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Abstract  The theme we wish to present in following pages, results from our previous contribution on the problem we are 

faced in the view of the Paradoxical Description of physical Reality. In the previous consideration of the issue we want to 

discuss, certain transformation properties termed “Galilean-Lorentzian Transformation” were proposed. From them, one 

was led to answer question at issue regarding the Entanglement problem of systems in uniform translation with respect to one 

another in the affirmative. The previous consideration, although valid, does not really satisfy us by the extent of clarity to 

which the justification of the issues was there given. In the present matter, however, we provide a detail treatment of the 

theme, and with maximum clarity, so that the reader can now see from every rational point of view of reasoning, that our 

previous result really follows in a natural way. The present discussion has far-reaching consequence on the description of 

physical reality to the extent that it can be regarded as a generalized consideration of the problem in the paradoxical physics 

regarding the true nature of reality. One is then led to interesting results from which the entanglement problem is completely 

solved in a natural way, and without any hidden variable interpretation of the matter. Moreover, one naturally arrives at the 

Heisenberg principle of uncertainty, for spatial and temporal coordinates, in the dust-free continuum. The result does not 

change, however, if one were to take dust of zero pressure living inside that continuum. One is therefore looking at the 

possibility for a unified field theory from this paradoxical description of physical Reality. Lastly, the entanglement of space 

and time leads to an interesting discussion from which, from every rational point of view of the matter, the Maldacena’s 

AdS/CFT correspondence can be completely replaced, so that the result is valid in this 4-dimensional treatment of the 

space-time continuum. This is an interesting result because one is now able to see the natural possibility for a unified theory in 

which the introduction of an extra dimensionality of the space-time continuum is unnecessary.  

Keywords  Paradoxical Physics, Fundamental postulate of Relativity, Galilean-Lorentzian Transformation, Space-Time 
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1. Introduction 

In our previous contribution [1], a claim was made from 

which one was led to the conclusion that two coordinate 

systems, which are in uniform translation with respect to  

one another, could be described as composite systems (i.e., 

as entangled systems) having all the well-known properties 

of the quantum correlation. Then, the knowledge of any one 

of the systems so privileged precludes the knowledge of the 

other system, just as one meets in the atomic theory of 

quantum physics [2]. The argument from which this claim 

was made in the cited paper [1], in our opinion, does not 

provide a really convincing justification from which one can 

see that such description of physical reality is really possible. 
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In this present paper, a justification is provided so that, from 

all rational view of the matter, one can see that our previous 

claim is material. It now seems obvious to us that there exists 

what we shall hereafter referred: —the fundamental 

postulate of relativity— whose validity leaves our claim 

justified in a satisfactory way. The Einstein’s consideration 

of the issue does not really satisfy this viewpoint as we will 

soon show.  

Throughout this paper, we shall continue to use, 

interchangeably, the words: system(s), coordinate(s) and 

coordinate system(s) to refer to “frame of reference(s)”, 

unless the otherwise is stated.  

The question to which we want to concern ourselves can 

be put forth as follow: to what extend can a Paradoxical 

Theory of physical Reality be justified, so that from all 

rational viewpoint of the matter, one can satisfactorily apply 

to uniformly translating systems (namely, K and K’) the 

quantum mechanical treatment of entanglement, in such a 

way that the result is a natural one?  
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The term referred here as “paradoxical” is to intimate the 

point of view that, for a space-time description of process in 

the subject of relativity, one must (at a time) envision every 

event from exactly one of the systems which is chosen to be 

the privilege coordinate, so that in respect to this chosen 

coordinate, the latter system is looked upon to be in relative 

uniform motion.  

Nothing in this description must prohibit us from taking 

the reciprocal situation, so that the latter system is looked 

upon to be privileged, while the earlier is been looked taken 

as the one in uniform translation. However, both systems 

cannot be envisioned as the privileged system at the same 

time; the concept of simultaneity is therefore a necessary 

condition in our description of the subject, and the reader is 

advised to keep this in mind as we go along.  

At first sight, one will be inclined to say that the 

well-known treatment of the subject according to the 

Einstein’s consideration has put the matter according to the 

viewpoint we have stated above, and hence, according to the 

paradoxical description of nature. This however, is not the 

case. In the argument that follows below, we like to show, by 

easy example, that the ‘Einstein-Lorentz’ description of 

issue at hand does not really put the subject in the context 

which we have stated above, but only apparently does so. 

One will then see immediately that the answer at the question 

we have raised is in the affirmative under any purely 

paradoxical description of the theory of physical Reality, as 

long as one applies the fundamental postulate of relativity, 

the existence of which, we will also justify. It seems to us 

that as long as we describe nature in this paradoxical way, the 

laws of physics governing small things do not seem to differ 

from those describing classical things; one then obtains a 

unified theory.  

Observation from the Lorentzian Transformation 

The well-known Lorentz transformation has described the 

theory of relativity in a way which leaves it incompatible 

with the paradoxical treatment of nature from which, we 

believe, the objective reality can really be justified. We have 

given a previous argument on this claim in earlier 

contribution [1] — we will assume that the main theme of 

that paper is already well-known.  

It was argued there (i.e. in [1]) that relativistic paradoxes such 

as length contraction, time dilation, as well as the well-known 

reciprocal relationship between the electro-magnetic fields 

of Maxwell theory, do not really follow from the viewpoint 

of any purely Lorentzian treatment of the issue at hand. We 

will justify this claim here by obvious argument to keep the 

discussion as easy to follow as possible: 

Let there exists two coordinate systems, (we will call them 

K and K’), so that in respect to the one which we regard as 

the privilege system, the latter system is in uniform 

translation with respect to the earlier. If in K, which we here 

choose as the privileged system, one measures the length of 

certain rod and gets the arbitrary value  𝐋 , then, when 

envisioned from this privileged system (K), the rod appears 

to be shorten in the latter system (K’) according to the factor 

 𝛄−𝟏, where 𝛄 is a suitable number. It has been argued by 

Einstein [3] and by several (in fact all) textbooks [4-11] on 

this subject that this length contraction paradox really 

follows from the Lorentzian consequence of description of 

the matter. We like to disagree with this viewpoint.  

According to the definition we wish to assign to the term 

“paradoxical description”, it follows that, if one describes a 

physical event— by the help of clock systems and meter 

sticks— happening in K, and then again, describes the same 

event in the K’ system, but from the point of view of only 

one of the system which is so taken as the privileged one (in 

this case, K), only then will the process so described have 

any rational meaning of physical importance to the subject 

matter. This viewpoint is the train of thought which the 

paradoxical description has subjected the theory of relativity. 

[Indeed, one must take it that in the description we are 

making, exactly one of the system— at a given time— is 

taken as the privileged system, and from it, all the description 

of the two systems is there made]. However, the Lorentz 

transformation does not really satisfy this description of the 

issue. This can be showed easily by example.  

Let, envisioned from within the K system, there exists a 

current carrying coil, stationed in the K system [1,5,6]. Let it 

be that the current in the coil is caused by the motion of 

negatively charged particles, such that the direction of the 

magnetic field caused by the motion of the charges is along 

the  +𝒙  axis, for simplicity of things. One then sees that, in 

respect to K, the positive charges are at rest with respect to 

the coil and hence, with respect to himself (K), since the coil 

is stationary in this frame of reference. One may now ask: 

does the Lorentz’s transformation provide any way by which 

this privilege system is able to measure the speed of the 

negatively charged particles when looked upon in the K’ 

system? This question is a natural one, and the reader can 

easily convince himself that the answer has a deeper physical 

meaning.  

If we adopt the Lorentzian description of issue, the answer 

is clearly in the negative, since the Lorentz transformation 

does not provide to us any possible physical means by which 

the speed of the negatively charged particles can be 

measured in the K’ coordinate, if the measurement were 

really carried out by means of clocks and meter sticks at rest 

in K. Following this Lorentz view of things, one comes to 

admit that the privileged system is incapable of measuring 

the speed of the negatively charged particles in K’ by using 

clocks and meter sticks at rest in the privileged— K frame. 

Instead, the result which one obtains, in view of Lorentz, is 

pronounced as follows [5,6]:  

In view of K’, the negatively charged particles are 

considered stationary so that it is the positively charged 

particles which now move along the –x axis in respect to the 

K’ system. 

For if one follows in this line of thought, one sees that, in 

view of this latter though experiment, the description of the 

events in K and in K’ are carried out as though each observer 

were chosen as the privileged system simultaneously. It 

follows at once because, if one envisions the situation from 
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K, one sees the negatively charged particles moving along 

the +x axis, and causing a magnetic field in that direction. 

However, if the situation is now view from the latter system 

K’, the negative charges are no longer in motion but rather, 

one finds the positively charged particles now moving in the 

opposing direction so that the magnetic field is now in the –x 

direction. One sees easily that K and K’ really envision the 

situation from their own respective frame of references by 

clocks and yard sticks at rest in their respective systems. That 

is, the two situations (in the two systems) were not view from 

one of the system which we can regard is the privileged 

system at the time. 

This description, as can be seen without any difficulty, is 

incompatible with the description which leads us to the 

length contraction paradox. For in the former treatment of 

issue (i.e., length contraction), one saw that the privilege 

observer in K measured the length of his rod, followed again 

by the length of a second rod in the latter system, by means 

of clocks and meter sticks at rest in the privileged (K) system. 

However, in the latter experiment, one sees that both systems 

measure the speed of the charges according as they view the 

situation in their respective systems; one easily sees that the 

systems behave as though both were taken as privilege 

systems, simultaneously.  

Indeed, in this latter experiment, one cannot say that the 

one system was privileged while the other was not privileged, 

such as we meet in the case of the length contraction paradox. 

As one can clearly see, the description of issues in Special 

relativity leads to certain inconsistency.  

If one were to measure the speed of the negatively charged 

particles in the K’ system, as it is viewed from the K system 

(i.e., by using clocks and yard stakes stationed in the K 

system), only then would said description really satisfy the 

view of things we have considered in the paradoxical 

description of reality. This would have been in the same view 

as the length contraction problem accordingly. 

The meaning of the theme “relativity”, as assigned by the 

usual Einstein-Lorentz consideration of the subject, does not 

in any way satisfy us. In fact, there appears to be a deeper and 

more fundamental postulate of physical reality— which we 

like to hereafter call, “The fundamental postulate”— whose 

effect has not really been considered in their treatment. We 

shall illustrate this important point by a very simple example 

so that a maximum clarity is achieved; the goal is to allow 

the reader to follow the trend of argument intuitively, and in 

all possible rational way. 

Let us take the coordinate systems, K and K’, into which 

we there perform a physical experiment. The goal of the 

experiment is to send light signals from one point (A) to 

another point (B) and then measure its velocity by means of 

clocks and yard sticks which, when brought to one location 

and there compare, do not differ. In the K system, let us send 

a light signal from the source (A) to the detector (B), 

followed by measurement of its velocity as it propagates in 

space; we will do this by clocks and meter rods which are at 

rest in respect to K. By obvious results, this observer gets the 

number c, the speed of light in vacuum according to Maxwell. 

The question then follows: does this result differ for the K’ 

system?  

Indeed, Einstein’s relativity has answered this question in 

the negative according to the justification of the invariant 

nature of the speed of light in vacuum. However, we like to 

show here that this is not the case. In fact, we shall see that 

the answer which one can provide to such question depends 

only upon the coordinate system from whose point of view 

one envisions the situation; this really follows from the very 

nature of relativity as the reader will soon see. 

Let one envisions the process above from the K’ 

coordinate; a trivial result is then obtained. This follows from 

all but the fact that an observer at rest in K’ does not see 

anything unusual in his frame, since he is at rest in that 

coordinate. The observer is therefore using clocks and rods 

that are at rest with respect to him according as we meet for 

any privileged choice of coordinate. This answer is also 

satisfied in the spirit of the Einstein-Lorentz consideration. 

However, we like to show here that, in view of the 

paradoxical description of physical reality, the given 

description of the issue does not permit us to look upon the 

systems as though they are in uniform motion as it is made to 

be view in the Einstein’s sense of things. 

Indeed, this follows naturally because, as long as both 

observers make measurements in their own coordinates in 

which they see themselves at rest, they can be seen as 

privileged systems in those coordinates independently and 

simultaneously. As each system will now use clocks and 

measuring sticks at rest in their respective frame of reference 

so that no one privileged system is seeing the situation for 

both systems, one sees easily that there can be no effect of 

relative motion on this description of the issue. An observer 

at rest in a Galilean frame of reference is, for this very reason, 

no different from those at rest in a reference frame in uniform 

translation with respect to the first, so long as we describe the 

situation from the frame of reference of that system.  

Actually, the uniform motion of any arbitrary system of 

reference can only be observed from a second reference 

system in such a way that the latter system is considered 

privileged, while the earlier is in uniform translation. 

Therefore, if the systems view themselves from their 

respective coordinates, the concept of relative motion cannot 

be material. 

Indeed, the justification follows easily since one can, with 

equal right, refer to any one of the coordinates as that in 

uniform translation with respect to the other. As one can then 

see, the description we have here given, does not really lead 

to the invariance of the speed of light, at least as made to be 

viewed from the Einstein-Lorentz sense of the issue. One 

obtains the number c for the speed of light in both systems 

for all reasons but the fact that the motion so described is no 

longer a relative one— since both systems use clocks and 

yardsticks that are at rest in their respective systems to make 

their measurements. Indeed, for any system in which the 

concept of relative motion does not apply, the result we have 

obtained is always true in that coordinate, and that the speed 

of light will be invariable from c in that system. We shall 
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hereafter refer to this important result, the fundamental 

postulate of relativity, which is easily stated as follows: 

An observer at rest in a coordinate system so privileged 

does not see anything unusual in that space-time continuum 

This result, as will soon be seen, plays an important role in 

the theory we want to write down here, and no less, the 

theory of the gravitational field which we shall write down 

shortly in our next contribution. We shall now proceed with 

the notion that the description we have given above does not 

imply the invariant nature of the speed of light, at least as 

justified by this paradoxical description of nature. There 

seems to be a deeper consideration from which the invariant 

behavior of the speed of light really follows in a satisfactory 

way in the view of the paradoxical theory of reality; we show 

this below. 

Suppose that an observer in the K system measures the 

speed of the light signal in respect to himself, and then again, 

in the K’ system, by the help of clocks and measuring yard 

sticks at rest in K. Clearly, the fundamental principle will  

no longer apply to one of the systems, in this case, the K’ 

system, since one is now describing the event in it (i.e., in K’) 

as it is envisioned from the privileged K system. One will 

then see the effect of the uniformly translated motion on the 

K’ system only if such description is really carried out.  

The extent to which we want to put forth this Paradoxical 

theory of reality is indeed a far-reaching consequence of  

the fundamental postulate. Let it be that, as envision from K, 

the speed of light signal is measured with rods and clock 

system at rest in K, and let one gets c in respect to himself 

(by virtue of the fundamental postulate). Then, because the 

clock systems in K’ will appear to be lagging behind when 

the situation is envisioned from K (by the fact that we are 

looking into K’ with measuring rods and clocks which    

are stationed in K rather than in K’), one gets 𝐜 + 𝚯 for the 

speed of light in this latter system, where 𝚯  is a number 

proportional to the uniform relative velocity in an appropriate 

unit.  

Now, let it be that the same argument holds well if one 

were to envision the matter at hand, taking K’ as the 

privileged system instead; then, one gets the reciprocal 

results. Nothing must forbid us from getting this result from 

the fact that one is free to choose any coordinate as the 

privilege system so that one quickly sees that the entire 

description is symmetric. If one were to describe processes in 

K and K’, taking the latter system as privilege, one would 

see that the laws of physics do not differ in forms as one 

meets if the first system were the privileged. It is this point of 

view from which the paradoxical consideration really puts 

the theory of relativity. One will shortly see that interesting 

results can be obtained in a natural way. 

But, it should be noticed from easy argument that the speed 

of light will remain invariant under this latter description of 

issue, since it does not change in both K and K’, as long as 

one takes either of the systems as the privileged, and again by 

the fact that each system, with equal right, can be chosen as 

privileged. However, when we attempt to measure the speed 

of light in one coordinate system, envisioned from the other, 

one sees it obeying a Galilean addition of speed as in the 

ordinary theory of classical mechanics. This result has a physical 

meaning as it leads to the theory of retarded quantities; we 

shall see this point later on. We call the transformation laws 

which satisfy our description, the Galilean-Lorentzian 

Transformation.  

