of the Energy over One 

Wavelength of String Wave with Respect to 

Frequency 

1.2.1. Briefing the Prevailing Description (Cited from  

the Book Fundamentals of Physics) 

“Let us focus our attention on a segment of the string   

of length Δx and mass Δm. Each such segment moves 

vertically with simple harmonic motion. Furthermore, all 

segments have the same angular frequency 𝜔 and the same 

amplitude A. The elastic potential energy U associated with 

a particle in simple harmonic motion is  𝑈 =
1

2
𝑘𝑦2  where 

the simple harmonic motion is in the y direction. Using the 

relationship  𝜔2 =
𝑘

𝑚
, we can write this as  𝑈 =

1

2
𝑚𝜔2𝑦2.  

If we apply this to the segment of mass Δm, the potential 

energy of this segment is 

𝛥𝑈 =
1

2
(𝛥𝑚)𝜔2𝑦2 

Because the mass per unit length of the string is  𝜇 =
𝛥𝑚

𝛥𝑥
, 

we can express the potential energy of the segment as 

𝛥𝑈 =
1

2
(𝜇𝛥𝑥)𝜔2𝑦2 

As the length of the segment shrinks to zero, Δx → dx, 

and this expression becomes a differential relationship: 

𝑑𝑈 =
1

2
(𝜇𝑑𝑥)𝜔2𝑦2 

We replace the general displacement y of the segment 

with the wave function for a sinusoidal wave: 

𝑑𝑈 =
1

2
𝜇𝜔2 𝐴sin 𝑘𝑥 − 𝜔𝑡  2𝑑𝑥 

=
1

2
𝜇𝜔2 𝐴2 sin2  𝑘𝑥 − 𝜔𝑡 𝑑𝑥 

If we take a snapshot of the wave at time then the 

potential energy in a given segment is 

𝑑𝑈 =
1

2
𝜇𝜔2 𝐴2 sin2 𝑘𝑥𝑑𝑥 

To obtain the total potential energy in one wavelength, 

we integrate this expression over all the string segments in 

one wavelength: 

𝑈𝜆 =  𝑑𝑈 =  
1

2
𝜇𝜔2 𝐴2 sin2 𝑘𝑥𝑑𝑥

𝜆

0

 

=
1

2
𝜇𝜔2𝐴2  s in2 𝑘𝑥𝑑𝑥

𝜆

0

 

=
1

2
𝜇𝜔2𝐴2  

1

2
𝑥 −

1

4𝑘
sin2𝑘𝑥 

𝜆
0

 

=
1

2
𝜇𝜔2𝐴2  

1

2
𝜆 =

1

4
𝜇𝜔2𝐴2𝜆 
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Because it is in motion, each segment of the string also 

has kinetic energy. When we use this procedure to analyze 

the total kinetic energy in one wavelength of the string, we 

obtain the same result: 

𝐾𝜆 =  𝑑𝐾 =
1

4
𝜇𝜔2𝐴2𝜆 

The total energy in one wavelength of the wave is the 

sum of the potential and kinetic energies: 

𝐸𝜆 = 𝑈𝜆 + 𝐾𝜆 =
1

2
𝜇𝜔2𝐴2𝜆 

” 

1.2.2. Further Derivation of Energy with Respect to 

Frequency 

Since the angular frequency is  

 𝜔 = 2𝜋𝑓 (2.1) 

Substituting (2.3.1) into the energy in one wavelength 

expression 𝐸𝜆  obtains 

 𝐸𝜆 =
1

2
𝜇(2𝜋𝑓)2𝐴2𝜆 =

1

2
𝜇(2𝜋)2𝐴2(𝑓)2𝜆 (2.2) 

Since the velocity 𝑣 is 

 𝑣 = 𝑓𝜆 (2.3) 

