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Abstract  A class of two degree of freedom nonlinear oscillators, with parametric excitation forces is considered and 
investigated. The case of one-to-one internal resonance and subharmonic external resonance of both modes of vibrations are 
considered simultaneously. Using the analytical method of multiple scales, a set of slow-flow equations governing the 
amplitudes and the phases of the motion is derived. Effects of system parameters on the existence and stability properties of 
periodic motion are studied. The frequency response curves are presented and investigation is focused on understanding the 
interaction of the branches of these curves as the nonlinear parameters and external forcing are varied. Finally the equations 
of motion are integrated numerically to verify analytical predictions. It is also found that the system exhibits different kinds of 
responses. 
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1. Introduction 
The nonlinear behavior of two parametrically excited van 

der Pol oscillators is studied. It is found that the instabilities 
of quasi-periodic solutions and 3-D tori may lead to chaos as 
the parameters vary [1]. Parametrically excited and free 
vibration of weakly nonlinear oscillators under 1:3 internal 
resonance and two external resonances and under 1:1 
internal resonance are investigated. The method of multiple 
time scales is applied to obtain four first order ordinary 
equations of the amplitudes and phases. The effect of some 
parameters on the stability of the system is studied using the 
frequency response curves. Theoretical results are verified 
numerically [2, 3]. Two nonlinearly coupled oscillators 
subjected to external periodic force are investigated. The 
resonant and nonresonant approximate solution is obtained 
using the method of multiple scales. The resonant frequency 
response curves and the bifurcation diagrams are studied [4]. 
The response of two coupled externally and parametrically 
excited Van der Pol oscillators to primary resonance is 
analyzed. Lyapunov’s first method is used to determine the 
stability of the proposed analytical solution obtained by the 
method of multiple scales perturbation technique. Effects of 
different parameters of the considered system on the 
steady-state responses are studied [5]. The free dynamics 
with 1:1 internal resonance of a two-dof system of nonlinear 
coupled oscillators are studied in the case of undamped and  
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damped system. It is found that the undamped system admits 
stable and unstable synchronous motion in the neighborhood 
of the resonance case and a bifurcation diagram is 
constructed. When damping is considered, it is shown that 
sustained resonance captured appears to provide a dynamical 
mechanism for passively transferring energy from one art of 
the system to another, which is directly related to the 
essential stiffness nonlinearity of the system [6]. The slow 
flow equations governing the modulation of the amplitudes 
and the phases of two nonlinearly coupled van der Pol 
oscillators to parametric excitation in the presence of 
one-to-one internal resonance are derived. Energy 
considerations are used to investigate the existence and 
characteristics of limit cycles of the slow flow equations [7]. 
Periodic and homoclinic motions in periodically forced, 
weakly coupled oscillators is studied. Different types of 
homoclinic motions occur in the considered system and the 
relationship between the subharmonic and homoclinic 
Melnikov theories is discussed [8]. The multiple scales 
perturbation theory is used to obtain approximate periodic 
solutions of a two coupled Duffing-van der Pol oscillators, 
which is investigated analytically and numerically. The 
effects of different parameters on the system response is 
studied and analytical predictions are confirmed numerically. 
It is shown that bifurcation leading to quasiperiodic attractor 
and jump phenomenon occur in the system [9]. A bifurcation 
analysis in a damped Mathieu and a damped harmonic 
oscillators to parametric excitations is studied analytically 
and numerically. Complex periodic windows in the chaotic 
regions are discovered, which allow the control of chaos. It is 
shown that the stable solutions lose their stability by either 
period doubling or intermittency when the parameters leave 
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their shrimps in different directions [10]. The periodic and 
chaotic responses of a rotor-AMB system with quadratic and 
cubic nonlinearities and time-varying stiffness are 
investigated considering the simultaneous primary resonance 
case. Using the method of multiple scales, the frequency 
response equation is obtained and solved numerically to 
obtain the steady-state solution, and the stability is 
determined by the eigenvalues of the corresponding Jacobian 
matrix. Rung-Kutta fourth order ethod is applied to explore 
the non-linear chaotic and resonant behavior of the system 
[11]. The principal parametric resonance is studied in the 
parametrically excited two-degree-of-freedom AMB system 
with time-varying stiffness. Different effects of the system 
parameters are investigated. The theoretical results obtained 
by the method of multiple scale are verified by numerically 
[12]. The effect of the parametric excitations on the 
nonlinear response and chaotic motion of the string-beam 
coupled system under the case of one-to-two internal 
resonance between the modes of the string and the beam, in 

the presence of subharmonic resonances. Numerical 
simulations illustrated that multiple-valued solutions, jump 
phenomenon, hardening and softening nonlinearities occur 
in the resonant frequency response curves [13]. 