The meaning of the term “Galilean-Lorentzian” 

transformation, for the lack of better choice of word, is to 

satisfy the obvious condition that the speed of light also 

obeys a Galilean relation in certain unique way which, in fact, 

leads at once to the theory of retarded potentials in a 

satisfactory way.  

It must also be noticed that the invariance nature of the 

speed of light is also satisfied in a unique way. It follows that 

whichever system one selects as privileged, the speed of light 

does not differ from its value in vacuum, and that system is 

satisfied by the fundamental postulate. If one envisions the 

latter system from the former one (i.e., if one measures the 

speed of light in both systems, using clocks and yardsticks 

stationed only the privileged system), the speed of light 

differs from its Maxwell’s value in the latter system. This is 

the extent to which the paradoxical description has subjected 

the theory of physical reality. In our next presentation, it will 

be clear that a theory of Gravitation is obtainable under such 

description of the space-time Continuum. 

We now make the claim here that, there can be no other 

deeper meaning to the theme of “relativity” that is 

epistemologically correct if one describes physical reality 

according to the view of the well-known Einstein-Lorentz 

consideration of the issue. One must follow the path which 

this Paradoxical description has yielded us. In fact, the reader 

can see or can easily verify for himself that the so-called 

Lorentz length contraction, time dilation, and no less, the 

reciprocal relation of the electro-magnetic fields, follows 

only satisfactorily if nature is described from the point of 

view of this paradoxical consideration of the issue. 

We are face with an inherent limitation in the Special (and 

no less in the General) theory of Relativity, by its own nature, 

in such a way that, for the description of any physical event, 

one cannot, at the same time, regard two systems as the 

privileged choices of coordinates simultaneously. For if one 

chooses the earlier system as privileged, one regards the 

latter system as that which is in uniform translation with 

respect to the former [1,10,31]. By this condition, it is 

therefore seen at once that one cannot describe a single event 

from the point of view of the K and K’ systems as though 

both were chosen as privileged systems at the same time. In 

the later event (i.e., for the moving charges), if one were to 

view the motion of the negatively charged particles in K’, 

judging the situation as envisioned from K, only then would 

it really follow that such description is valid from the point of 

view of the paradoxical description of reality, and from 

which, the Lorentz transformation would have really 

satisfied this paradoxical consideration of the issue. This 

however, is not the case; we are led to answer in the 

affirmative at issue that the Lorentz transformation does not 

really satisfy this paradoxical description of nature.  
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But, the dissatisfaction to which we like to call attention 

here is the farthest reaching consequence imaginable, which 

this paradoxical treatment of reality has subjected the theory 

of physical reality. In the forgoing discussion, one will soon 

see why the “Einstein-Lorentz” treatment of nature leads to 

an incomplete description of reality. We are of the view that 

this is the reason for the incompatibility of the atomic physics 

and the theory of gravitation. We consider this point here 

with maximum theoretical security. From here, we will be 

led to the general viewpoint that the paradoxical description 

of nature is the only consideration from which the 

description of physical reality is really justified; the reader 

will also see that the result follows naturally. 

Let us, in space and in time, choose two coordinate 

systems, K and K’, so that in respect to one system so 

chosen as the privileged coordinate, the second is in 

uniform translation, such that at the time 𝐭 = 𝟎, the origins 

of the both systems coincide at some point. One can then 

assign to this point the origin of the coordinates of both 

systems of reference— call it Π. If we let the origin of the 

coordinate of K be  𝐎, and for K’, we call O’ (for mare 

distinction so as to avoid unnecessary confusion), then, at 

time  𝐭 = 𝟎, it is clear that 𝐎 and 𝐎’ will both be at point  𝚷.  

If we now envision that K is the privilege system, it is 

obvious that the fundamental postulate will be material in K 

but not in K’. Then, at time 𝐭 different from zero, the 

coordinate of K’ is observed to undergo uniform translation 

with velocity (𝐯), if one envisions the matter from K. Thus, 

𝐎’ will no longer be at  𝚷 but rather, at some arbitrary 

point. We call this arbitrary point  𝚷’, which is distinct 

from Π by the factor  𝚷′ = 𝐯𝐭 , according to reason of 

ordinary mechanics. 

We may now ask the question: where exactly does the 

origin of the K’ system lie just after the time 𝐭 has elapsed? 

The answer to such question, as we saw above, depends 

upon the coordinate system from which one provides the 

answer according to our concept of description of issue in 

this paradoxical theory of reality. This constraint is imposed 

upon us by the fundamental postulate.  

For if one judges the issue from the point of view of the 

K’, one is led to answer that O’ is at the point Π after the 

time 𝐭 has elapsed (i.e., K’ has the coordinate  𝐱’ = 𝟎). 

This is the case because, if one describes issue at hand from 

the point of view of the K’ system, one sees that there is no 

uniform motion in that system as view from itself according 

as to the justification of the fundamental postulate.  

However, if one envisions from the privileged system, K, 

one sees that the origin of K’ is really at Π’ after t time. In 

view of K, the new origin of K’, after the elapsed time, 

satisfies the equation  𝐱’ = 𝐯𝐭′ . This follows immediately 

from any rational consideration of the problem we are here 

faced, since it is indeed the case that, the fundamental 

postulate no longer applies to the K’ system, so long as we 

make the description from the K system. If we now 

describe issue at hand, purely from the perspective of the 

privileged K system, it is then straightforward to see that 

(judged from K), both observers will be at the common 

origin—at Π— if and only if the origin of K is described by 

the conditions 𝐱 = 𝟎  (since the fundamental postulate 

applies to K), and the K’, by the condition 𝐱’ − 𝐯𝐭’ = 𝟎 

(i.e., the equation which brings the K’ coordinate to the origin).  

However, in view of the Lorentzian method of 

transformation, given in a well-known way [4-11,31,32,33], 

one gets, for K, the condition  𝐱 − 𝐯𝐭 = 𝟎, and for K’, the 

condition  𝐱’ = 𝟎, as the conditions which are satisfied by 

the said description. This viewpoint, I cannot accept at all. 

As it is easy to see, this description of issue is clearly 

unacceptable from any rational view of the theory of 

Relativity (special or General). For if one follows this 

Einstein-Lorentzian description of the issue, one sees the 

following consequences which are immaterial in any 

rational valid theory of reality: 

 In the condition  𝐱’ =  𝐚 𝐱 − 𝐯𝐭 = 𝟎 , for some 

number a, the systems (K and K’) will coincide at the point 

Π’ different from the origin, after the relative translation. 

Then, the first point of origin of coordinate of the systems 

(Π) is no longer maintained. From this, one sees that K and 

K’ really move to the new point Π’, so that distance of 

separation between the systems is immaterial. This must not 

cause any confusion to the reader since, both systems, after 

the time t, are now located at Π’  

 For reason of simultaneity of choosing the privileged 

system, both K and K’ will be regarded as privileged 

systems in this description of issue such that one does not 

see any one of the systems as the privileged. That is, both 

systems will be seen as though they were, at the same time, 

the uniformly translated coordinates. 

The theoretical consequence of this viewpoint cannot be 

overly expressed. Indeed, if upon uniform translation, and 

at a later time 𝐭 different from zero, statement (α) holds, we 

encounter the situation in which both systems move 

together to a different point Π’; the common point of origin, 

Π is no longer maintained, since the systems are both no 

longer at Π. Following this, one sees that the concept of 

distance can no longer be well-defined.  

On the other hands, if condition (β) holds, we are again 

faced with the natural inability of carrying out any valid 

description of event according as we meet from the theory 

of relativity. This follows because, according to our method 

of describing events in any valid theory of relativity, one 

takes a single coordinate system as the privileged observer 

at any given time so that, in respect to that system so chosen 

as the privileged, the other system is in uniform translation 

relative to the former system. Indeed, one cannot 

satisfactorily say that the one of the coordinate is 

stationary/privilege while the other is in uniform translation 

if we really view the situation from the Lorentz’s sense of 

things.  

Moreover, if, after the uniform translation, the systems 

really coincided at the new point Π’ according to the 

Lorentz view of things, it is not difficult to show that both 

Π and Π’ can be regarded as the origin of coordinate 

simultaneously (if one maintains the fact that Π is an origin 

at the time  𝐭 = 𝟎). Such view however, has a far-reaching 

theoretical implication on the description of nature. A 

lengthy argument to this issue is not required; we put the 
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argument simply.  

Let it be so imagined that the universe consists of two 

systems of dust which we referred, K and K’. Let the 

systems be chosen such that the one system does not 

influence any part of the other, but that the two are in 

uniform translation with respect to one another. At the 

initial time  𝐭 = 𝟎, we say that both systems are at Π     

as already stated. If we now allow the systems to evolve 

over time, t different from zero, we see that, following   

the Einstein-Lorentz view, both systems are now at Π’.  

The universe will now have two distinct points (namely Ⅱ 

and Ⅱ’) which we may describe as the origin of the 

universe at the same time. also, since there is no distance of 

separation between the systems (K and K’), one sees that 

the continuum vanished identically. This is physically not 

possible as the reader can easily see. 

2. Derivation of the Galilean-Lorentzian 
Transformation 

As we saw from the consideration above, the Lorentzian 

transformation does not provide to us any system of 

coordinate upon which, one may look at as privileged 

system accordingly as we meet in any rational relativistic 

description of the issue of reality. For if one starts, taking K 

as the privileged system, one soon sees that, after the 

uniform translation of the K’ system, the privileged system 

is no longer looked upon as being at rest according to our 

justification above. One cannot therefore say that the K 

system was really privileged, since one now sees that both 

systems really move to the new point Π’ after the uniform 

translation, and the common origin of coordinate is no 

longer maintained. 

It then appears to us that the only valid transformation 

properties which are really satisfied, according to the 

problem we are here faced, are those which, after the 

uniform translation of one of the coordinate in respect to the 

other, the common point, Π, does not change for both 

systems. The situation is then obvious that, upon the 

uniform translation of the latter system, the privileged 

system is maintained at the point Π and the later at Π’, so 

that the element of arc length, after any time different from 

zero, does not vanish. Nothing stops us from taking the 

reciprocal case so that in fact, the motion is really only a 

virtual one. For if one follows the line of thought that both 

systems really coincide at Π’, it is easy to see that, the 

element of arc length between K and K’ is immaterial 

according as we were to meet in Minkowski’s view of the 

issue.  

It must be emphasized here, the distinction which has 

been considered in this paradoxical theory of reality. In line 

of our discussion, it must be noticed that, as long as K is at 

the point Π, then, after the uniform translation, the element 

of length does not vanish, since in view of K, the later 

system (K’) will be at Π’, which is again connected to the 

origin, Π, by the transformation property which will soon 

be written down.  

But, notice that the reciprocal of the situation also holds 

well if one takes the latter system as the privileged. 

However, both systems are not at Π’ simultaneously 

according as we met in the Lorentz consideration of the 

problem. It will further be showed that the continuum of 

space and time is being created by the said description such 

that Π really describes the origin of space and of time 

according as the Big Band. We now find the transformation 

properties satisfying the consideration we have pointed out: 

Let, in relation to K, one has the coordinate 

 𝐊 𝒄𝒙𝟎, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑 , and in K’, one has 

 𝐊’ 𝒄𝒙𝟎
′ , 𝒙𝟏

′ , 𝒙𝟐
′ , 𝒙′𝟑 . We now consider a uniform 

translation along the +𝐱 coordinate of both systems, for 

simplicity of the issue. Then, the transformation properties 

which holds between K and K’, in view of the paradoxical 

description of reality, is given here according as  

  
𝐱𝟏

′ = 𝐱𝟏 𝐜𝐨𝐬𝐡𝛉 + 𝐜𝐱𝟎 𝐬𝐢𝐧𝐡𝛉

𝐜𝐱𝟎
′ = 𝐜𝐱𝟎 𝐜𝐨𝐬𝐡𝛉 − 𝐱𝟏 𝐬𝐢𝐧𝐡𝛉

  (1) 

Eq. (1) follows if one looks upon both systems from 

within the privileged K coordinate; notice we have taken 

the x2 and x3 axis of both systems as parallel to one another. 

The justification of (1) follows from the condition which we 

have argued above; the reader can easily verify this by 

taking the condition  𝐚 𝐱’ − 𝐯𝐭’ = 𝐱 = 𝟎_ for some  𝐚_ 

the validity of which we have showed from the discussion 

above— notice that it is different from that of Lorentz’s. 

Let  𝐱𝟏’ = 𝟎, so that the origin of K and K’ are at the 

common origin Π; then, from the first of the two equations 

in (1), one obtains the line which is parallel to the  𝐜𝐱𝟎 

axis, with slope  −𝐱𝟏 𝐜𝐱𝟎 = 𝐭𝐚𝐧𝐡𝛉— envisioned from K. 

We call this line, the 𝐜𝐱′𝟎 axis of K’, for our purpose  

Similarly, if one lets  𝐜𝐱𝟎’ = 𝟎 in the later of (1), one 

gets the line  𝐱’, which is parallel to the 𝐱  axis, with slope 

 𝐜𝐱𝟎  𝐱𝟏 = 𝐭𝐚𝐧𝐡⁡𝛉 . We can therefore represent the 

space-time diagram of K and K’, in view of K as below 

(figure-1) 

 

Figure 1.  Space time diagram of K and K’ 

It then follows from (1) that, for the four-dimensional 

continuum, one obtains a 𝟒 ∗ 𝟒 matrix which satisfies the 

transformation properties as  

  𝛏𝛔
𝛍

=  

𝐜𝐨𝐬𝐡𝛉
𝐬𝐢𝐧𝐡𝛉
𝟎
𝟎

 

−𝐬𝐢𝐧𝐡𝛉
𝐜𝐨𝐬𝐡𝛉
𝟎
𝟎

 

𝟎
𝟎
𝟏
𝟎

 

 𝟎
𝟎
𝟎
𝟏

  (2) 
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where we have only included the parallel axis on which we 

assume, there is no uniform translation 

We now consider the 𝐜𝐱′ 𝟎 axis which, one sees without 

difficulty that, judged from K’, one is referring to the line 

on which the coordinate of K’ does not move, by reason of 

the fundamental postulate. Then, we obtain, for the slope of 

the same line,  𝐭𝐚𝐧𝐡𝛉 = −
𝐯

𝐜
. However, if one views the 

event from the privileged K coordinate, one sees that the 

line 𝐜𝐱′ 𝟎 is the spatial interval which is covered by K’, 

after the time 𝐭 = 𝐱𝟎 has elapsed. Then, while in respect to 

K’,  𝐱′ 𝟏 = 𝟎  along the given axis, one sees that  𝐱′ 𝟏 −
𝐯𝐱′ 𝟎 = 𝟎, if we envision the same line from the perspective 

of K. Then, since the fundamental postulate applies only to 

the privileged K, it follows at once that the equation 

𝐱𝟏 = 𝛄 𝐱′ 𝟏 − 𝐯𝐱′ 𝟎 = 𝟎 is the condition for which both K 

and K’ are at the common origin Π, for some suitable 

number 𝛄. It must be emphasized here that, the relative 

velocity, after the interchanged 𝐱𝟏 = −𝐜𝐱𝟎 𝐭𝐚𝐧𝐡𝛉  by 

𝐱′𝟏 = 𝐯𝐱′𝟎 in respect to K does not cause us any physical 

problem. This is seen easily because, we are able to replace 

𝐱𝟎  by 𝐱′ 𝟎  and 𝐱𝟏  by 𝐱′ 𝟏  so that the relative velocity 

between the systems does not differ from 𝐯 as desired.  

