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Abstract  The purpose of this paper is to show the impact of the stiffness formulation on a prismatic shell of rectangular 

cross-section, subjected to a flexural stress. Firstly, the stiffness is formulated by adopting both the linear and quadratic 

formulations, which are introduced into the Lagrange equation for a plate with variable stiffness to derive the ordinary 

differential equation of the system. Next according to the complexity of the obtained equation, the numerical investigations 

are performed by using the Gauss-Seidel algorithm, with application on a box bridge with two embedded edges, and by 

considering both the linear and quadratic stiffness. The results obtained show that there are significant differences between 

displacements of both linear and quadratic stiffness, with that of the quadratic stiffness very close to real physical 

observations. 
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1. Introduction 

Prismatic plates and shells were widely used in 

mechanical engineering and heavy boiler making. Sails, rafts 

and floors in civil engineering works are usually plates or 

hulls as well. This type of structure was found in aircraft and 

shipbuilding (see [1] and references therein), for example the 

aircraft cabin or the hull of a ship. In addition to mechanical 

engineering, washers, cylinder head, pistons, cylinders, 

gearboxes are also plates or shells. In the field of 

shipbuilding, it was a common practice to idealize ship 

structures as thin-walled beams with a rigid cross-section for 

their analysis. The cross-section of the ship hull is, however, 

normally a combination of open and closed parts with 

variable cross sections. Thin-walled beams are structural 

members acted upon by axial, bending and twisting loads.  

A thin-walled beam is characterized by the fact that their 

three dimensions are all of different order of magnitude. The 

thickness of the wall is small compared to any other 

characteristic dimension of the cross section, and the cross 

sectional dimensions are small compared to the length of the 

beam. 

The calculation of such structures must be accurate and 
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easy to perform, since these structures are often subjected to 

static and/or dynamic loads. Despite the practical importance 

of elements of this type identified in a number of works, 

many questions related to their calculation are still relevant 

today. Numerous researchers’ works address the problem of 

plates and shells (see for eg. [2-9]) much more for plates and 

shells of constant rather than variable stiffness [7,9] have 

worked on plates with variable stiffness and [5] more 

interested in thickness variability by varying the thickness 

along a straight line and according to a quadratic formulation. 

It is in this lance that our paper is fixed. By focusing on a 

linear stiffness formulation on one hand, and a quadratic 

formulation on the other hand.  

The method we used in this study consisted in writing  

the basic formulation equations of the bent prismatic shell 

stiffness, with variable stiffness allowing us to solve 

numerically the established equation. Next we give results 

for loads distributed over the surface of our shell without 

axial loads using finite difference methods. The calculation 

of these structures required the implementation of 

increasingly sophisticated mechanical behaviour modeling 

tools, taking into account the specificities of these structures. 

After a summary and introduction of our work, we continue 

by establishing the LAGRANGE equation for a flex hull. 

Subsequently the boundary conditions are established and  

a numerical resolution is applied to the case of a box deck. 

The last part is reserved for results and discussion.  
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2. Differential Equation for Prismatic 
Hulls with Variable Stiffness 

2.1. The Differential Equation of the Deflection Surface 

of a Variable Stiffness Plate 

Let us consider the plate shown in Figure 1 below, whose 

average plane is represented by (𝑥, 𝑦). Let 𝑑𝑥 and 𝑑𝑦 be 

the dimensions of a surface element taken from this plate. 

We assume that the load acting on a plate is normal to its 

surface and that the deflections are small as compare to the 

thickness of the plate. At the boundary, we assume that the 

edges of the plate are free to move in the plane of the platen, 

thus the reactive forces at the edges are normal to the plate. 

With these assumptions we can neglect any deformation in 

the median plane of the plate during loading. Let us consider 

the x and y coordinate axes in the median plane of the plate 

and the z-axis perpendicular to this plane, with an element 

cut out of the plate by two pairs of planes parallel to the 𝑥𝑧 

and 𝑦𝑧 planes, as shown in Figure 2. 