Substituting (3.2.3) into (3.2.2) we have the expression of 

energy in one wavelength 𝜆 as 

𝐸𝜆 =
1

2
𝜇𝜔2𝐴2𝜆 =

1

2
𝜇𝑣(2𝜋)2𝐴2𝑓 

Let  

1

2
𝜇𝑣(2𝜋)2𝐴2 = ℎ𝑠𝑡𝑟𝑖𝑛𝑔  

Therefore the total energy in one wavelength of string 

wave is  

𝐸𝜆 = ℎ𝑠𝑡𝑟𝑖𝑛𝑔 𝑓 

If f is represented by ν then the E𝜆 is expressed as 

 𝐸𝜆 = ℎ𝑠𝑡𝑟𝑖𝑛𝑔𝑒 𝜈 (2.4) 

1.2.3. Remarks and Conclusion 

It is worth noting that the above further deduction never 

introduce or create any new variables and parameters, 

therefore the deduced equation (2.4) has no difference with 

the conclusions, statements and descriptions of the cited 

book [1], the only difference lies in that the expressional 

form is changed.  

Since the integral total energy over one cycle carried by 

string wave is 

𝐸𝜆 =
1

2
𝜇𝜔2𝐴2𝜆 =

1

2
𝜇𝑣(2𝜋)2𝐴2𝑓 = ℎ𝑠𝑡𝑟𝑖𝑛𝑔𝑒 𝑓    

when the magnitudes of 𝜇, v and A remain unchanged, the 

coefficient   ℎ𝑠𝑡𝑟𝑖𝑛𝑔𝑒 =
1

2
𝜇𝑣(2𝜋)2𝐴2  is a constant.  

Therefore, theoretically, the total energy in one wavelength 

of a string wave is a constant   ℎ𝑠𝑡𝑟𝑖𝑛𝑔𝑒    multiplying by its 

frequency f. 

1.3. Analysis of Integral of EM Wave Energy over One 

Wavelength with Respect to Frequency 

1.3.1. Calculating the EM Wave Energy over One Cycle 

A prevailing assertion is that: 

“The rate of flow of energy in an electromagnetic wave is 

described by a vector S, called the Poynting vector, which is 

prevailingly defined by the expression 

𝑺 =
𝑬𝑩

𝝁𝟎
  

The magnitude of the Poynting vector represents the  

rate at which energy flows through a unit surface area 

perpendicular to the direction of wave propagation.” 

However, considering the definition of the equation 

𝑺 =
𝑬𝑩

𝝁𝟎
  for S is “apply at any instant of time and represent 

the instantaneous rate at which energy is passing through a 

unit area” [1], the physical dimension unit of energy flow 

rate formula  𝑺 =
𝑬𝑩

𝝁𝟎
 is W/m2, it sounds the flow rate with 

respect to area being not the function of variable time t, 

actually it is magnitude of energy density respect to area of 

spatial surface.  

Because the wave propagation speed c is constant, for 

different wavelength 𝜆 the spent time for flow the energy  

of one cycle wave is very different. For example,       

the wavelength of EM radiation can be 10-15 meter,     

also can be 10 meters; can both of the instantaneous    

flow rates be expressed as  𝑆 =
𝐸𝐵

𝜇0
  based on instantaneous 

amplitude? 

Then the wave with different wavelengths or with 

different frequencies will have very different instantaneous 

flow rates that are the frequency f or ω determined. 

Therefore we should redefine the formula of magnitudes 

of electric and magnetic fields energy of EM wave as  

 𝑈𝐸 𝑥, 𝑡 = 𝜔𝐸      and      𝑈𝐵 𝑥, 𝑡 = 𝜔𝐵 (3.1) 

Or, we need to find the flow rate with respect to time t. 