Now, substituting the slope –
𝐯

𝐜
= 𝐭𝐚𝐧𝐡𝛉 in either of the 

equations in (1), one gets 

 𝐜𝐨𝐬𝐡𝛉 =
𝟏

 𝟏−𝐭𝐚𝐧𝟐𝛉
=

𝟏

 𝟏−𝛃𝟐
 (3) 

And  

 𝐬𝐢𝐧𝐡𝛉 = 𝐜𝐨𝐬𝐡𝛉 𝐭𝐚𝐧𝐡𝛉 = −
𝟏

 𝟏−𝛃𝟐
𝛃 (4) 

Where 𝛃 = 𝐯 𝐜   

Letting  𝛄 =
𝟏

 𝟏−𝛃𝟐
, and substituting (3) and (4) into (1), 

and taking the parallel axes, we have the transformation 

properties 

 

 
 

 
𝐜𝒙𝟎

′ = 𝛄 𝐜𝒙𝟎 + 𝒙𝟏𝛃 

𝒙𝟏
′ = 𝛄 𝒙𝟏 − 𝐯𝒙𝟎 

𝒙𝟐
′ = 𝒙𝟐

𝒙𝟑
′ = 𝒙𝟑

  (5) 

Then, by (2), we have the following metric 

  𝛏𝛔
𝛍

=  

𝛄
−𝛄𝐯
𝟎
𝟎

 

𝛄𝐯 𝐜𝟐 
𝛄
𝟎
𝟎

 

𝟎
𝟎
𝟏
𝟎

 

 𝟎
𝟎
𝟎
𝟏

   (6) 

We define here, in a usual way, the transformation 

properties which are valid in respect to the K coordinate by 

the inverse of (1); this is trivial. We then have, as one can see 

without any work: 

  
𝐱𝟏 = 𝐱𝟏

′ 𝐜𝐨𝐬𝐡𝛉 − 𝐜𝐱𝟎′ 𝐬𝐢𝐧𝐡𝛉

𝐜𝐱𝟎 = 𝐜𝐱𝟎
′ 𝐜𝐨𝐬𝐡𝛉 + 𝐱𝟏′ 𝐬𝐢𝐧𝐡𝛉

  (7) 

Then, the matrix satisfying (7), if one takes the x2 and x3 

axis, is 

  𝛏′𝛔
𝛍

=  

𝐜𝐨𝐬𝐡𝜽
−𝐬𝐢𝐧𝐡𝜽

𝟎
𝟎

 

𝐬𝐢𝐧𝐡𝜽
𝐜𝐨𝐬𝐡𝜽
𝟎
𝟎

 

𝟎
𝟎
𝟏
𝟎

 

 𝟎
𝟎
𝟎
𝟏

  (8) 

Upon mare substitution of (4) and (5), we have the 

transformation properties of K as  

 

 
 

 
𝐜𝒙𝟎 = 𝛄 𝐜𝒙𝟎′ − 𝒙𝟏′𝛃 

𝐱𝟏 = 𝛄 𝐱′ 𝟏 + 𝐯𝐭′ 

𝐱𝟐 = 𝐱𝟐
′

𝐱𝟑 = 𝐱𝟑
′

  (9) 

And with matrix 

  𝛏′
𝛔
𝛍 =  

𝛄
𝛄𝐯
𝟎
𝟎

 

−𝛄𝐯 𝐜𝟐 
𝛄
𝟎
𝟎

 

𝟎
𝟎
𝟏
𝟎

 

 𝟎
𝟎
𝟎
𝟏

  (10) 

Equations (5) and (9) therefore express the transformation 

properties with respect to which both K and K’ maintain 

their fixed origin at the point Π after the uniform translation; 

this is an important result as the reader will soon see. 

In the Lorentz transformation, it is well-known that, one 

assigns  +𝐯  for all Lorentz boosts along the +x axis. As 

was argued from above however, if one assigns to the 

coordinate, a positive boost along the positive x-axis, one 

does not retain the origin Π, the element of arc length 

vanishes at once. However, from the argument we have 

given in (1) and (7), the justification follows that, we must 

assign –v for all Lorentz boosts along the positive x-axis and 

vice versa; the reverse argument holds because of the 

symmetry. 

We shall see that this plays an important role in the 

entangled state of K and K’ so that, the systems, when 

infinitely separated in space and in time, the separation does 

not play any physical role, just as we meet in Aspect’s 

Experiment. Indeed, it is the case that, upon choosing any 

arbitrary distance of separation of K and K’, the 

transformation serves no purpose other than retaining the 

common point of origin, Π. Moreover, since, by symmetry, 

we may just regard K’ as privileged, so that K is in uniform 

translation, one sees in a straightforward way that K’ is 

retained at the point Π after uniform translation of K_ if we 

take K’ as the privileged system. Equations (5) and (9) 

therefore satisfy the condition in which both K and K’ are 

really at the point, Π, in view of any coordinate system 

which is selected as the privileged; the separation and hence, 

the space-time continuum then becomes only a virtual one. 

From the consideration in view of which we have obtain 

these so-called “Galilean-Lorentzian transformation” 

relations, one can state here, in addition to the fundamental 

principle, two other postulates which are clearly satisfied 

according to the description which we here propose 

(Paradoxical description) 

1.  Fundamental Postulate: An observer at rest in a 

coordinate system so privileged does not see anything 

unusual in the space-time continuum 

2.  Galilean Relativity: The speed of Light is constant for 

every observer in their own coordinate system; it 

suffers a Galilean effect when measured from another 

coordinate system in uniform translation with respect 

to the first 

3.  Modified Einstein’s Postulate of relativity (the 
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Principle of Correspondence): The laws of physics are 

invariant when described independently in all coordinate 

system 

The modification of the third postulate is due to the use of 

the word “independently”, so that the condition holds only if 

a privilege observer so chosen, views the laws of physics 

from his own coordinate. Moreover, the third postulate is   

in fact, the single statement of the first two postulates in a 

unique way as the reader can easily see. 

3. Dynamical Consideration of the 
Paradoxical Description of the 
Space-Time Problem 

The transformation properties we have arrived at here are 

canonical in form and lead to a dynamical system. This is an 

important result because, from this, one has brought the 

theory of relativity in the same spirit as quantum physics,  

so that a compatible theory can be found for gravitation and 

atomic physics. We do not make this conclusion here however, 

but as the reader will see, the consequence is immediate. 

It must be noticed immediately that from this paradoxical 

description of issue at hand, one does not really find any 

dissatisfaction between the Special and General theories of 

Relativity as one sees in the usual Einstein’s treatment of the 

problem. One is then inclined to think that the gravitational 

field is indeed material in the background of a Minkowski’s 

space-time, so that a curved space-time description of the 

subject is really unnecessary in the paradoxical description 

of nature. We shall consider this point in the paper which 

follows this shortly. But, one will soon see that the 

fundamental postulate of relativity plays an important role in 

this dynamical consideration we have concern ourselves, and 

from which the gravitational field will follow easily. 

It was argued in [1] that, a single coordinate system does 

not really experience the effect of dilation on both its spatial 

and temporal axes simultaneously. We have again returned 

to this theme. If, in the K’ system which, in respect to the 

privilege K system, the earlier is in uniform translation, there 

exist a time dilation on its temporal axis, one sees that there 

is a corresponding increment of its spatial axis and vice versa, 

according to the argument provided in [1], which I have 

already assume to be well-known. One then arrives at a 

natural inability in which, one cannot determine both 

temporal and spatial dilations in any single coordinate 

system, whichever way one takes it. If we see one of the 

systems lagging behind in time, we see it leading in space 

(distance) and vice versa. A Hinesburg-like uncertainty 

seems to exist between the spatial and temporal axes of any 

single coordinate system in the 4-dimensional continuum;  

as one precisely measures a temporal dilation by clocks 

system, one sees his yard sticks stretching. This is indeed the 

main distinction which this paradoxical Galilean-Lorentzian 

transformation has really yielded us. One writes, formally, 

this space-time Heisenberg-like uncertainty for the continuum 

as follows:  

There can be no simultaneous dilation of spatial and 

temporal coordinates in respect to any single system of 

reference, however we choose that system.  

We have actually considered this result on our previous 

consideration, but it was un-named; we hereafter called this 

the Uncertainty principal of the continuum or Heisenberg’s 

principle, for short. We will return to this point again in the 

forgoing discussion.  

It follows that the space and time coordinates of a given 

reference frame are non-commuting parameters, just as we 

meet for the well-known principal of uncertainty; this can be 

verified by mare inspection of the matric in (2) or in (10). We 

then have before us, a canonical system of transformation 

from which, Hamilton’s dynamics follows immediately. We 

show here that this is indeed the case. 

Hamiltonian mechanics is already well-known in physics; 

there is no need for any deeper development of the subject 

matter. We shall only consider here, very shortly, the theme 

that will enable us write down two main results, namely: 

what we believe to be the Lagrangian of the system and 

indeed, Hamilton’s equations from which the dynamics of 

the continuum can be described; the procedure is no more 

than straightforward. 

Let us, for the purpose at hand, carry out the following 

slight changes of variables in eq. (1), so that things are really 

obvious. For the first equation in (1), let  𝐱′ 𝟏 = 𝐪𝟏 , 

𝐐𝟏 = 𝐱𝟏 and  𝐐𝟐 = 𝐜𝐱𝟎. In the second equation, let it be 

that  𝐜𝐱′𝟎 = 𝐩𝟏 , 𝐏𝟏 = 𝐜𝐱𝟎 , and 𝐏𝟐 = 𝐱𝟏 . This does not 

cause any confusion as soon as one keeps in mind that 

 𝒙𝟏 = 𝐐𝟏 = 𝐏𝟐, etc. We then obtain the order pair (q, p) as 

functions of some (Q, P) coordinate which, for our purpose 

at hand, are nothing but the variables in the privilege system. 

Following this, one rewrites (1) as 

𝐪𝟏 = 𝑸𝟏 𝐜𝐨𝐬𝐡𝜽 + 𝑸𝟐 𝐬𝐢𝐧𝐡𝜽, 

𝐩𝟏 = 𝐏𝟏 𝐜𝐨𝐬𝐡𝜽 − 𝐏𝟐 𝐬𝐢𝐧𝐡𝜽 

If one carries out the same process in relation to (7), one 

has 

𝐪𝟐 = −𝐐𝟏 𝐬𝐢𝐧𝐡𝜽 + 𝐐𝟐 𝐜𝐨𝐬𝐡𝜽, 

𝐩𝟐 = 𝐏𝟏 𝐬𝐢𝐧𝐡𝜽 + 𝐏𝟐 𝐜𝐨𝐬𝐡𝜽 

One then obtains the following relationship  

  𝐪𝟏=𝑸𝟏 𝐜𝐨𝐬𝐡𝜽+𝑸𝟐 𝐬𝐢𝐧𝐡𝜽
𝐪𝟐=−𝐐𝟏 𝐬𝐢𝐧𝐡𝜽+𝐐𝟐 𝐜𝐨𝐬𝐡𝜽

 𝐩𝟏=𝐏𝟏 𝐜𝐨𝐬𝐡𝜽−𝐏𝟐 𝐬𝐢𝐧𝐡𝜽
𝐩𝟐=𝐏𝟏 𝐬𝐢𝐧𝐡𝜽+𝐏𝟐 𝐜𝐨𝐬𝐡𝜽

  (11a) 

Or, on account of mare interchange of hyperbolic 

functions with trigonometric ones:  

  𝐪𝟏=𝑸𝟏 𝐜𝐨𝐬𝜽−𝑸𝟐 𝐬𝐢𝐧𝜽
𝐪𝟐=𝐐𝟏 𝐬𝐢𝐧 𝜽+𝐐𝟐 𝐜𝐨𝐬𝜽

 𝐩𝟏=𝐏𝟏 𝐜𝐨𝐬𝜽−𝐏𝟐 𝐬𝐢𝐧𝜽
𝐩𝟐=𝐏𝟏 𝐬𝐢𝐧𝜽+𝐏𝟐 𝐜𝐨𝐬𝜽

  (11b) 

This is not strange to us now as we encounter these 

relations in all Hamiltonian systems; this was actually the 

goal for the change of the variables we just carried out. We 

shall then proceed in a usual way.  

We define a smooth function  𝓛 𝐪, 𝐪 , 𝐱𝟎 , where 𝐪 =
𝐝

𝐝𝐱𝟎
𝐪 

and the parameter x0 is the time coordinate envisioned from 

the rest or privilege system. The function 𝓛 𝐪, 𝐪 , 𝐱𝟎  is the 
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Lagrangian of the dynamics of the K’ coordinate, if one 

envisions the situation from the privileged K coordinate. 

This follows at once because, from the fundamental 

postulate, one is prohibited from writing down a dynamical 

equation for the privileged system, since the motion in it 

vanishes identically so that, only the relative motion of the 

latter system can be observed, if the situation is viewed from 

the privileged. Nothing forbids us from reversing the 

argument.  

The fact that 𝐱𝟎 is the time parameter of the privileged (K) 

system is fundamental and leads to an interesting question as 

to the absoluteness of time such as we meet in the context of 

Newton. In fact, this has always been the problem in the 

general subject of relativity. For the sake of mare example, 

when one writes the Schwarzschild’s element of length, the 

term “Schwarzschild’s time” is used [12]. However, in the 

course of our discussion, one will soon see that there is really 

no such thing as Schwarzschild’s time, but rather, the 

absolute time (or in soft term, the time in the privileged 

system), controls the flow of the dynamics of the systems, 

and hence, the matrix of the continuum. Also, it will be seen 

that x0 plays a major role in the theory we which to present 

here and no less, the theory of gravitation (i.e. the theory of 

General Relativity), which results from this paradoxical 

discussion of reality. For now, our argument will only 

restrict itself to justifying our present choice of the use of 

 𝐱𝟎; the reader will see that this follows from all but the 

fundamental postulate. 

From (11), we see that 𝐩 is the time coordinate of the 

uniformly translating system K’, which is a function of x0 as 

already well-known. Indeed, if we take K’ as the coordinate 

system in uniform translation relative to K, then p defines to 

us, the time parameter in K’. Thus, since K is at rest, so that 

nothing is unusual with respect to it— by virtue of the 

fundamental postulate— we see that x0 is independent of p 

and of q in the K’ system, or in the system which is not 

privileged; this does not differ from the usual Lagrangian- 

Hamiltonian formalism.  

Moreover, to say that K’ is in uniform translation, one 

cannot describe the system by an observer who is at rest in it 

(K’). For example, to say that K’ is in uniform translation, 

the description can only have a satisfactory physical meaning 

if we see the situation from a privileged coordinate, K; this 

limitation is a natural one as we have already pointed out 

above. It then follows immediately that the spatial and 

temporal coordinates of the K’ system is measured from the 

point of view of the privileged system. Then, it follows that 

the time parameter here used does not depend upon any 

variable from K’. Then, one can say, for example, the 

privileged K system measures the time in the K’ system with 

clocks at rest in K, and finds K’ clocks lagging behind 

because, he compares the value, p (for K’) with x0 (for K) 

and finds some differential proportional to the uniform 

relative velocity; p behaves as a retarded quantity therefore. 

The x0 at hand plays an important role in all Hamiltonian 

systems; it determines a fixed time interval on which the 

variations can be carried out. In our case, it determines to 

what extent p and q change with change in the elapsed time 

within the K system. In order words, x0 controls the 

dynamics of the K’ coordinate according as stated. 

The independence of x0 presents an even further consequence 

to the theory which we want to write down; the reader can 

see immediately that this leads to a conclusion in which, the 

so called Twin paradox is really immaterial. We have argued 

this point in the previous consideration of the issue. This is 

immediate because, the Lagrangian we defined above is an 

invariant quantity in both K and K’ accordingly as argued 

above and from postulate 3. One then sees that, the x0 in both 

K and K’ must be identically equal, so that as long as we take 

one or the other coordinate systems as privileged, the 

Lagrangian does not differ. Then, once the travelling twin 

returns from his trip (or once he is regarded as the privilege 

brother), x0 does not change; he can consider his brother as 

the traveler. 

We write the Lagrangian of the system as 

 𝓛 𝐪, 𝐪 , 𝐱𝟎 = 𝐒 (12) 

where S is a number 

In the theory of variation [13-14], the Lagrangian defines 

the total energy of the system as the constant of the motion. 

One writes 𝓛 as the difference between the potential and 

kinetic energies of that system. However, this is not the case 

in our consideration, since the transformation properties only 

described to us the axis of space and time for the dust-free 

continuum.  

 From §2, it was shown that, after the relative motion (or 

after a time 𝐭 different from zero), K’ is at Π’, if the matter 

is viewed from K; the element of arc length does not 

vanished therefore. It is then straightforward to see that the 

Lagrangian defines, in our case, the element of arc length, or 

the separation of the system, as the constant of the motion. 

Now, since at  𝐭 = 𝟎, K and K’ are both at the point Π, we 

see that the separation between Π and Π’ is nothing but the 

total observable dust-free continuum (just by the fact that we 

have not considered the matter field). We will come back to 

this point to justify our use of the term “Observable 

Continuum”, so that it can be clear to the reader as possible 

that the space-time continuum is really created from the 

separation resulting from this uniform translated motion of 

the systems. We are therefore referring to nothing different 

from the origin of the universe such as, for example, the Big 

Band. 