In this paper, the nonlinear oscillations and chaotic 
dynamics of a coupled nonlinear system under parametric 
excitation are investigated. The method of multiple scales is 
utilized to obtain the frequency response equations, which 
are numerically solved to obtain the steady-state responses. 
The analysis of stability for model is also given. The 
behavior of the system is studied applying Rung-Kutta fourth 
order method. The numerical solution of both modes of 
vibration is obtained at non-resonant case, simultaneous 
internal and principal parametric resonance. The effect of 
different parameters on the system behavior and its stability 
are also investigated. The results obtained show that the 
chaotic motion can occur in a parametrically excited 
nonlinear coupled oscillators. The numerical simulations 
verify the analytical predictions.  

2. Perturbation Analysis 
The equations of motion governing the model in non-dimensional form [2], have been modified as follows: 

2 3 2
1 1 2 1 2 1 1( ) 2 cos cosx x x x xy x f t x F tω εµ ε α α ε ε+ + + + + Ω = Ω         (1) 

2 3 2
2 1 2 2 2 2 1( ) 2 cos cosy y y y x y y f t y F tω εµ ε β β ε ε+ + + + + Ω = Ω     (2) 

where ω1,2 are two linear natural frequencies, μ is the damping coefficient, f1,2 and F1,2 are the amplitudes of the forcing 
excitations, αi, βi (i = 1,2) are the coefficients of nonlinear terms, ε is a small dimensionless parameter, and Ω1,2 are the 
frequencies of the excitation. More details about Eqs. (1), (2) and their parameters are given in Appendix A. To determine a 
first-order uniform expansion for Eqs. (1) and (2) when ω1 = ω2 and Ω1 = 2ω1 = 2ω2, one uses the method of multiple scales. 
We seek a first-order uniform expansion of the solution of Eqs. (1) and (2) in the form 

)(),(),(),( 2
101100 εεε OTTxTTxtx ++=                      (3) 

)(),(),(),( 2
101100 εεε OTTyTTyty ++=                   (4) 

where, tT n
n ε= , T0 is the fast time scale associated with changes occurring at the frequencies ω1,2 and Ω1,2 and T1 is the 

slow time scale associated with modulations in the amplitudes and phases caused by the nonlinearity, damping, and 
resonances. 

In terms of T0 and T1, the time derivatives become: 
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j  Substituting for ,,, xxx  and yyy ,,  in Eq. (1) and (2), and equating the coefficients of the 

same powers of ε we obtain the following differential equations 
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The general solution of Eqs. (6) and (7) can be written as 

ccTiTATTx += )exp()(),( 0110100 ω ,                     (10) 

ccTiTBTTy += )exp()(),( 0210100 ω                       (11) 

where A0, B0 are complex functions in T1, which are defined in the next section (cc denotes a complex conjugate of the 
preceding term). Substituting Eqs. (10), (11) into Eqs. (8), (9), we get 
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where the prime indicates the derivative with respect to T1. Any particular solutions of equations (12) and (13) contain secular 
terms proportional to exp(± iω1,2T0), and it contains small-divisor terms if the following resonant conditions are satisfied 
simultaneously: 

(a) 1 2ω ω≅ ,  (b) 1 12ωΩ ≅ ,  (c) 1 22ωΩ ≅ . 

The first resonance is called internal resonance or auto-primary resonance, and the last two resonances are called principal 
parametric resonances. In this paper, we analyze the case 1 2ω ω≅  in the presence of 1 12ωΩ ≅  and 1 22ωΩ ≅ , which 
has been confirmed numerically. 