𝑈𝐸 𝑥, 𝑡 =
𝜕𝐸 𝑥, 𝑡 

𝜕𝑡
=

𝜕

𝜕𝑡
 𝐸𝑚𝑎𝑥 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)  

 = 𝜔𝐸𝑚𝑎𝑥 𝑠𝑖𝑛 𝑘𝑥 − 𝜔𝑡  (3.2) 

𝑈𝐵 𝑥, 𝑡 =
𝜕𝐵 𝑥, 𝑡 

𝜕𝑡
=

𝜕

𝜕𝑡
 𝐵𝑚𝑎𝑥 𝑐𝑜𝑠(𝑘𝑥 − 𝜔𝑡)  

 = 𝜔𝐵𝑚𝑎𝑥 𝑠𝑖𝑛 𝑘𝑥 − 𝜔𝑡  (3.3) 

The energy flow rate with respect to time t should be 

expressed as 

𝑈𝑆 =
𝑈𝐸𝑈𝐵

𝜇0
=

𝜔𝐸×𝜔𝐵

𝜇0
= 𝜔2 𝐸𝐵

𝜇0
  

 = 𝜔2 𝐸𝑚𝑎𝑥 𝑠𝑖𝑛 (𝑘𝑥−𝜔𝑡 )𝐵𝑚𝑎𝑥 𝑠𝑖𝑛 (𝑘𝑥−𝜔𝑡 )

𝜇0
 (3.4) 

Thus we can calculate the total energy over one 

wavelength of the energy flow rate by integrating (3.4) over 

a full wavelength.  

If we take a snapshot of the wave at time then the energy 

flow rate in a wavelength 𝜆 is the integral of the expression 

respect with x over one wavelength 𝜆: 
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𝐸𝜆 =  𝑑𝑆 =  𝑈𝑆𝑑𝑥
𝜆

0
=  𝜔2 𝐸𝑚𝑎𝑥 sin 𝑘𝑥𝐵𝑚𝑎𝑥 sin 𝑘𝑥

𝜇0
𝑑𝑥

𝜆

0
  

= 𝜔2 𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
 s in2 𝑘𝑥𝑑𝑥
𝜆

0
  

 = 𝜔2 𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
 

1

2
𝜆 =

1

2
𝜔2 𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝜆 (3.5) 

Since the angular frequency is 𝜔 = 2𝜋𝑓 

Substituting  𝜔 = 2𝜋𝑓  into (3.5) obtains 

 𝐸𝜆 =
1

2
(2𝜋𝑓)2 𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝜆 =

1

2
(2𝜋)2 𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝑓2𝜆(3.6) 

Since  

 𝑓𝜆 = 𝑐 (3.7) 

Substituting (3.6) into (3.5) we have the expression of 

energy in one wavelength as 

 𝐸𝜆 = 2𝜋2𝑐
𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝑓 (3.8) 

1.3.2. Analysis of EM Wave Energy with Respect to 

Frequency 

We have found the total EM wave energy over one 

wavelength: 

𝐸𝜆 = 2𝜋2𝑐
𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝑓 = 2𝜋2𝑐

𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝜈  

Where c as being light speed is constant; Emax and Bmax   

as being max amplitudes are constants; coefficient 𝜇0     

as being permeability is constant. Then the coefficient 

2𝜋2𝑐
𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
 is constant. 

Notice that: 

  The quanta energy (hν) is Planck’ constant h 

multiplying by the wave frequency ν. 

  The integral of EM wave energy over one wavelength 

is also a constant 2𝜋2𝑐
𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
 multiply by the 

wave frequency ν. 

  For any wave the total instantaneous energy is constant 

and equal to integral energy over one wavelength.  

  The quanta energy (E = hν) of EM wave is the 

measurable smallest energy unity.  

  Wave is normally composed of at least two kinds     

of energy being transformed each other. We cannot 

measure instantaneous EM wave energy. Instead, we 

can only measure the integral of one cycle energy (E𝜆). 

In fact, EM wave energy is existed only in a package 

being equal to integral over one cycle (the quanta 

energy). One can either measure the quanta energy 

package or he can measure the instantaneous wave 

energy in case of having the wave system destructed 

completely. Thus actually one doesn’t know what he is 

measuring when the wave system is destructed. He can 

measure nonsense of a destructed wave system actually. 