We can go even further then what we have discussed so far. 

Notice that the uniform translation of K’ with respect to K is 

symmetric about Π, so that one can, with equal validity, 

regard K as the system which is now in uniform translation 

relative to the latter, in the opposing direction; this is due to 

the choice of the Lorentz boost as desire. Following this line 

of thought, one sees immediately that a Universe is an 

unstable system; at least our space-time continuum should be 

a “DUALVERSE” in which we reside in half. We shall 

return to this theme more than once as we go along. 

Let  𝐒 = 𝐯𝐱𝟎 from reason of ordinary mechanics; eq. (12) 

then has the from 

 𝓛 𝐪, 𝐪 , 𝐱𝟎 = 𝐯𝐱𝟎 (13) 
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The equation of motion of the system is also immediate 

and trivial. We define the action, A as a function of the 

independent time parameter by 

 𝐀 𝐭 =  𝓛 𝐪, 𝐪 , 𝐱𝟎 𝐝𝐭
𝐭𝐭
𝐭𝟎

 (14) 

Nothing causes our action unjustified, since we have noted 

above that, the dynamics is indeed controlled by  𝐱𝟎 = 𝐭. If 
one takes the variation of the action, in a well-known way, 

one sees that the integral vanishes identically. Eq. (14) will 

then be true only if its integrand vanishes identically 

according to  

 
𝛛

𝛛𝐭
 
𝛛𝓛

𝛛𝐪 
 −

𝛛𝓛

𝛛𝐪
= 𝟎 (15) 

Eq. (15) is therefore the equation of motion in the 

Lagrangian formalism. The vanishing of (14) (or more 

precisely (15)), is at least sufficient to lead to an invariant 

system from the perspective of the paradoxical description, 

since it follows that, in the sense of how we have considered 

things so far, the K and K’ will return to the point Π after the 

dynamics, so that there really is no motion in the combine 

systems (i.e., the motion is only virtual). The justification is 

that, whichever system we take as privileged, we see it at Π; 

this is no different from quantum mechanical treatment, and 

the subject is very familiar. 

Moreover, notice that the vanishing of (14) is not an 

arbitrary condition; it follows that there is a natural boundary 

constraint on the systems such that the total observable 

continuum is only the length of arc on which K’ has moved 

after some elapsed time. One then sees that the total observable 

space-time continuum is determined by 𝐱𝟎; we will again 

consider this point and the reader will see that important 

explanation of the quantum problem can be answered. 

What exactly is the Lagrangian of the system? Indeed, this 

question seems straightforward; in fact, the answer follows 

just as we meet in the mechanics of Newton and Maxwell. In 

the well-known Lagrangian-Hamiltonian dynamics, if one 

takes the pair of phase variables, (p, q) for generalize 

coordinate and conjugate momenta, one can define two 

functions, with each depending on exactly one of the 

variables as 𝐓 𝐩  and  𝐕 𝐪 , so that one writes 𝓛 = 𝐓 + 𝐕 

as the Lagrangian of the system, with T and V having their 

same meanings as the kinetic and potential of the system [13-15]. 

However, as one is well aware, we are dealing with the 

dust free continuum in which, from the Heisenberg’s 

consideration above, follows the same rules as the functions 

T and V. That is to say, if one increases the Kinetic energy of 

a system so chosen, one sees that the potential of the same 

system is diminished with equal proportion, if the total 

energy of the system is invariable. We could have used 

position and momentum functions, but the result does not 

differ. 

Just as the Lagrangian leads to the total energy of the 

dynamical system as the constant of the motion, so too, the 

Lagrangian we are here concern, defines, in a well-known 

way, the total length element of the observable continuum. 

Trivial arguments can lead one to the quantization of space 

and time just as the invariable energy is treated in quantum 

mechanics; we will not investigate this interesting problem 

here any further, but we assume that the result is true for 

reason of mare comparison with the usual Hamiltonian 

treatment. In fact, it appears to us that the total energy of the 

universe has a direct relation to the total space-time 

continuum; the argument can be made easily.  

Several Lagrangian can be written down for the system; 

we shall take the simplest of all by taking functions of spatial 

axis (q) and the uniform velocity (𝐯 = 𝐪 ) of the K’ system, 

envisioned from K as:  

 𝓛 = 𝛋−𝟏𝐪 𝐢 + 𝐪𝐢 (16) 

where, 𝛋  is some number having unit as the Hobble 

parameter (1/s), and q and 𝐪  having their usual meanings as 

the spatial coordinate and velocity of the K’ system, and 𝑖 
taking values from 1 to 3. 

Then, the evolution of the system can be described 

completely by (15) according to easy argument from 

Lagrangian formalism; the reader can check this by mare 

substitution. We will argue in a later paper that κ is indeed 

the Hobble’s parameter for the expansion of the universe; for 

now, we will just use the nomenclature here for the lack of 

better word and to keep the flow of argument. But, it follows 

at once that, for a non-varying  𝐪 𝐢, κ cannot be a constant 

number for any varying  qi. We will see that κ is the strength 

of the field of acceleration which varied just as, for example, 

the magnetic field of Maxwell’s theory! 

Hamilton’s equation is also immediate. Suppose we take 

the total derivative of the Lagrangian (16), taking 𝐪 𝐢 as an 

independent coordinate in the phase space. One obtains 

 𝐝𝓛 =   
𝛛𝓛

𝛛𝐪 𝐢
𝐝𝐪 𝐢 +

𝛛𝓛

𝛛𝐪𝐢
𝐝𝐪𝐢 𝐢 +

𝛛𝓛

𝛛𝐱𝟎
𝐝𝐱𝟎 (17-I) 

We can define, by the Legendre transformation, the usual 

canonical time parameter, 𝐩𝐢 =
𝛛𝓛

𝛛𝐪 𝐢
, so that one gets, from 

(17-I) 

𝐝𝓛 =   
𝛛𝓛

𝛛𝐪𝐢
𝐝𝐪𝐢 + 𝐩𝐢𝐝𝐪 𝐢 

𝐢

+
𝛛𝓛

𝛛𝐱𝟎
𝐝𝐱𝟎 

 =   
𝛛𝓛

𝛛𝐪𝐢
𝐝𝐪𝐢 + 𝐝 𝐩𝐢𝐪 𝐢 − 𝐪 𝐢𝐝𝐩𝐢 𝐢 +

𝛛𝓛

𝛛𝐱𝟎
𝐝𝐱𝟎 (17-II) 

Upon rearranging (17-II), one has 

 𝐝  𝐩𝐢𝐪 𝐢𝐢 − 𝓛 =   −
𝛛𝓛

𝛛𝐪𝐢
𝐝𝐪𝐢 + 𝐪 𝐢𝐝𝐩𝐢 −

𝛛𝓛

𝛛𝐱𝟎
𝐝𝐱𝟎𝐢 (18) 

Letting  𝐇 𝐩𝐢, 𝐪𝐢, 𝐱𝐨 =  𝐩𝐢𝐪 𝐢𝐢 − 𝓛, (18) becomes 

 𝐝𝐇 =   −
𝛛𝓛

𝛛𝐪𝐢
𝐝𝐪𝐢 + 𝐪 𝐢𝐝𝐩𝐢 −

𝛛𝓛

𝛛𝐱𝟎
𝐝𝐱𝟎𝐢  (19) 

Now, suppose one also takes the total differential on H, 

one gets 

 𝐝𝐇 =   
𝛛𝐇

𝛛𝐪𝐢
𝐝𝐪𝐢 +

𝛛𝐇

𝛛𝐩𝐢
𝐝𝐪𝐢 𝐢 +

𝛛𝐇

𝛛𝐱𝟎
𝐝𝐱𝟎 (20) 

On combining (19) and (20), one gets  

  
𝛛𝐇

𝛛𝐪𝐢
𝐝𝐪𝐢 +

𝛛𝐇

𝛛𝐩𝐢
𝐝𝐩𝐢 

𝐢

+
𝛛𝐇

𝛛𝐱𝟎
𝐝𝐱𝟎 

=   −
𝛛𝐋

𝛛𝐪𝐢
𝐝𝐪𝐢 + 𝐪 𝐢𝐝𝐩𝐢 −

𝛛𝐋

𝛛𝐱𝟎
𝐝𝐱𝟎

𝐢
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Notice that the  q i was chosen as though it were a phase 

variables; thus, upon equating respective coefficients, we 

have 

𝛛𝐇

𝛛𝐪𝐢
= −

𝛛𝓛

𝛛𝐪𝐢
;  
𝛛𝐇

𝛛𝐩𝐢
= 𝐪 𝐢;  

𝛛𝐇

𝛛𝐱𝟎
= −

𝛛𝓛

𝛛𝐱𝟎
 

From our argument, one can explicitly write  𝐪𝐢 = 𝐪𝐢 𝐱𝟎  
and  𝐩𝐢 = 𝐩𝐢 𝐱𝟎 , so that q and p are functions of x0. If one 

now takes 𝐪 𝐢  as a non-phase variable, one has  
𝛛𝓛

𝛛𝐪𝐢
= 𝐩 𝐢 , 

according to (15). We then obtain the 2n first order 

differential equations 

 

 
 
 

 
 

𝛛

𝛛𝒙𝟎
𝐩 = −

𝛛𝐇

𝛛𝐪

𝛛

𝛛𝒙𝟎
𝐪 =

𝛛𝐇

𝛛𝐩

𝛛𝐇

𝛛𝒙𝟎
= −

𝛛𝓛

𝛛𝒙𝟎

  (21) 

As desired 

From symmetric argument, it is seen, without effort, that 

the Hamiltonian does not change under the mare interchange 

of choice of the privilege system K’→K. One sees 

immediately that the transformation we present here satisfies 

a canonical transformation property   𝐪, 𝐩 →  𝐐, 𝐏 , as we 

have already stated. Then, if one takes the matrices resulting 

from arbitrary selection of order pairs of differing choices, 

one obtains a family of 2n matrices satisfying the following 

determinant relations 

 

𝐝𝐞𝐭 𝐪𝟏, 𝐩𝟏 = 𝐝𝐞𝐭 𝐪𝟐, 𝐩𝟐 = −𝟐𝐜𝐨𝐬𝛉 𝐬𝐢𝐧𝛉 ≠ 𝟏  𝐚 

𝐝𝐞𝐭 𝐪𝟏, 𝐪𝟐 = 𝐝𝐞𝐭 𝐩𝟏, 𝐩𝟐 = 𝟏  𝐛 

𝐝𝐞𝐭 𝐪𝟏, 𝐩𝟐 = 𝐝𝐞𝐭 𝐪𝟐, 𝐩𝟏 = 𝟏  𝐜 

 (22) 

where we have taken only the motion along one spatial axis 

namely, the x-axis  

The Poison bracket relation follows immediately also 

according as  

  

 𝐪𝟏, 𝐩𝟏 =  𝐪𝟐, 𝐩𝟐 = 𝟏  𝐚 

 𝐪𝟏, 𝐪𝟐 =  𝐩𝟏, 𝐩𝟐 = 𝟎  𝐛 

  𝐪𝟏, 𝐩𝟐 =  𝐪𝟐, 𝐩𝟏 = 𝟎  𝐜 

  (23) 

A 𝟐𝐧 × 𝟐𝐧  sympletic matrix can be defined by 

 
𝛛𝛏

𝛛𝛘
=

𝛛 𝐪,𝐩 

𝛛 𝐐,𝐩 
, where 𝛏 =  𝐪, 𝐩  and 𝛘 =  𝐐, 𝐏 . From (23), 

one has the Jacobean relations 

  
𝛛𝛏

𝛛𝛘
 
𝐓

𝐉  
𝛛𝛏

𝛛𝛘
 = 𝐉 (24) 

Where 𝐉  is the 𝟐𝐧 × 𝟐𝐧  identity matrix and   
𝛛𝛏

𝛛𝛘
 
𝐓

 is 

the transpose of the sympletic matrix accordingly  

It is not hard to see that the determinant of the Jacobean is 

+1. It is also clear that the Hamiltonian is conserved for a 

change in choice of privileged system. In fact, by inspection, 

one can see that,  𝐪𝟏, 𝐩𝟐 =  𝐪𝟐, 𝐩𝟏  and so on; a Hamiltonian 

flow goes to a Hamiltonian flows and the systems are in 

complete involution with each other as desire.  

The inverse of  
𝛛𝛏

𝛛𝛘
  is also well defined. A non-rigorous 

proof follows if one takes it that the inverse matrix is that 

resulting if one were to choose the K’ as privilege system, so 

that it is now the K system which is uniformly translating 

with respect to the earlier. We shall not write this result here 

as it can be easily shown from above, and by trivial 

manipulation of (24).  

It follows that the system satisfies the 𝐒𝐎 𝟒  group. Now, 

since the canonical system satisfies the general 𝐒𝐏 𝟐𝐧, 𝐑  
group which, for our 2-degree system, one has  𝐒𝐏 𝟒, 𝐑 , 
one then sees easily that the system we are here concern is 

the intersecting  𝐒𝐔(𝟐 ) group. There is no need for a 

rigorous proof as the result flows from the argument we have 

already made. However, in our consideration, we shall be 

interested in the 𝐒𝐔(𝟑) group for the 3-degree of freedom 

system and the argument is just the same  

Indeed, the conservation of space is immediate; it follows 

as we meet for the conservation law of energy according to 

Noether’s theorem [15]. Notice that (15) can be equivalently 

written as  

 
𝐝

𝐝𝐱𝟎
 𝐪 

𝛛𝓛

𝛛𝐪 
− 𝓛 = −

𝛛𝓛

𝛛𝐱𝟎
 (25) 

Where we have use the fact that  
𝛛𝐇

𝛛𝐱𝟎
= −

𝛛𝓛

𝛛𝐱𝟎
, from the 

definition of the Hamiltonian above, and that 𝐪 =
𝐝

𝐝𝐱𝟎
𝐪 = 𝐯. 

But, from the time-independence of the Lagrangian, we 

see that  
𝛛𝓛

𝛛𝐱𝟎
= 𝟎; the result follows immediately as we wish. 

3.1. Lorentz-like Transformation and the Entanglement 

Paradox 

As the reader can see, there is already a clear correlation 

between the quantum mechanical treatment and the theme 

we have here considered for the dust free continuum. In 

particular, the Heisenberg’s consideration, as well as the 

entangled correlation of K and K’ are immediate. This is an 

important result because, if it is really true, it follows that one 

is applying quantum mechanical treatment to the entire 

continuum; a unified field theory is therefore in sight.  

A question of concern can be put forth: what is the reason 

for the quantum-like correlating behavior of our systems.  

We wish to explain in a satisfactory way, the source of this 

relationship, so that one sees from all rational view that a 

Hidden Variable interpretation [16,36] of the situation is 

really immaterial; the same is also true for the quantum physics. 

It seems to us that all composite systems have certain 

important property which, one may assign to it, the cause of 

this correlating quantum behavior. That is, all entangled 

systems are related in a way such that they retain the 

information of their common origin of coordinate in their 

transformation laws at any future time and for any arbitrary 

separation. [The word “coordinate” here must be taken to 

refer to the actual space-time axes instead of the frame of 

reference] 

To see the reasoning involve, let one takes K as the 

privileged system; then, by the fundamental postulate, K is 

always looked at as being at the point of coordinate origin 

accordingly (i.e., at Ⅱ, so to speak). This is really no more 

different from Bell’s view of the Hidden Variable problem 

[37]. This must not cause any confusion to the reader 

because, it is the case that nothing is really unusual in any 
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system chosen as privileged observer, when view from 

within that frame of reference.  

Then, viewed from K, the K’ system is in uniform 

translation with respect to the earlier. It then seems that the 

fundamental postulate has given us the natural security of the 

general nature of all privileged system such that, whichever 

way we take things, the result we have stated is always 

immediate. This is a special behavior to which, from all 

rational view point, one can assign to it, the actual reason for 

the quantum correlation which one observes within the 

systems.  

The matter then becomes strange if one noticed that we are 

free to choose the privilege system, and that any system 

which is taken as the privileged, it is always view to be at the 

origin of the space-time coordinate. One then sees that the 

motion is really only virtual, and the justification follows 

satisfactory without any Hidden variable interpretation of the 

issue— just by the application of the fundamental postulate 

of relativity. We put this argument in context by the lengthy 

discussion below. 