3. Simultaneous Resonance of the System 
The closeness of the resonances is described by introducing the external detuning parameters σ1, σ2, and σ3 as  

ω1 = ω2 + εσ1,  Ω1 = 2ω1 + εσ2, and  Ω1 = 2ω2 + εσ3 .                 (14) 
Using (14) in eliminating terms that produce secular terms from Eqs. (12) and (13) gives the solvability conditions as 
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Substituting the polar forms  

 



104 Usama H. Hegazy:  Internal-External Resonance and Saturation Phenomenon in a Two Coupled Nonlinear Oscillators  
 

0 1 1
1 exp( )
2

A a iθ= ,   0 2 2
1 exp( )
2

B a iθ=                            (17) 

into Eqs. (15) and (16), where a1,2 and θ1,2 are the steady-state amplitudes and the phases of the motions respectively, then 
separating the real and imaginary parts gives governing equations of the amplitudes аi and phases γi 

21 2
1 1 1 1 1 2

1 1

1 ( sin ) ( sin 2 )
2 4 8

Fa a a a aαµ γ γ
ω ω

′ = − + − ,                    (18) 

3 2 21 1 2 2
1 1 2 1 1 1 1 1 2 1 2

1 1 1 1

3( cos ) ( ) ( ) ( cos 2 )
2 4 2 4
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′ = + − − − ,         (19) 

22 2
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2 4 8
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3 2 22 1 2 2
2 2 3 2 2 2 2 2 1 2 1

2 2 2 2

3( cos ) ( ) ( ) ( cos 2 )
2 4 2 4
Fa a a a a a a aβ β βγ σ γ γ
ω ω ω ω

′ = + − − −        (21) 

where θ = θ2 – θ1, γ1 = σ2 T1 – 2θ1, γ2 = σ3 T1 – 2θ2, and γ = θ – σ1T1. The steady-state solutions correspond to constant 
solutions, that is correspond to 02,1 =′a and 02,1 =′γ . Hence the fixed points of Eqs. (18)-(21) are given by  
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2 4 8
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ω ω

− + − = ,               (22) 
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From Eqs. (22)-(25), we have the following possible solutions besides the trivial solution: 
Single-mode (unimodal) solutions: 

Case 1:  a1 = 0 and a2 ≠ 0. Squaring Eqs. (24) and (25), then adding the squared results together gives the following 
frequency response equation 

2 4 2 2 2 21 1 2
2 3 2 3

2 2 2

3 3( ) ( ) [ ( ) ] 0
4 2 2

Fa aβ β σ σ µ
ω ω ω

− + + − =                (26) 

Case 2: a1 ≠ 0 and a2 = 0. Squaring Eqs. (22) and (23), then adding the squared results together gives the following 
frequency response equation 

2 4 2 2 2 21 1 1
1 2 1 2

1 1 1

3 3( ) ( ) [ ( ) ] 0
4 2 2

Fa aα α σ σ µ
ω ω ω

− + + − =                (27) 

Two-mode (bimodal) solutions:  
Case 3: a1 ≠ 0 and a2 ≠ 0. Squaring Eqs. (22) and (23), then adding the squared results together, similarly to Eqs. (24) and 

(25) gives the following frequency response equations 
4 2

1 1 2 1 3 0r a r a r+ + = ,                        (28) 

4 2
4 2 5 2 6 0r a r a r+ + =                        (29) 

where ri ( i = 1,2,…6) are defined in Appendix B. 
To study the stability of the fixed point solutions of Eqs. (18)-(21), we introduce the following forms  
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where p1,2, q1,2 are real. Substitution the above forms of A0, and B0 into the linearized form of Eqs. (15), (16), that is into 

1 0 0 1 0 2 0
1(2 ) exp( ) 0
2

i A A F A i Tω µ σ′− + + = ,               (31)

 2 0 0 2 0 3 0
1(2 ) exp( ) 0
2

i B B F B i Tω µ σ′− + + =                    (32) 

Then separating real and imaginary parts, gives the following equations 
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To determine the stability of the fixed points, we evaluate the Jacobian matrix of (33)-(36), then the zeros of the 
characteristic equation (the eigen equation) is given by 

4 3 2
1 2 3 4 0l l l lλ λ λ λ+ + + + =                  (37) 

where li, i=1,2,3,4 are constants, given in Appendix B. The Routh-Hurwitz criterion guarantees that all eigenvalues have 
negative real parts, and hence the fixed points are asymptotically stable, if 

1 0,l >      1 2 3 0,l l l− >      2
3 1 2 3 1 4( ) 0,l l l l l l− − >      4 0l > . 