Therefore we can deduce that: 

1.  The integral of EM wave energy over one wavelength 

E𝜆 must be equal to the quanta energy hν. Then the 

Planck’s constant 𝒉  must be equal to the coefficient 

  𝟐𝝅𝟐𝒄
𝑬𝒎𝒂𝒙𝑩𝒎𝒂𝒙

𝝁𝟎
. 

2.  Thus the Planck’s constant h actually and factually  

is the energy over one wavelength of EM wave 

 𝐸𝜆 = 2𝜋2𝑐
𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝑓 = 2𝜋2𝑐

𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
𝜈  

per frequency ν. 

i.e.: 

 𝑬𝝀 = 𝒉𝝂 = 𝟐𝝅𝟐𝒄
𝑬𝒎𝒂𝒙𝑩𝒎𝒂𝒙

𝝁𝟎
𝜈  

 and     𝒉 = 𝟐𝝅𝟐𝒄
𝑬𝒎𝒂𝒙𝑩𝒎𝒂𝒙

𝝁𝟎
 (3.9) 

2. Conclusions 

According to the deductions and conclusions of previous 

sections of this paper, we have seen clearly that: 

1.  The integral total kinetic energy of one cycle of sound 

wave of one dimension (in a long tube) is 

𝐾𝜆 =
1

4
𝜌𝐴𝑣 2𝜋𝑠𝑚𝑎𝑥  

2𝑓 = ℎ𝑘𝑖𝑛−𝑜𝑓−𝑠𝑜𝑢𝑛𝑑 𝑓   

the coefficient 
1

4
𝜌𝐴𝑣 2𝜋𝑠𝑚𝑎𝑥  

2 is a constant. Therefore, 

theoretically the total energy in one wavelength is a 

constant  ℎ𝑘𝑖𝑛−𝑜𝑓−𝑠𝑜𝑢𝑛𝑑  multiplying by the wave frequency 

f. 

2.  The integral total energy over one cycle carried by string 

wave is 

𝐸𝜆 =
1

2
𝜇(2𝜋)2𝑣𝐴2𝑓 = ℎ𝑠𝑡𝑟𝑖𝑛𝑔𝑒 𝑓    

the coefficient 
1

2
𝜇(2𝜋)2𝑣𝐴2 is a constant. Therefore, 

theoretically the total energy in one wavelength is a 

constant  ℎ𝑠𝑡𝑟𝑖𝑛𝑔𝑒    multiplying by its frequency f. 

3.  The total energy over one wavelength of EM wave is  

𝐸𝜆 = 2𝜋2𝑐
𝐸𝑚𝑎𝑥𝐵𝑚𝑎𝑥

𝜇0
𝜈 =  ℎ𝜈 

is a constant 2𝜋2𝑐
𝐸𝑚𝑎𝑥 𝐵𝑚𝑎𝑥

𝜇0
  (= h) multiply by its 

frequency  ν, is the quanta energy of EM wave. 

Therefore we can conclude that the total energy of one 

cycle of any waves is proportional to the wave parameters 

determined a constant and is proportional to the wave 

frequency f or ν.  

In other words, the expression of total energy of one cycle 

of any wave is a constant hx multiplying by its wave 

frequency f or ν, i.e., 

𝑲𝝀    or   𝑬𝝀   or   𝑲𝑻      ≡       𝒉𝒇   or   𝒉𝝂. 

The footnote 𝜆 or T represents the energy in one 

wavelength 𝜆 or in one period T.  

However, for different waves the value of the constant 

hmatter is distinctively different and for EM wave, the constant 

h had been called Planck’s constant beforehand. 

Generally and conclusively, the physical meaning of 

Planck’s constant h is the integral of EM wave energy 

over one cycle per wave frequency ν. 
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3. Postscript 

If the deduction and conclusion of the physical meaning of 

Planck’s constant in this paper will be accurately understood 

and clarified by mainstream of physics community, It will 

provides an occasion for reforms, changes or revolutions of 

thinking mode of quantum mechanics.  

It will be a clue to further research of the possibility of 

existence and properties of the medium ether. 
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