Consider here a 2 dimensional isotropic system defined by 

the Hamiltonian 𝐇 𝐪𝟏, 𝐩𝟏, 𝐪𝟐, 𝐩𝟐 =
𝟏

𝟐
 𝐩𝟏

𝟐 + 𝐪𝟏
𝟐 + 𝐩𝟐

𝟐 + 𝐪𝟐
𝟐 . 

We are interested in finding various constants of the motion 

other than the Hamiltonian itself. If we take the choices of 

the phase variable according as (q1, p1), or (q2, p2), one 

easily finds two unconnected constants of the motion, with 

each referring to exactly one part of the systems: 

  
𝐅𝟏 = 𝟏 𝟐  𝐩𝟏

𝟐 + 𝐪𝟏
𝟐 

𝐅𝟐 = 𝟏 𝟐  𝐩𝟐
𝟐 + 𝐪𝟐

𝟐 
  (26) 

If one were to take the dust content of the system, by 

Hamilton’s method, one may call (26), the respective 

material content/energy of each of the separate systems. For 

our purpose, it may be called the point of coordinate origin (a 

space-time coordinate singularity). 

However, from our argument, we have considered only 

the empty continuum. But, notice that, from Hamiltonian 

formalism, the constants we have considered according to 

(26) does not lead to isolation of the two systems from each 

other in such a way that distance can be well defined. 

Immediately, we see that (26) refers to the condition in 

which K and K’ are both at the common origin of coordinate 

Π so that (2) and (8) are the matrices for the transformation. 

It then follows that one is referring to the condition in which 

the systems have no distance of separation and hence no 

observable space-time continuum. 

On the other hand, if one takes the choices of mixed 

variables (q1, p2) or (q2, p1), one finds other constants of the 

motion that are isolating curves, separating the one system 

from the other in such a way that distance is well defined. In 

fact, in general, one obtains constants of the motion 

satisfying the well-known Poison bracket structure 

  𝐉𝐢, 𝐉𝐣 = 𝛆𝐢𝐣𝐤𝐉𝐤 (27) 

Where 𝛆𝐢𝐣𝐤 is the total anti-symmetric symbol with the 

usual definition, and the 𝒊, 𝒋, 𝒌 taking their appropriate range 

1-3. 

One can then obtain, for a 3D system, a 3 × 3 anti-symmetric 

matrix with entries obeying the relation:  𝐩𝐢, 𝐪𝐢 =
 𝐩𝐢𝐪𝐢 − 𝐪𝐢𝐩𝐢 = 𝟎,  𝐩𝐢, 𝐪𝐣 =  𝐩𝐢𝐪𝐣 − 𝐩𝐣𝐪𝐢 = −𝐩𝐤, and so 

on.  

Let us define, for our purpose, a family of metrics 𝛘𝐯
𝛍
 

resulting only from the mixed choices (q1, p2) or (q2, p1) as 

all matrices satisfying a condition in which the isolating 

curve (or distance measurement) between the systems is not 

null, but that either one or the other system so privileged, is 

at the origin of coordinate, and the latter separated from the 

earlier by certain distance. We then see that 𝛘𝐯
𝛍
_ and hence, 

the choice of mixed variables_ is the only matrix in which 

distance measures are well defined. Then, by means of 

definition, 𝛘𝐯
𝛍
 is a special subgroup of the general 𝐒𝐔 𝐧  

group, obtained by combination of only commuting 

parameters. All such matrices 𝛘𝐯
𝛍
 are pseudo-orthogonal and 

invariant under rotation and translation, as can be easily 

verified by the reader. We shall hereafter call the family  𝛘𝐯
𝛍
, 

the matrices of entanglement for the obvious reason that will 

soon be clear. 

We wish to now generalize things to the pseudo-4 

dimensional space time continuum. From (27), we saw that, 

in a 3D system, one obtains 3 × 3 anti-symmetry matrix 

from the relationship of the phase variables according to the 

Poison structure. But, from obvious argument, it follows that, 

in place of the phase variables 𝐩𝐢 (which is nothing but the 

conjugate time parameter in the privilege system), one can 

write 𝐱𝟎  instead. This follows immediately from the fact 

that 𝐩𝐢 is the time coordinates of the other system which is so 

privileged. Besides, from the fundamental postulate when 

applied to K, it becomes obvious that the time in the K 

system is identically 𝐱𝟎— since indeed, there is no relative 

motion in that system. This must not cause any confusion to 

the reader, as the justification follows from the very 

definition which this paradoxical theory has assigned to the 

theory of relativity.  

Then, all the conjugate phase variables, (pi) can be 

replaced by 𝐱𝟎  without any loss of generality of the 

argument. Also, since the fundamental postulate prohibits us 

from writing the dynamics of the K system, it is immediate 

that the 𝐩𝐢  corresponding to the phase variables in K 

vanishes identically whenever one uses the time parameter 

 𝐱𝟎. Then, 𝐩𝐢 will vanish identically whereas 𝐱𝟎 will now 

be non-zero; that is to say, view from the privilege system, 

𝐩𝐢 is a dynamical parameter whereas  𝐱𝟎 is not.  

Ϯ Attention must be call to the unique relationship we here 

obtained. It follows that whenever 𝑝𝑖  is non-vanishing, 𝐱𝟎 

identically vanishes; in this case, an anti-symmetric metrics 

is obtained with vanishing diagonal element. If we take the 

reverse situation, the opposite happens, so that we are just 

changing roles,  𝐱𝟎 → 𝐩𝐢; we then have a symmetric tensor 

in the latter interchange of variables. The symmetric metric 

then has zero off diagonal elements. 

This special relation has a far-reaching importance. Let us 

take 𝐱𝟎 for K and the three spatial axes for the K’ system; 

one obtains a four vector  𝐱𝛍 for  𝛍 = 𝟎, 𝟏, 𝟐, 𝟑, from which a 

𝟒 × 𝟒  orthogonal matrix is defined upon multiplying  𝐱𝛍 

with itself accordingly. Then, one sees easily that the 
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conjugate phase variable can be view as retarded function. 

This can be shown by complex process 1 [17-20,35], but we 

shall show here that this process is greatly simplified if one 

follows the fundamental postulate.  

Let us writes the Maxwell’s equation for conserved 

quantity:  𝛁 × 𝐇 = 𝐉 +
𝛛𝐃

𝛛𝐭
. One can easily identify the 

relationship  𝐩 → 𝐇, 𝐪 → 𝐃 , from obvious reason that H 

behaves like a conjugate momenta of the D. Then, from the 

fundamental postulate, H vanishes identically (since there is 

no variation in the privileged system K); one then has 

 𝐉 +
𝛛𝐃

𝛛𝐭
= 𝟎 as the equation of motion of the system. The 

same solution follows from the divergence theorem, but it is 

easy to follow from the fundamental postulate instead.  

If one now takes the divergence, one gets the continuity 

equation identically in Maxwell’s field. The following 

relation becomes immediate: 

For if one takes x0, one gets the continuity equation as the 

only equation of motion_ the resulting 𝟒 × 𝟒  matrix is 

diagonal and symmetric; if, on the other hand, one takes the 

phase conjugate variables  𝐩𝐢, one recovers all of Maxwell’s 

equations in an anti-symmetric matrix of the same rank and 

with vanishing diagonal element. 

We have used the word “Pseudo-4 dimensional continuum” 

to intimate that the phase space depends only on the three 

spatial coordinate and their corresponding three conjugate 

time parameters  𝐩𝟏, 𝐩𝟐 and  𝐩𝟑; one is then referring to the 

𝐒𝐔(𝟑) group. Then, in place of the conjugate variables  𝐩𝐢, 
we can write 𝐱𝟎, without loss of soundness of the argument, 

so long as we are now using the symmetric matrix with zero 

everywhere except the diagonal element. Following this, one 

sees that, for the 4-dimensional Minkowski’s matrix, the 

zeroth component is nothing but the time parameter of the 

privilege system. This does not cause us any trouble, since 

the Minkowski’s matrix is symmetric and diagonal as 

desired.  

If one were to take the phase conjugate variables, one 

                                                             
1  Maxwell’s equations are recoverable from the continuity equation in a 

well-known way; however, the task is not easy! To do this, one introduces a 

specialized function term ‘retarded function’ δ [17-20,35]. The introduction of δ 

leads to an apparent delay in the propagation of the signal from the source to 

another point of detection in the space. For the electromagnetic fields, one may 

write δ =  
ρ r′,tr  

 r−r′ 
𝑑3𝑟 and  ω =  

J r′,tr  

 r−r′ 
𝑑3𝑟, representing the retarding charge 

density and current element respectively, where  tr = t −
 r−r′ 

c
 is the retarded 

time. If one now substitutes ω and δ in the continuity equation, followed by few 

but painstaking efforts, one recovers all of Maxwell’s equation [19]. But, we 

like to point out the following question: what is the physical justification for the 

use of the retarded time function? Indeed, the only answer epistemologically 

satisfying is to take it that the retarded time function allows a delay of 

propagating signals so that, even though the field propagates at the speed of 

light, one does not get a light-like matrix. One must notice that the delay is only 

apparent. 

The interpretation of the result is therefore straightforward; it follows that the 

retarded time is indeed a conjugate time parameter and hence allows one to 

replace the absolute time (x0) with the phase variable without any loss of 

generality. However, notice immediately that the method we present here (i.e. 

using the fundamental postulate) has greatly simplified the unnecessarily 

complication. We now make the bold claim that one can easily re-writes the 

anti-symmetric Maxwell’s tensor as a symmetric one by taking the diagonal 

metrics corresponding to the continuity equation (advanced time); the same is 

also true if one uses the stress-energy tensor in general relativity_ we shall show 

this point in our next presentation. 

would have obtained the desired 𝟒 × 𝟒  anti-symmetric 

matrix having zeros along the diagonal so that, instead of 

taking 𝐱𝟎, one takes the three phase variables 𝐩𝟏, 𝐩𝟐, 𝐩𝟑 and 

the corresponding generalized coordinates. 

Let, for the sake of mare example in this pseudo-4 space, 

one takes a Lorentz boost along 𝐱′𝟏; one obtains a 𝟒 × 𝟒 

pseudo-orthogonal matrix with exactly the same properties 

as the well-known Lorentzian-like metric2; the reader is free 

to verify the claim easily by, for example, taking the metric 

resulting from choosing the q1 and p2 (and then including the 

parallel q2 and q3). The p2 as used here, refers to the second 

system which is privileged, whereas the q1, q2 and q3 refer to 

the spatial coordinate of the first system (which is not the 

privileged). 

It follows that, in this purely paradoxical theory of reality, 

a Lorentz-like matrix is obtained if one takes only 

commuting parameters of the two systems which are in 

uniform translation with each other; the knowledge of one of 

the system will then preclude the knowledge of the other, just 

as we meet in the atomistic theory of Quantum physics.  

Indeed, as the reader can see, the common origin of the 

systems (i.e., at Π) is now preserved, since, for the 

separating matrix, the one systems so privileged is at the 

common origin when viewed from itself, or precisely by our 

use of the variable  𝐱𝟎, or by application of the fundamental 

postulate. If we were to use the conjugate pi parameter, the 

result would not have changed except that the matrix would 

have been anti-symmetric, just as the Maxwell’s tensor in the 

theory of electrodynamics. 

We shall encounter this point again as we go alone. But, 

notice immediately that the matrix of entanglement differs 

from the well-known Lorentz type. This follows from the 

fact that the composite matrix  𝛘𝐯
𝛍

, is made only of 

commuting variables of the two systems— this is not the 

case in the Lorentz formalism. 

We can go even further than what we have considered so 

far. Notice at once that, in a well-known way, the length of 

separation of the systems, or straightly speaking, the 

observable continuum can be given_ in Minkowski’s view, 

as 

 𝐝𝐬𝟐 = 𝐠𝛍𝐯𝐝𝐱
𝛍𝐝𝐱𝐯 (28) 

Where gμv  is the Minkowski’s matrix, defined from 𝛘𝐯
𝛍
 

in a well-known way, with Greek symbols taking values 0, 1, 

2, 3. 

The 𝐠𝛍𝐯 is symmetric and pseudo-orthogonal, by reason 

of definition of the  𝛘𝐯
𝛍
. It then follows that 𝐠𝟎𝟎 represents 

the privilege system, if one applies to that system, the 

fundamental postulate. The 𝐠𝐢𝐣, on the other hand, refers to 

the K’ system which is not privileged, and which is seen to 

be under uniform translation. Then,  𝐠𝟎𝟎 = 𝐠𝐢𝐣 identically, 

where i, j = 1,2,3  are the spatial coordinates of the K’ 

system, and that  𝛅𝐢𝐣 =  
𝟏; 𝐢 = 𝐣
𝟎;  𝐢 ≠ 𝐣

 . This follows since, in 

general, for the commuting variables, the continuum 

                                                             
2 We are taking the condition in which x0 = γ x′0 + x1β ; the justification 

follows similarly as in the case of the retarded function which is already 

well-known. 
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vanishes identically. Therefore, 𝐝𝐬𝟐 = 𝐜𝟐𝐝𝛕𝟐  vanishes 

identically. The vanishing of ds
2 must be understood from 

the condition of commuting of the variables in both K and K’, 

just as in atomic physics. The continuum (or the spatial 

separation ds) is therefore a virtual one. 

In fact, if one were to consider the dust content of the 

system, one would have seen that 𝐠𝟎𝟎 is a singularity point 

of dense material from which the outgoing Hawkins energy 

flows. Then, 𝐠𝐢𝐣  would have referred to all regions lying 

outside the horizon of  𝐠𝟎𝟎, and in which the pure energy 

appears as flux of pressure and stresses. However, in our 

consideration, 𝐠𝟎𝟎 describes the point of origin Π, whereas 

𝐠𝐢𝐣 = 𝚷′  lies outside Π and, for our purpose, describes the 

observable continuum of the uniformly translated system (or 

the distance of separation); this will play an important role in 

our discussion of the Maldacena’s duality condition as the 

reader will soon see. 

3.2. Wave-like Treatment of the Space-time Continuum 

and the Klein-Gordon Equation 

Let, after any time different from zero, one of the systems 

which is not taken as the privileged, separates from the origin 

Π, as a result of the uniform translation by desirable Lorentz 

boost. Suppose that we focus our attention on one of the 

systems—preferably K’ (just by the fact that we have been 

considering it as that in uniform motion). Let it be that the 

dynamics of the systems is govern by some function 

 𝛙 = 𝛙 𝐪, 𝐩 , where 𝐪  and 𝐩  are some appropriate 

commuting variables. That is to say, one is using the pair 

  𝐪𝟐, 𝐩𝟏 , so that 𝛘𝐯
𝛍

 is the metric. The ψ-function is 

therefore pseudo-orthogonal as desired. We demand that 

𝛙 𝐪, 𝐩  satisfies some arbitrary wave equation 

 
𝛛𝟐𝛙

𝛛𝐪𝟐
=

𝟏

𝐯𝟐

𝛛𝟐𝛙

𝛛𝐩𝟐
 (29) 

Where v is a constant according to the uniform translation 

of K’ in view of K 

We will see later that the condition is actually valid, as it 

comes from eq. (11b). Notice that 𝛙 𝐪, 𝐩  can be separated 

into two functions with each sub-function depending on 

exactly one of the variables in 𝛙; this follows from (11). One 

is then able to write ψ as a product of two functions 

according to: 

 𝛙 𝐪, 𝐩 = 𝛙 𝐪 𝚽 𝐩  (30) 

We could have also use the method of separation of 

variables, but it is easy to precede according to how we have 

already consider things in (11a-b). Then, substituting (30) 

into (29), follow by some mare divisions, one has 

 
𝐯𝟐

𝛙

𝐝𝟐𝛙

𝐝𝐪𝟐
=

𝟏

𝚽

𝐝𝟐𝚽

𝐝𝐩𝟐
= −𝛗𝟐 (31) 

where φ is a number chosen to have dimension of the inverse 

of length (1/m) 

We will interpret  𝛗−𝟏 as the total observable continuum 

upon carrying out the operation; the justification will soon be 

obvious. Two separate equations can then be obtained from 

(31) accordingly 

  

𝐝𝟐𝛙

𝐝𝐪𝟐
= −𝛗𝟐𝛙

𝐝𝟐𝚽

𝐝𝐩𝟐
= −𝛗𝟐𝐯𝟐𝚽

  (32) 