 

Figure 1.  Representation of a surface element on the plate 

 

Figure 2.  Modeling of a surface element 

 

Figure 3.  Representation of an average surface of a plate, (a): with moments, (b) with sharp shearing strains  
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In addition to the bending moments Mx and My and the 

torsional moments Mxy, there are vertical 1  shear forces 

acting on the sides of the element. These shear forces per unit 

length parallel to the y and x axes, which we refer as Tx and 

Ty respectively, are equivalent to [4,9]: 

𝑇𝑥 =  𝜏𝑥𝑧𝑑𝑧
ℎ/2

−ℎ/2
, 𝑇𝑦 =  𝜏𝑦𝑧𝑑𝑧

ℎ/2

−ℎ/2
      (1) 

Since the moments and shear forces are functions of the x 

and y coordinates, in discussing the equilibrium conditions 

of the element we must take into account the small changes 

in these quantities when the x and y coordinates change by 

the small quantities dx and dy.  

The median plane of the element is shown in Figures 3 a 

and b, and the directions in which the moments and forces 

are considered positive are indicated. The load distributed on 

the upper side of the plate must also be considered. The 

magnitude of this load is noted as q, so that the load acting on 

element 1 is qdxdy. 

If we project the forces in the z-axis direction, we obtain 

the following equation: 
𝜕𝑇𝑥

𝜕𝑥
 𝑑𝑥𝑑𝑦 +

𝜕𝑇𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦 + 𝑞𝑑𝑥𝑑𝑦 = 0, 

leading after simplification to the following partial 

differential equation:

 

 

𝜕𝑇𝑥

𝜕𝑥
+

𝜕𝑇𝑦

𝜕𝑦
+ 𝑞 = 0              (2) 

By projecting the moments following the x-axis we  

obtain 
𝜕𝑀𝑥𝑦

𝜕𝑥
𝑑𝑥𝑑𝑦 −

𝜕𝑀𝑦

𝜕𝑦
𝑑𝑥𝑑𝑦 + 𝑇𝑦𝑑𝑥𝑑𝑦 = 0, leading after 

simplification to 

 
𝜕𝑀𝑥𝑦

𝜕𝑥
−

𝜕𝑀𝑦

𝜕𝑦
+ 𝑇𝑦 = 0.           (3) 

For the y direction, one has 

 
𝜕𝑀𝑦𝑥

𝜕𝑦
+

𝜕𝑀𝑥

𝜕𝑥
− 𝑇𝑥 = 0,           (4) 

which can be substituted into Eq. (1) to give −
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑦

𝜕𝑦2 +
𝜕2𝑀𝑦𝑥

𝜕𝑥𝜕𝑦
+

𝜕2𝑀𝑥

𝜕𝑥2 = −𝑞 . By setting Myx = - Mxy the 

above equation can be simplified to give: 

𝜕2𝑀𝑦

𝜕𝑦2 +
𝜕2𝑀𝑥

𝜕𝑥2 − 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
= −𝑞.         (5) 

Considering the following equations [7,8]:

 

 

 
𝑀𝑦 = −𝐾 𝑥,𝑦  

𝜕2𝑊

𝜕𝑦2 + 𝜈
𝜕2𝑊

𝜕𝑥2   

𝑀𝑥 = −𝐾 𝑥,𝑦  
𝜕2𝑊

𝜕𝑥2 + 𝜈
𝜕2𝑊

𝜕𝑦2   

          (6) 

 𝑀𝑥𝑦 = −𝑀𝑦𝑥 = −𝐾 𝑥,𝑦 (1 − 𝜈)
𝜕2𝑊

𝜕𝑥𝜕𝑦
    (7) 

and accounting Eqs. (5) and (6) into Eq. (4) one has: 

𝜕4𝑊

𝜕𝑥4 +
𝜕4𝑊

𝜕𝑦4 + 2
𝜕4𝑊

𝜕𝑥2𝜕𝑦2  
=

𝑞

𝐾(𝑥,𝑦 )
,         (8) 

which is Green Lagrange's characteristic equation for a 

constant stiffness bent plate, which by introducing the 

                                                             
1 There will be no horizontal shear forces and normal forces on the wall of the 

element, since the pressure on the average surface of the plate is assumed to be 

neglected. 