 

4. Frequency Response Curves 
The periodic solutions corresponding to the fixed points of 

Eqs. (18)-(21) for simultaneous internal and principle 
parametric resonances of the two modes are obtained when 

02,1 =′a and 02,1 =′γ . From the resulting equations, the 
frequency response equations (26)-(29) are obtained and 
solved numerically. The numerical results are presented Figs. 
(1)-(4) as the amplitudes a1,2 against the detuning parameters 
σ3,2 for different values of other parameters. The stable 
solutions are represented by solid lines and the unstable 
solutions are represented by the dotted lines.  

4.1. Response Curves of Case 1 and 2 

Considering Fig. (1a) as basic case for comparison, it can 
be seen from Figs. (1b) and (1c) that as the forcing excitation 
amplitude F2 decreases and the natural frequency ω2 
increases, the branches of the response curves converge to 
each other, the region of unstable solutions and the amplitude 
decrease. The response curves in Fig. (1d) are not 
significantly affected as the damping coefficient µ increases, 
while the amplitude decreases. 

Figs. (1e) and (1f) show several representative curves for 
the variation of steady-state amplitude as the nonlinear term 
β1 is varied. Comparing these curves shows that the 
nonlinearity effect bends the frequency response curves to 
left (softening nonlinearity) when β1 is positive and to right 
(hardening nonlinearity) when β1 is negative. This leads to a 
multi-valued solutions and hence to jump phenomenon 
occurrence.  

For the second case, the steady-state amplitude a1 is 
plotted against the detuning parameter σ1, as shown in Figs. 
(2a)-(2f). These figures illustrate similar effects of 
parameters, that was reported in case 1.  

4.2. Response Curves of Case 3 

The frequency response curves for both modes in Figs. (3) 
and (4) show a hardening nonlinearity except for those in 
Figs. (3e) and (4e), where the curves are bent to the right 
indicating a softening behavior. The nonlinear coefficients α2 
and β2 have trivial effect on the frequency response curves as 
shown in Figs (3g) and (4g), respectively. 
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Figure 1.  Response curves of case 1:  a1 = 0, a2 ≠ 0, F2 = 0.4, ω2=3.6, µ = 0.0003, β1 = 0.07 
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Figure 2.  Response curves of case 2:  a1 ≠ 0, a2 = 0, F1 = 0.04, ω1=3.6, µ = 0.0003, α1 = 0.005 
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Figure 3.  Response curves of case 3:  a1 ≠ 0, a2 ≠ 0, F1 = 0.04, ω1=3.6, µ = 0.0003, α1 = 0.005, α2 = 0.02 
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Figure 4.  Response curves of case 3:  a1 ≠ 0, a2 ≠ 0, F2 = 0.3, ω2=3.6, µ = 0.0003, β1 = 0.07, β2 = 0.02 
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5. Numerical Solution 
Numerical integration to Eqs. (1) and (2) are carried out 

using a fourth order Runge-Kutta algorithm to verify analytic 
predictions. A non-resonant system behavior for both modes 
is shown in Fig. (5). The behavior of the system under 
simultaneous internal and principal parametric resonant 
conditions, Fig. (6), illustrates that the steady-state amplitude 
in the horizontal and vertical direction is increased to about 
900% and 1125%, respectively. 

5.1. Effect of the Amplitude of the Forcing Excitations f1,2 

Figs. (7a) and (7b). illustrates that x- and y-amplitudes are 
monotonic increasing functions in the forcing excitation 
amplitudes f1,2, respectively. 

5.2. Effect of Damping Coefficient 

It can be seen from Fig. (7c), that for negative values of the 

damping coefficient µ, the amplitude of both modes of 
vibration increases, which may lead to unstable system. 
Whereas, for positive values of µ, the amplitudes of x and y 
are monotonic decreasing functions. This parameter can be 
used to control the system amplitude, where more increase of 
µ leads to saturation phenomena.  

5.3. Effect of Nonlinear Coefficients 

Figs. (7d)-(7g) show the effect of different nonlinear 
coefficients α1,2 and β1,2 on the x- and y- amplitudes, where a 
saturation phenomena is noticed as magnitude of the 
nonlinear coefficients increases. The x- and y- amplitudes 
are monotonic decreasing functions in the nonlinear terms 
α1,2 and β1,2, respectively.  

Both effects of parameters in the frequency response 
results, Figs. (1)-(4), and the numerical solution results, Fig. 
(7), are in a good agreement. 