Notice that  𝛗𝟐𝐯𝟐 = 𝛋𝟐 , so that 𝛋𝛗−𝟏  is the relative 

velocity of the system. This must be taken as the speed of 

expansion of the universe; we will have this discussion in a 

separate paper however. Then, the decrease in κ (cause by an 

increase in the age of the universe, by Hobble’s 

consideration of issue) leads to a corresponding decrease in 

φ (which also corresponds to increase in the total separation 

or observable continuum); this is satisfied by obvious 

observation and it is already well-known in string theory [12] 

Let it be that, 𝛙 𝐪 = 𝐐𝟏 𝐜𝐨𝐬𝛉 + 𝐐𝟐 𝐬𝐢𝐧𝛉 and 𝚽 𝐩 =
𝐏𝟏 𝐬𝐢𝐧 𝛉 − 𝐏𝟐 𝐜𝐨𝐬𝛉, where we have treated the Q’s and P’s 

as numbers. In order for (32) to hold well, the argument, θ 

must take the values 𝛗𝐪, for ψ and 𝛗𝐯𝐩, for Φ. One then 

obtains the functions  

  
𝛙 𝐪 = 𝐐𝟏 𝐜𝐨𝐬 𝛗 𝐪 + 𝐐𝟐 𝐬𝐢𝐧 𝛗 𝐪

𝚽 𝐩 = 𝐏𝟏 𝐬𝐢𝐧 𝛗𝐯𝐩 − 𝐏𝟐 𝐜𝐨𝐬 𝛗𝐯𝐩 
  (33) 

It is easy to show that the functions in (33) are clearly 

periodic on appreciate choices of their arguments, namely: 

𝐪 +
𝟐𝛑

𝛗
 in 𝛙 𝐪  and 𝐩 +

𝟐𝛑

𝛗𝐯
 in 𝚽 𝐩  [21] 

Since the variables are commuting ones, we see that 𝐩 is 

the time coordinates of the privileged K system according to 

our use of the entangled (pseudo-orthogonal) metric,  𝛘𝐯
𝛍
 or, 

according to obvious rule in quantum physics [22-23]. Then, 

ψ carries all the information of the two systems, just as we 

would meet for quantum systems. By the fundamental 

postulate, one sees that ψ is independent of p. However, one 

may have obtained the same result from the obvious 

argument that the K’ system is in uniform translation relative 

to K, so that there is no differential of ψ in respect to p 

according to the fundamental postulate; the same result is 

still trivial. The differential of the wave-function depending 

on 𝚽 𝐩  vanishes identically and (33) reduces to one 

equation, namely  𝛙 𝐪 . From trivial algebra, the only 

useful equation in (32) becomes 

 
𝐝𝟐𝛙

𝐝𝐪𝟐
= −𝛗𝟐𝛙 (34) 

Any function ψ, satisfying our description of the continuum 

must vanish identically at Π and at Π’. The vanishing of 𝛙 

at the respective points actually follows from the condition 

which we have set down for the Galilean-Lorentzian 

transformation properties according to (1). This follows 

because, the transformation rules allows the possibility for 

the uniformly translated system to return to the point of 

origin according as  𝒙𝟏 = 𝛄 𝒙′𝟏 − 𝐯𝒙′𝟎 = 𝟎; our result is 

not an arbitrary one.  

This defines the boundary condition of the continuum in  

a well-known way, as the reader can easily see. Taking 

 𝛙 𝐪 = 𝐐𝟏 𝐜𝐨𝐬[ 𝛗 𝐪] + 𝐐𝟐 𝐬𝐢𝐧[ 𝛗 𝐪]  on the boundary 

 𝚷 = 𝟎 and 𝚷′ = 𝐯𝐭 , q vanishes as desired. For the 

vanishing of ψ on the said condition, one then has 

 𝐐𝟏 𝐜𝐨𝐬[ 𝛗 ∙ 𝟎] + 𝐐𝟐 𝐬𝐢𝐧[ 𝛗 ∙ 𝟎] = 𝟎 (35) 
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which holds for all  𝑸𝟏 = 𝟎 

One now has, for the last condition and letting  𝛗 =
𝟐𝛑

𝐋
: 

 𝛙 𝐪, 𝐩 = 𝐐𝟐 𝐬𝐢𝐧  
𝟐𝛑

𝐋
∙ 𝐪  (36) 

It follows immediately that 𝐐𝟐 does not vanish for the 

entire continuum, since by this reason, the wave-function 

will vanish identically in places where the separation or, the 

observable continuum is material. Two observations can be 

made immediately: 

First, suppose that 𝛉 =
𝟐𝛑

𝐋
∙ 𝐪 is some integer multiple of 

π according as  
𝟐𝛑

𝐋
∙ 𝐪 = 𝐧𝛑 , then, the semi-classical 

quantization of space follows immediately. This is however 

a trivial argument because, as it is not hard to show, the 

quantization of energy actually leaves the said argument 

valid. Moreover, we will show later that the ratio,  
𝐪

𝐋
 is always 

unity in the face of measurement, so that the argument of the 

function in (36) is always an integer multiple nπ. 

Second, one sees that the relative velocity, v is a constant; 

the universe is then expanding at constant velocity rather 

than exponentially. The expansion velocity of the early 

universe cannot therefore be different from that which we 

now observe. Does this cause us any trouble? Well, it turns 

out that this does not really prohibit the expansion of the 

universe, but that uniform acceleration has the remarkable 

property in which far away systems appear to recede faster 

with increasing distance; thus, giving the impression of 

accelerated/exponential expansion.  

Take ẍ as some parameter corresponding to the 

acceleration of the universe. Suppose it is trivial that x  
depends upon time, so that one writes ẍ 𝐱𝟎 = 𝛋𝐯 as the 

acceleration of the observable continuum; we are taking it 

that all the terms have their usual meanings and ẍ 𝐱𝟎  is the 

acceleration as function of time. If one now let 𝐯 = 𝛋/𝛗, one 

sees that the variation of ẍ depends upon the variation of κ 

and φ, the result follows at once. We shall discuss the theme 

in greater detail and one will see that an expansion satisfying 

a characteristic ẍ still leads to red-shift of circle per second 

of light ray as already observed. This discussion is actually 

two papers away from our current treatment, so we will not 

expand on it any further in this present paper. 

We end this discussion by finding the Klein-Gordon 

Operator for the system which is already immediate from (29) 

and (31). Indeed, one can proceed in several ways, but we 

choose the simplest of them. Notice that from (29), one may 

re-write (31) in the form   
𝛋𝟐

𝐯𝟐

𝛛𝟐

𝛛𝐩𝟐
−

𝛛𝟐

𝛛𝐪𝟐
+ 𝛗𝟐 𝛙 = 𝟎, where 

we have use the function  ψ p, q  rather than the one 

depending only on the q’s. It then follows easily that 

  ⧠+ 𝛗𝟐 𝛙 = 𝟎 (37) 

Where  ⧠=
𝛋𝟐

𝐯𝟐

𝛛𝟐

𝛛𝐭𝟐
− 𝛁𝟐 , and the change of variable 

𝐱𝟎 → 𝐭 → 𝐩 does not hurt us, from obvious argument above. 

Eq. (37) satisfactorily describes the space-time continuum 

(and no less the gravitational field), so that one gets a single 

equation capable of describing the space time continuum and 

again the quantum system! 

Interesting commutative relationships are also immediate. 

Take the non-commuting pair of variables,   𝐪𝟏, 𝐩𝟏  
corresponding to the uniformly translating system, K’. From 

(21), one may write the operators of q and p according to  

  
𝐩 = −𝐢

𝛗

𝛋

𝐝

𝐝𝐪

𝐪 = 𝐪

  (A) 

Where we have taken it that  𝐩 =
𝐝𝐩

𝐝𝐱𝟎
, 𝐪 =

𝐝𝐪

𝐝𝐱𝟎
 

Notice that we have used the imaginary number—i, as a 

result of our definition of the proper time according to the 

relationship  𝐩 = 𝐢𝐱𝟎, so that the resulting matrix has the 

signature 𝐝𝐢𝐚𝐠 −, +, +, + . 
If one defines an operation,  𝐪 𝟏, 𝐩 𝟏 , on the phase 

variables, one sees that the commutator  𝐪 𝟏, 𝐩 𝟏 = −𝐢𝛗 𝛋 ; 

where it is obvious that 𝛗−𝟏 is the total continuum and 𝛋−𝟏 

the time/ total age of the K’ system respectively [23,24]. This 

follows because, one sees only the motion of K’ from Π to Π’, 

if one considers the given pair of commuting variable; the 

reciprocal situation is also true. This is consistent with the 

non-commuting relation of the position and momentum of 

the usual Hamiltonian system in quantum physics.  

Accordingly also, if one takes the commuting pair 

 (𝐪𝟏, 𝐩𝟐) in the same way, one sees that the commutator 
 𝐪 𝟏, 𝐩 𝟐  vanishes identically, so that K and K’ are at the 

common point Π as desired. One then sees immediately that 

(28) is valid for the vanishing of the Minkowski’s matrix. 

3.2.1. Heisenberg’s Uncertainty of the Space-Time 

Continuum 

As has already been clearly pointed out, taking both the 

space and time coordinates of any chosen system (K or K’) 

together form a non-commuting relationship. Then, if one 

gets a time dilation of any system so chosen, one sees that 

there is a spatial increment of that same system and vice 

versa; one cannot therefore know, with certainty, the dilation 

of space and time together in any given coordinate system 

taken at will. This is indeed not strange to us from results 

already obtained. Take two arbitrary observables A and B; 

one can then write, following Schwarz’s inequality in a 

well-known way:  

 𝛔𝐀
𝟐𝛔𝐁

𝟐 ≥  
𝟏

𝟐𝒊
 𝐀 , 𝐁   

𝟐
 (38) 

as the uncertainty of the system [22-23], where  𝐀 , 𝐁   is the 

commutator of the two observables 

Let it be that, for the observable corresponding to spatial 

coordinate, one writes  𝐪 = 𝐪 , and let, for temporal 

observable, one writes the operator  𝐩 = −𝐢 𝛗 𝛋  
𝐝

𝐝𝐪
, 

where, as stated above, the imaginary number results for the 

use of the matrix with signature  𝐝𝐢𝐚𝐠 −, +, +, + , and κ 

and φ are already well-known. This, as the reader will easily 

agree, does not cause us any trouble, since it follows that the 

element of length vanishes if one takes commuting 

parameters.  

For it follows that, if one uses the pair of variables 

 (𝐪𝟏, 𝐩𝟐), corresponding to the temporal coordinate of K and 

spatial coordinate of K’, one gets the vanishing commutator 
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 𝐪 , 𝐩  = 𝟎 , identically. However, if one uses the pair 

  𝐪𝟏, 𝐩𝟏 , so that one is taking only spatial and temporal 

coordinates of the same system, K’ say, one gets a 

non-vanishing commutator   𝐪 , 𝐩  = 𝒊𝛗 𝛋 . Substituting 

this into (38), one gets 

 𝛔𝐪
𝟐𝛔𝐩

𝟐 ≥  
𝟏

𝟐𝐢
 𝐢𝛗 𝛋   

𝟐

=  𝛗 𝟐𝛋  𝟐 (39A) 

Or, on taking the standard deviation 

 𝛔𝐪𝛔𝐩 ≥  𝛗 𝟐𝛋   (39B) 

3.3. On the Probabilistic Nature of the Systems 

In the atomic physics, the wave function is believed to 

carry with it, all the elements of physical reality regarding 

the quantum system; this is also the case for the dust free 

continuum in this paradoxical theory of reality. In order to 

know the physical state of the uniformly translating system, 

one must perform measurement on the system at some 

instant in time; only then can one find the system in one 

definite state or the other. When applied to the observable 

continuum, the meaning is again the same. By this way of 

reasoning, ψ is therefore a probability function.  

To this point, we may ask the following question: to what 

cause can one really assign as the reason of this 

probabilistic description of the system? This question is a 

necessary one because, throughout our consideration above, 

both systems have been taken in such a way that their states 

are purely deterministic according to method of ordinary 

classical mechanics. However, if one now describes the 

uniformly translating system by ψ, one can no longer know 

the exact state of that system, unless one makes appropriate 

measurement and finds it lying in some arbitrary observable 

state. In the forgoing argument, we wish to show here, 

without any hidden variable interpretation, that this cause is 

really a natural consequence. From it, the measurement 

problem will be completely solved. 

From (36), we may write  𝛙 = 𝐬𝐢𝐧𝟐𝛑 
𝐪

𝐋
 . Let it be that 

the uniform translation of K’ is along one spatial direction— 

in the 𝐪𝟏 coordinate for example— with the Lorentz boost v. 

If we now view things, taking K as the privileged system, the 

K’ system will have the coordinate  𝐪𝟏 = 𝐯𝐱𝟎 at any later 

time x0 distinct from zero. Therefore, by obvious argument 

from ordinary mechanics, we must regard q1 as the length of 

separation of the K’ system from K after time has elapsed. 

This must not, to any extend, cause confusion to the reader;  

it follows because, if we take the uniform translation along 

q1, one becomes satisfy with the fact that K is at Π and K’ at 

Π’ by reason of the validity of the fundamental postulate in 

the privileged system. Thus, it follows easily that the 

unprivileged system is separated from the origin (Π) by 

exactly the amount q1. This point will still be considered 

very shortly. Then, in an obvious way, we can now put our 

previous question in the following context: 

1.  How does one assign physical meanings to the 

variable L, and  

2.  what is the physical difference between the space L 

and q?  

We like to argue here that L is not really a physical or 

material space of the K’ system. It has now become clear to 

us that, according to the language of ordinary probability 

theory, L is actually a probability space (or a sample space) 

of possible state into which we can find the system when 

measurement is made. Then, the wave-function will collapse 

immediately upon measurement of the system to produce 

one and only one outcome in the sample space, just as we 

meet in the atomic theory; the probabilistic nature of ψ is, by 

this reason, due only to the space variable L. 

To really understand the issue we like to point out here, the 

reader must see that, from our consideration of L and q, there 

may arise a natural confusion as follows: what is the real/ 

physical separation of the system when it is been observed? 

For our purpose, we will regard this as the actual observable 

continuum. The answer to this question is of theoretical 

importance as to the theme we want to consider here.  

Let it be, for example that, at  𝐭 = 𝟎, both coordinate 

systems are at Π (which have the same meaning as above); 

one sees that there is no physical space outside of Π, in view 

of both K and K’— since both systems coincide at that point. 

Now, if we allow the uniform translation of K’ to occur, the 

question we put forth becomes a necessary one, since the 

uniform translation of K’ must happen in some entity— let’s 

call it “a void” for convenience, since it must be distinct from 

the physical entity which we will litter on call, “space”.  

To keep the problem as simple, we make the following 

mare comparison so that the reader can easily follow. 

Consider a quantum system of single particle in a one 

dimensional box. Let the linear length element of the box be 

L. Let it be taken that the potential wall of the box is so 

infinite so that no contribution of the energy is taken from 

there, and that the particle is not allowed to interact with 

anything outside the walls of the box. Then, the only part of 

the Hamiltonian which contributes to the energy of the 

system is that resulting from the motion of the particle 

according to Schrodinger’s equation. Obvious result from 

atomic physics tells us that, prior to measurement, the 

particle can be envisioned to occupy all of L with variable 

probability [22-23]; the chance of finding the particle then 

depends upon the length element L, of the box, by reason of 

easy argument.  

We now start the system at some initial state  𝐭 = 𝟎 , 

which we allow to correspond to the point  𝐋 = 𝟎 —i.e., the 

origin of the coordinate (or one corner of the experimental 

box). Let the system be allowed to evolve in time and in 

space. Because the box has the finite length L, and infinite 

potential barrier, the particle must be restricted only to the 

linear element L, with energy given by the appropriate 

Hamiltonian. Let, after the measurement at some arbitrary 

time t different from zero, one finds the particle in the state 

corresponding exactly to the point  
𝐋

𝟐
 (i.e., halfway to the 

other end of the box). When this happens, one says that the 

particle is in the observable state  
𝐋

𝟐
, although one could not 

tell exactly where the particle was just prior to the 

measurement, according to the nature of 𝛙.  



 International Journal of Theoretical and Mathematical Physics 2023, 13(5): 143-165 159 

 

 

Suppose we wish to observe the particle from its own 

frame of reference. To facilitate this observation, we will 

assign to the particle’s frame, the name K’, for obvious 

reason. The fundamental postulate has prohibited us from 

obtaining any ambiguous state of the system, as long as the 

observation is done in that frame. Then, for an observer at 

rest in respect to the reference frame of the particle (K’ in 

this case), the particle will have a well determined point 

along L at all time, if we were to really view things from that 

frame. In fact, the argument can be made that the particle has 

always been in the state  𝐋 = 𝟎 —by reason of lack of the 

privileged system; this is because the particle sees itself to 

always be at rest. This is not our main point of argument 

however. 