Hamiltonian operator Δ =
𝜕2

𝜕𝑥2 +
𝜕2

𝜕𝑦2, can also be put in the 

following form: 

Δ2𝑊 =
𝑞

𝐾(𝑥,𝑦 )
                 (9) 

Equations (3) and (4) then become;  

𝑇𝑥 =  
𝜕𝑀𝑦𝑥

𝜕𝑦
+

𝜕𝑀𝑥

𝜕𝑥
= −𝐾 𝑥,𝑦 

𝜕

𝜕𝑥
 
𝜕2𝑊

𝜕𝑥2 +
𝜕2𝑊

𝜕𝑦2  =

−𝐾 𝑥,𝑦 
𝜕

𝜕𝑥
Δ𝑊 ,                          (10) 

𝑇𝑦 =  
𝜕𝑀𝑦

𝜕𝑦
−

𝜕𝑀𝑥𝑦

𝜕𝑥
= −𝐾 𝑥,𝑦 

𝜕

𝜕𝑦
 
𝜕2𝑊

𝜕𝑥2 +
𝜕2𝑊

𝜕𝑦2  =

−𝐾 𝑥,𝑦 
𝜕

𝜕𝑦
Δ𝑊 .                          (11) 

Substituting equations (5) and (6) into (4), considering 

that the flexural stiffness K(x, y) is variable, as a function of 

the cartesian coordinates x and y we obtain the following 

equation governing the bending of a plate where the stiffness 

(thickness) varies according to any law [4]. 

𝐾 𝑥,𝑦 Δ
2𝑊 + 2

𝜕𝐾 𝑥,𝑦 

𝜕𝑥

𝜕

𝜕𝑥
Δ𝑊 + 2

𝜕𝐾 𝑥,𝑦 

𝜕𝑦

𝜕

𝜕𝑦
Δ𝑊 + Δ 𝐾 𝑥,𝑦 Δ𝑊 

− 1 − 𝜈  
𝜕2𝐾 𝑥,𝑦  

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2 − 2
𝜕2𝐾 𝑥,𝑦  

𝜕𝑥𝜕𝑦

𝜕2𝑊

𝜕𝑥𝜕𝑦
+

𝜕2𝐾 𝑥,𝑦  

𝜕𝑦2

𝜕2𝑊

𝜕𝑥2  = 𝑞 

(12) 

where, W is the displacement of a point on the average 

surface. 

After mathematical transformations, we obtain the 

fourth-order equation (12) in this form: 

Δ(𝐾 𝑥,𝑦 Δ𝑊) −  1 − 𝜈  

 
𝜕2𝐾 𝑥,𝑦  

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2 − 2
𝜕2𝐾 𝑥,𝑦  

𝜕𝑥𝜕𝑦

𝜕2𝑊

𝜕𝑥𝜕𝑦
+

𝜕2𝐾 𝑥,𝑦  

𝜕𝑦2

𝜕2𝑊

𝜕𝑥2  = 𝑞.  (13) 

Let's set:  

𝑀 = − 𝐾 𝑥,𝑦  
𝜕2𝑊

𝜕𝑥2 +
𝜕2𝑊

𝜕𝑦2  =
𝑀𝑥+𝑀𝑦

1+𝜈
      (14) 

leading to the following system of second order partial 

differential equations: 

 
−Δ𝑀 −  1 − 𝜈  

𝜕2𝐾 𝑥 ,𝑦 

𝜕𝑥2

𝜕2𝑊

𝜕𝑦2
− 2

𝜕2𝐾 𝑥 ,𝑦 

𝜕𝑥𝜕𝑦

𝜕2𝑊

𝜕𝑥𝜕𝑦
+

𝜕2𝐾 𝑥 ,𝑦 

𝜕𝑦2

𝜕2𝑊

𝜕𝑥2
 = 𝑞

−𝑀 = 𝐾 𝑥,𝑦 Δ𝑊

 . 

(15) 

In order to solve this system of equations, one needs the 

definition of the stiffness form. For this purpose, we will 

consider that the flexural stiffness can be written according 

to two cases and assess the results by going through its 

formulation beforehand.  

-  Firstly, the case where the plate is continuous and 

homogeneous with a constant stiffness K(x, y) as 

follows [3,4,8], 

𝐾 𝑥,𝑦 =
𝐸ℎ3

12(1−𝜈2)
,              (16) 

leading the first line Eq. (15) to Δ𝑀 = −𝑞.  