Thus, by reason of the fundamental postulate, it is clear 

that we are incapable of describing the particle (which we 

have taken to be in K’) from within its own frame of 

reference. This inability is a natural consequence; it is due to 

all reasons but the constraint imposed upon us that, for any 

system into which the fundamental postulate holds well, the 

observer in that frame cannot record any effect of uniform 

translated motion of any kind— the particle cannot therefore 

be viewed from its own reference frame. One then sees that 

the measuring apparatus then plays a crucial role in our 

definition of the physical reality of the particle (in K’).  

By the consideration of the matter here discussed, the 

description of the particle must be taken only from within the 

privilege system, with respect to which, the latter system (or 

the particle) is in uniform translation. Therefore, quantum 

mechanical description becomes the only satisfactory means 

by which one can rely upon for any element of physical 

reality of the K’ system. Then, one can conveniently place 

the measuring apparatus in the privileged system without 

loss of the sense of the argument— the physical reality of  

K’ must therefore be measured by clocks and yardsticks 

stationed in K.  

Actually, it is only within the privileged (K) system does 

the probabilistic description of the physical reality of K’ has 

with it, any physical meaning. That is because, if we were to 

really take things from the K’ system itself, the fundamental 

postulate would have applied at once. Then, as the particle 

does not really cover all of L, or is in a definite position on L 

when viewed from within itself, L cannot, in anyway, be a 

space of physical reality prior to any form of measurement 

on the system.  

Let the first measurement be made; the probabilistic 

description of the wave-function will then vanish identically. 

This follows merely from the theory of probability. Then, it 

becomes apparent to see that, it is only upon measurement 

that L can be assigned any physical meaning. 

Upon measurement, let one finds the particle in a state 

corresponding to L/2. We say that the total observable space 

of K’, viewed from the privileged system K, is from the 

coordinate origin to  𝐪 =
𝐋

𝟐
= 𝚷′ (i.e., one can then say that 

the particle travelled from L = 0 to L = L/2). Clearly, it 

follows that portion of L lies outside the physical space of 

the particle. That is, there is portion of the space L into which 

the K’ system has not covered, and thus lie outside the space 

of physical reality of the K’ system. But, the reader must  

see easily that an observer performing the measurement on  

K’ is incapable of really regarding any portion of L as a 

non-physical space, and can therefore conclude that the 

particle was really everywhere in space with varying 

probability. 

That the probabilistic function, ψ really vanishes/collapses 

upon measurement of the sample space, L is very easy to see. 

To make this point clear, notice that the argument of ψ is 

chosen so that  𝐪 ± 𝐯𝐩  vanishes. Thus, only a certain 

portion of L, namely those satisfying  𝐪 = ∓𝐯𝐩, can be 

regarded as part of the observable space, for some p. We 

could choose L as large as infinity according to our wish, but 

upon measurement of the system, 𝐋 = 𝐪 identically. This is 

made possible by boundary condition of the space, which is 

set down by q, forced upon us by measurement.  

The argument is even simplified if we take it from the point 

of view of the usual probability theory. As one is already 

well-aware, upon choosing any outcome in the sample space, 

the probabilities of all possible states/outcomes in the 

sample-space vanish, except the one so chosen. Then, in 

view of our question above, we can say that the K’ system 

moves in an entity which is not a reality space in our 

universe_ a void so to speak. The “void” becomes a reality 

space only upon finding the system there after measurement, 

just as we see in atomic physics. This viewpoint is also valid 

for the measurement problem of quantum physics so that the 

matter is completely solved.  

Ϯ Therefore, instead of the so-called “parallel universe” 

interpretation, one must assign to the cause of the collapsing 

wave-function, the fact that the sample space of possible 

outcome is not a space of physical reality of the particle on 

which bears the measurement, but only a mare state of 

possible outcomes. Once measurement is performed on the 

system, all other possible outcomes collapse, except the 

favorable one; one gets a deterministic state of the particle.  

We hereafter refer to q, in line of probability theory, the 

event or possible outcome, and to L, we shall call, the sample 

space. In ordinary mechanics, however, q is nothing but the 

material space of the particle, and to L we call, any arbitrary 

space. 

It is also clear that after measurement, L= q, so that the 

argument of 𝛙  is always an integer. Semi-classical 

quantization then follows at once.  

One is now justified to define the probability of finding K’ 

on the probability space L as 

 𝐏 𝐪, 𝐩 =  𝛙 𝐪, 𝐩 𝟐𝐝𝐪𝐢
∞

𝟎
 (40) 

This follows from the well-known method in quantum 

mechanics. The 𝐪𝐢  in (40) is now taken over all the 

3-dimensional spatial axis.  

Then, for the entire continuum (or over all of L), the 

probability sums up to unity as   𝐏 𝐪, 𝐩 = 𝟏 , and that 

𝐏 𝐪, 𝐩  is normalizable to unity in a usual way [22-23]. We 

define, in a well-known way, a probability density matrix 𝛒, 

which depends on ψ according to the relationship 
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 𝛒 =  𝐏𝐧 𝛙 ∙ 𝛙 𝐧  (41) 

If we now let it be that 𝐀  is some operator which can be 

carried out on ψ, then, one obtains, if one carries out the 

operation 𝐀  on ψ, one of the eigenvalue as the observable 

state of the system according to  𝐀 𝛙 = 𝐚𝛙; where ‘a’ is the 

eigenvalue (or the observable of the system). The 

expectation values of 𝐀  then becomes, from (41) 

  𝐀  =  𝐏𝐧𝐧  𝛙, 𝐀 𝛙 = 𝐓𝐫𝐀 𝛒 (42) 

With the matrix, 𝛒 having all of the following properties 

[12,23,22]: 

a. 𝐓𝐫𝛒 = 𝟏 

b. 𝛒 = 𝛒ϯ; ρ is Harmitian 

c. 𝛒𝐣 ≥ 𝟎 

One should also notice that according to how we have 

defined the pairs (q, p), the system can be in an entirely 

random state, just as we meet in the case of the quantum 

process. Consider now, a scalar field denoted by ς. One is 

then able to form a complete set of commuting operators  

for the field at each part of the hyperspace, (x0 = 0), which 

are decomposed into the subsets/subspace  𝝇𝑲  and  𝝇𝑲′ .   

To see this point as clear as possible, let the coordinates    

of K and K’ are represented by 𝐊 𝒙𝟎, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑  and 

 𝐊’ 𝒙𝟎
′ , 𝒙𝟏

′ , 𝒙𝟐
′ , 𝒙′𝟑  respectively. Then, the combine 

system can be divided into two congruent halves of the 

hyperspace at the point 𝐱𝟎 = 𝟎 (or 𝐱’𝟎 = 𝟎, according to 

our choice of privileged system). Then, by our choice of the 

Lorentz boost, 

 𝛓𝐊 𝐐𝟏, 𝐐𝟐, 𝐐𝟑 > 0 (43A) 

 𝛓𝐊′  𝐪
′
𝟏

, 𝐪′
𝟐

, 𝐪′
𝟑
 < 0 (43B) 

The expectation value of the system then becomes 

  𝟎 𝛓𝐊𝛓𝐊′  𝟎 =
𝟏

𝐯𝟐𝐱𝟎
𝟐 (44) 

where vx0 is the distance between K and K’, which we have 

called, for our purpose, the total space-time continuum. 

Observe that  
𝟏

𝐯𝟐𝐱𝟎
𝟐 = 𝛗𝟐  from (44), so that one has 

 𝛗−𝟏 = 𝐯𝐱𝟎, as the total observable Space-time continuum 

as desired. The wave-function can then be written as  

 𝛙 = 𝛙 𝛓𝐊 , 𝛓𝐊′   (45) 

Moreover, according to how ψ is been defined, the path 

integral of the evolution of any one of the system so chosen, 

can only be evaluated over the semi-hemisphere  𝐱𝟎 ≥ 𝟎 . 

Thus, (43A-B) are clearly arbitrary conditions which result 

merely from our choice of the privileged system, or the 

Lorentz boost. The matrix of the continuum, by this 

reasoning, is semi-definite, and the time reversal parity (i.e., 

interchange 𝐱𝟎 → −𝐱′ 𝟎) is immaterial. For the dynamics of 

any system which is not chosen as the privileged, we define 

the action by the semi-definite integral 

 𝐈 =  𝐩𝐝𝐪 
∞

𝐱𝟎=𝟎  (46) 

Nothing forbids us from reversing the argument so K and 

K’ are equally valid space-time continuum with exactly the 

same action. In fact, what is worth noting is the following: as 

already stated, if we envision the systems from any of the 

systems, so taken as the privileged observer (say K), then, by 

the fundamental postulate, the laws of physics in this 

privileged system (K), can be entirely describe as though it 

were a 2-Dimensional hyper-surface  𝒙𝟎 = 𝟎. That is, the K 

system appears to play the role as the singularity point for the 

moving K’ system, since it will see itself at the coordinate 

origin (Π) at any later time t, so long as we see the situation 

from that frame of reference. We will relook at this point 

shortly as it leads to the Maldacena’s conjecture. 

We end this section by an interesting observation. 

Consider the composite systems, K and K’; it is obvious that 

the probability density matrix is Harmitian, with all of its 

eigenvalues lying between zero and one. Suppose in one of 

the systems, say K’, one obtains unity (i. e. , 𝛒 = 𝟏); we say 

that K’ is in its pure state, and that all other probabilities 

vanish identically. In general, such state is possible if the 

wave function is factorizable according to  𝛙 𝛂, 𝛃 =
𝛙 𝛂 𝛙 𝛃 ; this is the case here according to (30) and (45). 

In the pure state of K’, the K system is also taken to be in a 

pure state with equal eigenvalues. In fact, the probabilistic 

nature of the systems vanishes so that one is now using the 

space q, rather than L; that is, 𝐋 = 𝐪 identically whenever 

the systems are in their pure states. The entanglement 

entropy can then be written as [12,23,25] 

 𝐒𝐊′ = −𝐓𝐫𝛒 𝐥𝐨𝐠 𝛒 = 𝐒𝐊 (47) 

This is true only if the combined entropies of both systems 

vanish identically as 

 𝐒𝐊′ +𝐊 = 𝟎 (48) 

We argued previously that, for commuting systems (q, p) 

or  𝛓𝐊 , 𝛓𝐊′  , the length element, 𝐠𝛍𝐯𝐝𝐱
𝛍𝐝𝐱𝐯  vanished 

identically. This follows because the 𝐝𝐬  leaves the two 

systems at the common Π, so that the uniform translation and 

hence the spatial separation, is completely a virtual one. We 

wish to show that this is an immediate consequence from (48) 

according to the vanishing entropy of the systems.  

It can be observed that, at  𝚷 = 𝟎, or 𝚷′ = 𝐯𝐭 the wave 

function (29) vanishes trivially. Then, Π becomes distinct 

from Π’ only by reason according to our choice of the 

privileged coordinate, but that both systems cannot be at Π’ 

simultaneously. If we now define the probability density 

matrix by (41), one sees without difficulty that 𝛒 vanishes 

identically at Π and Π’ according to the vanishing of  𝛙, and 

by our choice of privileged system. Substituting (41) into 

(48), it follows at once that (48) vanishes as desired. One can 

therefore say that the universe had zero entropy at the origin 

of the universe (i.e. at the big band). Moreover, any system 

into which the fundamental postulate holds well, the entropy 

of that system must vanish according to obvious argument. 

This must not cause us any confusion. Indeed, it can be 

noticed that if we take K as the privileged observer, then the 

point 𝚷 = 𝟎 corresponds to location of the K system, and 

𝚷′ = 𝐯𝐭 for the K’ system. Then, one sees at once that Ⅱ 

and Ⅱ’ are clearly equal (symmetric), and differ only by our 

choice of privileged system so that 𝐝𝐬𝟐 = −𝐜𝟐𝐝𝐱𝟎
𝟐 +

𝐝𝐪𝐢
𝟐 = 𝟎 identically.  

Notice also that the vanishing of ψ at Π and Π’ does not 

follow from the interpretation of the usual Lorentzian sense 
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of issue which we have already discussed above regarding to 

origin of the universe. It follows that, in the earlier argument 

(i.e., according to Lorentz), both Π and Π’ can be regarded 

as the origin simultaneously. In the latter sense of things 

however, exactly one of the systems is always chosen as 

been privileged and hence always sees itself at the origin of 

the coordinate system, and that the latter system is in uniform 

translation; in this way, the spatial separation is only but a 

virtual one. This is the extent to which the paradoxical 

description has presented space-time continuum, and hence, 

the true nature of physical reality. 

3.4. Paradox in the Consideration of the Problem of 

Physical Reality 

It is obvious that the dynamics of the systems is govern by 

some function; we like to call it, 𝚪 𝛉 — with the definition 

 𝚪 𝛉 =  𝟏 −  𝐭𝐚𝐧𝐡𝛉 𝟐 , −∞ < 𝜃 < ∞ (49) 

Where 𝐭𝐚𝐧𝐡𝛉 = 𝐯 𝐜  

Along the given interval, 𝐭𝐚𝐧𝐡𝛉  is allowed to take 

values ranging from -1 to 1, so that the relative translated 

velocity (v) takes values  𝟎 ≤ 𝐯 ≤ 𝐜. If one sketches the 

graph of  𝐭𝐚𝐧𝐡𝛉, one sees that it is completely symmetric 

about the origin. We afterward interpret this as each part 

representing exactly one of the composite systems. However, 

from our way of defining the dynamical function (49), the 

square of 𝐭𝐚𝐧𝐡𝛉  is never negative; hence, 𝚪 𝛉  is 

semi-definite, with values lying on the interval   𝟎, 𝟏) . In 

fact, in all ordinary sense of reasoning, one must take 𝚪 𝛉  
in the same sense as the so-called cosmological constant.  

For if one takes any one of the systems as the privileged 

coordinate, 𝐯 = 𝟎 according to the fundamental principle; 

one then has  𝚪 𝛉 = 𝟏  in this system. Let one now 

envisions K’ from the privilege system K; one sees that, as K’ 

falls towards K, 𝐯 → 𝐜 and  𝚪 𝛉 → 𝟎. Indeed, that 𝐯 → 𝐜 

is not an arbitrary condition; an easy argument follows at 

once because, one is now using the advancing time-function 

 𝐭𝐫 = 𝐭 +
 𝐫−𝐫′  

𝐜
, rather than retarded function— in this way, 

the matrix appears “light-like”. It will then appear as though 

K is a real gravitational field whose effect increases the 

acceleration of K’. The gravitational field is then produced in 

a nature way. We shall consider this point in our next 

treatment.  

The reciprocal situation of the problem (i.e., K’ moves 

away from K so that v→0) also has a physical meaning; 

indeed it will appear from K as though K’ is slowing down  

at increasing spatial separation, so that 𝐯 → 𝟎 on account  

of retarding time function (𝐭𝐫 = 𝐭 −
 𝐫−𝐫′  

𝐜
). Therefore, the 

in-falling or outgoing K’ system behaves just as it does in 

ordinary Newtonian mechanics (such as an apple thrown 

upward would do in a real gravitational field). However, we 

will show in a later paper that in the case expansion of the 

universe, 𝐯 never goes to zero, and the expansion continues 

forever. However, since uniform motion has the natural 

effect of making far-away things to appear to recede faster 

with separation, it appears from earth that the expansion of 

the universe is accelerating.  

Now, suppose that the situation is described from the point 

of view of a third observer— to this purpose, we introduce 

another privileged system, K0. It follows that, as K’ falls 

towards K, he [K’] moves faster and faster towards K as 

though it were a real gravitational field. If the maximum 

allowed speed is c, then, in respect to K0, 𝚪 𝛉 → 𝟎 .     

We now define the gamma function by  𝛄 𝛉 = 𝟏  𝚪 𝛉  . 

Then, as  𝚪 𝛉 → 𝟎, 𝛄 𝛉 → ∞ and K’ never falls to the 

singularity point, (Π) when the matter is viewed from the 

standby observer in K0.  

Suppose we now describe K’ by some wave-function ψ, 

then, an observer in the K0 system will see the in-falling 

wave-function spreading to infinity. This prediction is 

already well-known in String theory [12,26], but we obtain it 

here in this 4-dimensional consideration of the continuum. 

It must be emphasized that an observer in K does not 

actually see this spreading effect of ψ. In fact, the function 

𝛄 𝛉  is not well defined in the K system, even though  𝚪 𝛉  
has a physical meaning in respect to K. The argument is 

really straightforward; it follows because, in the privilege K 

system, the dynamics of the K’ system is defined by (49); 

however, their inverses are not well-defined since, if it were 

really the case, it would imply that K is now in uniform 

translation. The fundamental postulate will no longer hold in 

K when view from itself. Since this is not the case, the claim 

is proven. 

Now, since  𝚪 𝛉  converges to unity, and the gamma 

function is not define in K, it follows— envisioned from K— 

that the in-falling observer will really reach the horizon and 

burn up identically at Π as though it [Ⅱ] were really a 

firewall, just as we meet in the AMPS paradox [27]. Thus, 

for some isolated observer K0, the in-falling particle never 

reaches the horizon, whereas, for the privileged system, the 

horizon behaves like a firewall. From the point of view of the 

in-falling observer itself, nothing is unusual to him; but his 

event horizon will behave like a firewall just as we meet for 

K— the latter claim follows because of lack of preferred 

frame of reference. Then, K and K’ will burn up identically if 

the situation is viewed only from either K’ or K respectively. 

In principle, however, this is the only situation which occur, 

contrary to the string theory argument of the spreading 

wave-function. Indeed, it follows easily from the monogamy 

of entangle, since by this principle, there cannot be a 

three-way entanglement, so that it is only the K and K’ 

systems which are entangled with one another, and from 

each of which, the observation is there made. 

The strong phrase “burning up” is misleading, and must 

not be taken too literal. It only means that, when K’ falls to K, 

clocks in the K’ system now ticks according to the clocks of 

the privileged K system so that no differential occurs for the 

both clock systems. This is no different from our argument 

we have given to the twin paradox. If Ⅱ is a real coordinate 

singularity such as the point of the big band, the meaning of 

the phrase is to intimate that space and time vanish (such as 

the big crush prediction).  

3.4.1. On the Impossibility of Time Travel 

The commuting relationship of spatial and temporal 
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coordinates immediately leads to the impossibility for time 

travel in a natural way. But even without this viewpoint, one 

can easily convince himself that the argument of time travel 

cannot be an element of physical reality. Several arguments 

can be proposed to support our claim, but the simplest is to 

take it that the entropy of any real system is a non-negative 

real number. The change in entropy of an observer traveling 

backward in time will turn to negative on approaching the 

singularity point  𝐭 = 𝟎, if we judge the travelling system 

(K’) from the point of view of a privileged system, K. At 

once, we see that this is physically impossible.  

One could make the argument we have made earlier that 

an in-falling observer does not see anything unusual while 

falling; in this case, one appears to achieve the mentioned 

without violating entropy requirement. For that argument, it 

must be pointed out that, when we view the in-falling 

observer from his own frame of reference, one soon sees it 

satisfying the fundamental postulate so that it is now the 

privileged system. It is not hard to now see that any system 

into which the fundamental postulate is satisfied, the concept 

of entropy cannot be well defined— i.e., the entropy of that 

system vanishes identically. The argument that this is the 

case can be made in a number of ways, but the statement: 

(nothing is unusual in said system) is a sufficient and 

necessary justification for our claim. One then sees that the 

privileged system always has vanishing entropy in respect to 

itself at any time not necessarily zero. The in-falling observer 

(in this case, the K’ system), when taken as the privileged 

coordinate, soon starts to see the K system as that under 

uniform translation, so that one is referring to nothing but the 

reciprocal situation of the issue. The result will make no 

difference as can be showed easily by the lack of preferred 

choices of reference system. 

We like to make the argument as formal as possible that 

time travel is not an element of physical reality. But, from the 

forgoing discussion, one will soon come to realize that it is 

physically impossible to travel “backwards in space”. This 

argument is sample; it follows as soon as we distinguish the 

probability space from the physical space of the uniformly 

translated system according as was shown above.  

For the time independent solution of the uniformly translating 

coordinate, one writes (34) as  
𝐝𝟐𝛙

𝐝𝐪𝟐
= −𝛗𝟐𝛙, where φ is 

defined to take values in the 3-spatial continuum. Writing 

𝛙(𝐪) in the complex form, one has  

 𝛙 𝐪 = 𝐐𝟏𝐞
𝐢𝛗𝐪 + 𝐐𝟐𝐞

−𝐢𝛗𝐪 (50) 

If we do not propose any boundary condition, the wave 

function continues up to infinity in the positive sense for 

reason of semi-definiteness of ψ; this is consistent with our 

argument from above and with quantum mechanics [22-23]. 

Suppose one now takes the time dependent part of ψ so that 

(50) becomes 

 𝛙 𝐪, 𝐩 = 𝐐𝟏𝐞
𝐢𝛗 𝐪−𝛂𝐩 + 𝐐𝟐𝐞

−𝐢𝛗 𝐪−𝛂𝐩  (51) 

where α is a number 

It is easy to identify that  𝛂 = 𝐯 , the constant relative 

velocity of K’. One then sees that 𝛙 𝐪, 𝐩  depends on the 

combination  𝐪 ± 𝐯𝐩 = 𝟎 , where the uniform translated 

coordinate travels in the ∓𝐪 direction with speed, ±v. This 

is in agreement with our argument for the choice of the 

Lorentz boost.  

Now, choose any fixed point on the waveform of the 

traveling wave, the maximum or minimum for example; This, 

by obvious result from quantum mechanics, corresponds to 

fixed values of q and p such that 𝐪 ± 𝐯𝐩 is always constant, 

or that the spatial separation 𝐪 = 𝐯𝐱𝟎 is a constant. Then, 

the diminishing of p immediately leads to the diminishing of 

q and vice versa. One then arrives at a condition in which one 

cannot change p without changing q.  

Moreover, it is immediate that  𝜶 = 𝐯 = 𝛋𝛗−𝟏 . If one 

moves backwards in time, one sees 𝛋 → ∞  as  𝐱𝟎 → 𝟎 , 

where 𝐱𝟎 = 𝐩 = 𝐭 = 𝟎 is the time at the singularity point. 

The expansion velocity of the universe (or more precisely, 

the velocity with which K’ is translating) will become 

infinitely large. One will require a system of infinite speed to 

carry the universe backwards in time. The situation then 

suggests itself that time travel is impossible without affecting 

the entire observable continuum; we are led to answer in the 

negative as to the possibility of such a description of nature.  

The impossibility of time travel leads to the impossibility 

of space trivial according to commuting relationship. This is 

not hard to show as soon as we distinguish the probability 

space from the physical space of the moving system. For a 

particle traveling between two points A and B, we have 

argued that the length element 𝐝(𝐀𝐁) is not a real space, at 

least in the particle’s frame. For as long as the particle can be 

anywhere between  𝐝 𝐀𝐁 , the length element can only be 

regarded as a probability space rather than a real one.  

Thus, for a π0 meson traveling from A to B, the distance 

between the two points is not an observable physical space in 

the frame of reference of the moving particle, but rather a 

probability space into which we may find the particle when 

measurement is made. As the reader can then see, the particle 

is not traveling in space, at least if one considers only the 

reality space, since it is the case that the physical space of the 

particle is produced only after the separation for A to B.  

This result might be confusing, but one can easily 

understand the main theme if the prior knowledge of the 

distance between A and B is not known to the observer. One 

will see that the space 𝐝 𝐀𝐁  is a total void and only 

become part of the reality frame of the particle by means of 

measurement performed on the system after some elapsed 

time; the result follows at once.  

3.4.2. On the Dual-verse Problem 

From (51), we see that the waveform of the propagating 

wave does not change. It follows because the uniformly 

translated system does so at constant velocity. This actually 

leads to the prediction that the universe is expanding at some 

constant expansion velocity as we have already argued. We 

shall investigate this point in detail in a later paper, and the 

result is a nature one. However, it follows at once that (51) 

represents two congruent waveforms in which the first term 

represents one of the waveforms propagating in the positive 

direction, and the second term, a second waveform 

propagating to the negative direction. Nothing forbids such 

interpretation as ψ is pseudo-orthogonal according to our 
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consideration of the composite systems. Then, it follows that 

𝛙 𝐪, 𝐩  divides the continuum into two congruent halves, 

just as we meet for the Einstein-Rosen bridges in the 

gravitational field [28]. 

We can write (51) into a single term as 

 𝛙 𝐪, 𝐩 = 𝐀𝐞𝐢 𝛋𝐪−𝛗
−𝟏𝛋𝟐𝐩  (52) 

Where 𝛂 = 𝐯 = 𝛋𝛗−𝟏, and that, κ is proportional to the 

age and hence the total continuum, and A is a number. If we 

now focus our attention only to the congruent halves, κ takes 

on the values satisfying 

 

𝛋 > 0; traveling wave to + 𝐪
𝛋 < 0; traveling wave to − 𝐪

𝛋 = 𝟎; vanishing of the wavefunction

  

For  𝛋 = 𝟎 , ψ is a number, and hence the differential 

equation in (34) vanishes. It then follows that the two waves 

begin at 𝛋 = 𝟎 and propagate to infinity. As the argument 

readily suggest itself, one can then regard each half of ψ as 

the waveform corresponding to exactly one of the universes; 

one then obtains two congruent universes as the only 

possibility for a stable system. We will take on this task in 

more detail in a later paper.  

3.5. Maldacena’s Consideration of the AdS/CFT 

Correspondence 

Maldacena has called our attention to special duality 

criteria termed, the AdS/CFT correspondence theory. In it, 

one is led to a theory in which the laws of physics on the 

background of a ten dimensional 𝐀𝐝𝐒𝟓 × 𝐒𝟓 space can be 

exactly equivalent, under a certain duality relation, to those 

on the four dimensional Minkowski space-time. The 

Minkowski’s background has been termed, the conformal 

field theory (CFT) [29-30].  

In what follows, however, we wish to argue that the same 

result is obtained in this paradoxical description of physical 

reality. It appears to us that any well-chosen AdS space 

satisfying Maldacena’s conjecture can be replaced by the 

coordinate system into which the fundamental postulate of 

relativity holds well. Then, in this paradoxical theory, one 

completely solves the problem, free of any extra 

dimensionality of the continuum. The duality relation 

therefore lies in the commuting relation of space and time. 

We show the main idea by the following discussion: 

For a pair (𝐪, 𝐱𝟎), of the commuting variables, let  𝐱𝟎 = 𝟎 

— notice that the use of the variable  𝐱𝟎 does not cause us 

any trouble as we have already seen from previous argument. 

Then, one is talking about a special state of the privileged K 

system in which it is identically at the origin of coordinate Π. 

This must not cause any difficulty of understanding because, 

as long as we apply the fundamental postulate to the K 

system, the result is immediate, and that  𝐠𝟎𝟎 = 𝟎 , for 

obvious reason from the argument we have already made. In 

fact, the argument is true even if x0 = t, for any arbitrary 

time, so long as the fundamental postulate is satisfied. 

However, notice that the K’ system lies in the subspace  𝐠𝐢𝐣. 

Notice also that  𝐠𝐢𝐣 does not necessarily vanish, so long  

as, envisioned from the privileged, K, the K’ system is in 

uniform translation.  

However, if  𝐠𝐢𝐣 = 𝟎 , the physical meaning follows 

immediately that one is referring to the condition in which K 

and K’ are identically at Π, such that there is no separation of 

the system, and the space and time completely vanish. If we 

take it that 𝐠𝐢𝐣  does not vanish, one has a 3-dimensional 

space into which K’ is present. Then, for the condition 

 𝐠𝟎𝟎 = 𝟎, K will be at Π, so that it is now the privileged 

system. Since nothing prohibits us from taking the reciprocal 

situation, we arrive at a result which is no different from 

Einstein-Rosen treatment of the problem [28].  

It then follows that, for a 4- dimensional space-time 

continuum, 𝐱𝟎 = 𝟎 (satisfying 𝚷 = 𝟎) is a 2-dimensional 

space-like hyper-surface on the matrix 𝐠𝛍𝐯, if one take the 

special coordinate according as in [28]. Eq. (28) then takes a 

solution in which the entire continuum consists of two equal 

halves separated about the surface of symmetry 𝚷 = 𝐱𝟎 = 𝟎 

with the two congruent halves, 𝐠𝐢𝐣 having only the 3-spatial 

variable  𝐪𝐢. Notice that the same solution is obtained by 

carrying out a Lorentz boost of the two systems about Π just 

by mare change of privileged system; one easily gets the 

same result even without following the usual argument of 

Einstein-Rosen Bridge.  

Let, from the separation, K and K’ be represented as 

𝐊 −𝒄𝒙𝟎, 𝒙𝟏, 𝒙𝟐, 𝒙𝟑  and  𝐊’ 𝒄𝒙𝟎
′ , 𝒙𝟏

′ , 𝒙𝟐
′ , 𝒙′𝟑 , where the 

minus sign in K occurs by mare choice of the Lorentz boost, 

or by the condition of the constant κ in the wave-function. 

Then, for the interval  −∞ < 𝐱𝟎 < ∞, one has K going from 

+∞ to 0 and K’ going as 0 to +∞ in space.  

But, if one applies the fundamental postulate to the 

privileged (K) system, one can take the entire part of the 

congruent space of K (i.e., the part [0,∞) ) as the 

2-dimensional hyper-surface  𝐱𝟎  = 𝟎 by obvious argument. 

Then, one can be justified to assign to the privileged system, 

the AdS space, whereas, to the system in uniform translation, 

we call it the conformal space; Maldacena’s conjecture is 

then immediate.  

It must be noticed that the conformal space, which we 

have now considered, is taken to be 3-dimensional,  𝐠𝐢𝐣. It 

follows because, we have allowed the commutation to occur 

between the time parameter of the K system and the 3-spatial 

parameter of the K’ system. But this does not cause us any 

trouble because, from the Maldacena’s view of things, one 

can see that the AdS space manifest as a 2-dimensional 

hyper-surface that is the time boundary of the Minkowski’s 

space [29].  

We can go beyond Maldacena’s result and argue that the 

AdS space can also be regarded as the conformal space by 

our choice of the privileged system. This is a far reaching 

consequence as it allows our result to be testable in our solar 

system as easily as possible. The reader can already see that, 

following the fundamental postulate, as well as the natural 

principle of relativity, the argument is already valid. For as 

long as we take any of the system as privileged, the result 

follows accordingly. Then, since there is no preferred choice 

of reference system, the claim is proved at once.  

Instead of the fundamental postulate, however, we 

introduce Mach’s principle of non-absolute space, which is 

no different from the third postulate of relativity. Let us take 
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it that K is the rest coordinate and K’ be the coordinate 

system in uniform translation with respect to the former. It 

follows immediately that K is a 2-D hyper-surface at Π. As 

the reciprocal situation is well-defined, the result follows at 

once.  

We then make the general claim that any system into 

which the fundamental postulate is material, we call it, the 

AdS space; otherwise, we call it the conformal space; 

Maldacena’s duality is then replaced by the space-time 

entanglement relation in a natural way. This is the extent to 

which the paradoxical theory of reality has put the 

Maldacena’s correspondence and the result, as the reader can 

see, is satisfied. 

An interesting result must also be called to attention 

immediately. It must be noticed that the paradoxical 

treatment of Maldacena’s consideration is testable in our 

solar system as one can be convinced by easy argument. In 

fact, the proof is no more different from Gauss’s theorem, 

which is already well-known. However, if this is really the 

case, one sees that the Holographic principle cannot have any 

deeper meaning other than the well-known divergence 

theorem according to Gauss. An observer in a far-away 

2-dimensional hyper-surface can just as well be regarded as a 

3-D space if the situation is viewed from that frame of 

reference. We are not in the position to argue this interesting 

problem any further, although the solution is really trivial. 

After a couple of papers, we shall again consider this theme, 

and the reader will see that the result follows naturally 

without any effort.  

4. Conclusions 

We are led to the conclusion that the paradoxical 

description of physical reality satisfies the atomistic theory 

of quantum Physics in a well-known way. While the result 

at hand, one may argue, does not describe, to a satisfactory 

extend, a unified field theory, the view is expressed that 

such theoretical description is possible if one looks upon 

nature from this purely paradoxical consideration of issue. 
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