-  Secondly, let’s consider the case of prismatic shells 

with second order polynomial variable rigidity as 

𝐾 𝑥,𝑦 =  𝑘0 + 𝑘1𝑦 + 𝑘2𝑦
2 , where; 𝑘0 ; 𝑘1 ; 𝑘2  are 

constant coefficients, meaning that Eq. (15) will be 
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read: 

 
𝛥𝑊 +  1 − 𝜈  

𝜕2𝐾 𝑥,𝑦  

𝜕𝑦2

𝜕2𝑊

𝜕𝑥2  = −𝑞

− 𝑀 =  𝐾(𝑥,𝑦)Δ𝑊

        (17) 

2.2. Boundary Conditions 

We begin the discussion of boundary conditions with the 

case of a shell with a rectangular cross-section and assume 

that x and y axes are taken parallel to the sides of the shell.  

2.2.1. Recessed Edge  

If the edge of a hull is recessed, the deflection and bending 

moment along that edge are zero and the tangent plane to the 

bent median surface along that edge coincides with the initial 

position of the median plane of the hull. Assuming that the 

recessed edge is given by x = a, the boundary conditions are:  

(𝑊)𝑥=𝑎 = 0;  
𝜕𝑊

𝜕𝑥
 
𝑥=𝑎

= 0         (18) 

which is the mixed boundary conditions. 

3. Application: Numerical Investigations 

3.1. Preliminary  

Let us consider the caisson bridge where the structure is 

homogeneous and isotropic as given below, which is 

embedded at its ends 𝑥 = 0 and 𝑥 = 𝑎, and which supports 

a surface load 𝑞.  

 

Figure 4.  Caisson brige  

In order to solve numerically the simplified form of the set 

of Eq. (15), as given by Eq. (17), the Gauss-Seidel algorithm 

[10] is used after rewriting this set of equations as: 

 

 
 
 

 
 −

 𝑀𝑛+1,𝑚 +𝑀𝑛−1,𝑚−2𝑀𝑛 ,𝑚  

Δ𝑥2 −
 𝑀𝑛 ,𝑚+1+𝑀𝑛 ,𝑚−1−2𝑀𝑛 ,𝑚  

Δ𝑦2 −

2 1 − 𝜈 𝑘2
 𝑊𝑛 ,𝑚+1+𝑊𝑛 ,𝑚−1−2𝑊𝑛 ,𝑚  

Δ𝑥2 = 𝑞

 𝑊𝑛+1,𝑚 +𝑊𝑛−1,𝑚−2𝑊𝑛 ,𝑚  

Δ𝑥2 +
 𝑊𝑛 ,𝑚+1+𝑊𝑛 ,𝑚−1−2𝑊𝑛 ,𝑚  

Δ𝑦2 +
𝑀𝑛 ,𝑚

𝐾 𝑥,𝑦 
= 0

                      (19) 

leading to 

 
 
 

 
 𝑀𝑛,𝑚 =  𝑞 +

 𝑀𝑛+1,𝑚 +𝑀𝑛−1,𝑚  

Δ𝑥2 +
 𝑀𝑛 ,𝑚+1+𝑀𝑛 ,𝑚−1 

Δ𝑦2
 

+2 1 − 𝜈 𝑘2
  𝑊𝑛 ,𝑚+1+𝑊𝑛 ,𝑚−1−2𝑊𝑛 ,𝑚  

Δ𝑥2  /  
2

Δ𝑥2 +
2

Δ𝑦2  

𝑊𝑛,𝑚 =  
 𝑊𝑛+1,𝑚 +𝑊𝑛−1,𝑚  

Δ𝑥2 +
 𝑊𝑛 ,𝑚+1+𝑊𝑛 ,𝑚−1 

Δ𝑦2 +
𝑀𝑚 ,𝑛  

𝐾 𝑥,𝑦 
 /  

2

Δ𝑥2 +
2

Δ𝑦2 .

                (20) 

Following the Gauss-Seidel method, we seek 𝑀𝑛,𝑚  𝑎𝑛𝑑 𝑊𝑛,𝑚  as a numerical sequence, by rewritten (20) as: 

 
 
 

 
 𝑀𝑛,𝑚

𝑘+1 =  𝑞 +
 𝑀𝑛+1,𝑚

𝑘 +𝑀𝑛−1,𝑚
𝑘  

Δ𝑥2 +
 𝑀𝑛 ,𝑚+1

𝑘 +𝑀𝑛 ,𝑚−1
𝑘  

Δ𝑦2
 

+2 1 − 𝜈 𝑘2
  𝑊𝑛 ,𝑚+1

𝑘 +𝑊𝑛 ,𝑚−1
𝑘 −2𝑊𝑛 ,𝑚

𝑘+1 

Δ𝑥2  /  
2

Δ𝑥2 +
2

Δ𝑦2 ,

𝑊𝑛,𝑚
𝑘+1 =  

 𝑊𝑛+1,𝑚
𝑘 +𝑊𝑛−1,𝑚

𝑘  

Δ𝑥2 +
 𝑊𝑛 ,𝑚+1

𝑘 +𝑊𝑛 ,𝑚−1
𝑘  

Δ𝑦2 +
𝑀𝑛𝑚
𝑘

𝐾 𝑥,𝑦 
 /  

2

Δ𝑥2 +
2

Δ𝑦2 .

               (21) 

 

This equation is progressively iterated, starting from the 

initial conditions  𝑀𝑛,𝑚
0 = 𝑊𝑛,𝑚

0 = 0, with  𝑛 = 1,2, . . , 𝑁 , 

and 𝑚 = 1,2, . . , 𝑀 , and with boundary conditions given  

by Eq. (18), while the operation is repeated until 

    𝑀𝑛,𝑚
𝑘+1 −𝑀𝑛,𝑚

𝑘  
2𝑀

1
𝑁
1 < 𝜀, and     𝑊𝑛,𝑚

𝑘+1 −𝑊𝑛,𝑚
𝑘  

2𝑀
1

𝑁
1 <

𝜀, with 𝜀 ≪ 1, or for a sufficient large value of 𝑘. In order to 

do this, we arbitrary choose  𝑎 = 𝑏 = 10, 𝑁 = 𝑀 = 100. 

3.2. Results and Discussions  

Let us first iterate the set of Eq. (21) by taking as 

parameters: q = −1 , E=300, h1 = 0.5 , h2 = 1.2 , b=10, 

ν = 0.3 , leading to  k0 = 3.434,  k1 = 4.4038, and by 

choosing as spatial step Δx = Δy = 2 × 10−3. In Figure 5, 

the results obtained for 𝑘2 = 0  is shown, from where it 

appears that the displacement (Fig 5a) is more accentuated 

than the bending moment (Fig 5b). It is obvious here that  

the bending moment has a regular shape as for similar loads 

of plates with constant stiffness and the displacement 

approaches the origin, which is identical to result already 

found in [4,8] for the case of the hydrostatic loadings. Next 

in Figure 6 plotted for 𝑘2 = 4.4038 ≠ 0 we notice a more 

refined bending moment, and a very serious stretching of the 

fibers in the case of displacement, which probably could 

justify some experimental results. 
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Figure 5.  (a): Displacement 𝑊(𝑥, 𝑦), (b): Moment 𝑀(𝑥, 𝑦) obtained for: 𝑞 = −1, E=300, ℎ1 = 0.5, ℎ2 = 1.2, b=10, 𝜈 = 0.3, leading to  𝑘0 = 3.434, 
𝑘1 = 4.4038, 𝑘2 = 0 

 

Figure 6.  (a): Displacement 𝑊(𝑥, 𝑦) , (b): 𝑀(𝑥, 𝑦)  obtained for: 𝑞 = −1 , E=300, ℎ1 = 0.5 , ℎ2 = 1.2 , b=10, 𝜈 = 0.3 , leading to  𝑘0 = 3.434, 
𝑘1 = 4.4038, 𝑘2 = 4.4038 ≠ 0 

4. Conclusions 

In this paper, we have studied the behavior of prismatic 

bending shell with variable rigidity submitted to constant 

flexural stress. These studies can find applications in 

mechanical engineering and heavy boiler making, as well as 

in sails, rafts, aircraft, shipbuilding and floors in civil 

engineering works. First of all, we have derived the equation 

governing the state of prismatic hulls with constant rigidity 

and submitted to constant uniformly load, which was 

numerically solved using the Gauss-Seidel algorithm,   

with application on a box bridge with two embedded edges. 

The results obtained showed that there were significant 

differences between displacements of both the case of linear 

and quadratic stiffness, with that of the quadratic stiffness 

very close to real physical observations.  
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