 

Figure 5.  Non-resonant time response solution:  F1 = 0.4, f1 = 0.2, F2 = 0.3, f2 = 0.1; Ω1 = 2.2, Ω2 = 1.9, ω1=3.2, ω2=3.6, µ = 0.0003, α1 = 0.005, 
α2 = 0.02, β1 = 0.07, β2 = 0.02 

 

Figure 6.  Simultaneous internal and principal parametric resonance solution 
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Figure 7.  Numerical solution under various values of the parameters at simultaneous internal and principal parametric resonance conditions; (dashed 
line is the x- amplitude, solid line is the y- amplitude) 

 

5.4. Effect of the Amplitude of the Forcing Excitations 
F1,2 

The effects of the amplitude of the forcing excitations F1 
and F2 are shown in Figs. (8,9), which represent the 
time-series solution (t, x), (t, y) for the horizontal and vertical 
modes respectively at resonant case. Considering Fig. (6) as 
basic case for comparison. It can be seen from Fig. (8) that as 
the amplitude of the forcing excitation F1 increases, a chaotic 

motion occurs for the horizontal and vertical modes. The 
time trace in Fig. (8b) indicates that the response of the first 
and second mode is periodically and chaotically modulated, 
respectively. As F1 increases further, the amplitude of the 
modulated response of both modes increases considerably, 
causing the shape of the chaotic motion to change. Similar 
behavior for the chaotic motion is shown in Fig. (9) as the 
amplitude of the forcing excitation F2 changes. 

 



112 Usama H. Hegazy:  Internal-External Resonance and Saturation Phenomenon in a Two Coupled Nonlinear Oscillators  
 

 

Figure 8.  Effect of external forcing excitation amplitude F1 at simultaneous internal and principal parametric resonance conditions 

 

Figure 9.  Effect of external forcing excitation amplitude F2 at simultaneous internal and principal parametric resonance conditions 
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6. Conclusions 
The nonlinear response ad chaotic motion of a two degree 

of freedom nonlinear system non under both external and 
internal excitations are investigated, where internal as well 
as external resonance conditions have been considered. The 
method of multiple scales is applied to determine the 
simultaneous resonance case and to study the system 
stability. The stability of the system and the effects of 
different parameters on system behavior have been studied 
under the considered resonance cases applying the frequency 
response equation method. They have been confirmed 
numerically. The numerical results are focused on both the 
effects of different parameters and the response of the system. 
The shape of the chaotic motions in the horizontal and 
vertical directions is also investigated. It may be concluded 
that: 

1.  The considered model has a variety of interesting 
phenomenon such as multi-valued solutions, jump, 
softening and hardening nonlinearities.  

2.  The steady-state amplitudes of both modes are 
monotonic increasing functions in the internal forcing 
excitation amplitudes f1,2. More increase may lead to 
unstable behavior.  

3.  The steady-state amplitudes are monotonic decreasing 
functions in the damping coefficient μ, and the 
nonlinear parameters α1,2, β1,2. Further increase may 
lead to saturation phenomena. 

4.  For the external forcing excitation amplitudes F1,2, as 
the magnitude of any excitation amplitude is increased, 
a chaotic motion occurs in the horizontal and vertical 
directions. When the amplitudes F1,2 change, the 
chaotic behavior changes leading to the appearance of 
periodically and chaotically modulated oscillations in 
the system. 

Appendix A 

 
Figure 1A.  The model of a mechanical system, [2] 

The derivation of non-dimensional formulation is similar 
to that obtained in [2]. The system under investigation, 
shown in Fig. 1A, consists of a rigid machine with two 
identical supports and has mass m and moment of inertia J. 
The form of the restoring force developed in each support 
due to a displacement u(t) is given by 3cu ku uβ+ + , 
where c and k are linear viscous damping and the 
Duffing-type stiffness of the two supports, respectively. In 
our work, the stiffness is assumed to have the periodic form 

0 1 2cosk k k tω= + , where Ω2 is the frequency of 
varying stiffness and the response of the system will be 
studied under parametric excitation. The rigid machine can 
translate in the vertical direction x by u and also rotate in a 
vertical plane by θ. Applying normalization, one obtains the 
equations of motion of the system in the forms (1) and (2). 

Appendix B 
Coefficients of Eqs. (28) and (29) 

21
1

1

3( )
4

r α
ω

= ,     21
2 2 2 1 22

1

3[( )( 2 )]
4

r aα α ω σ
ω

= − ,  

2 4 2 2 2 22 1 1
3 2 1 1 2 2 22

1 1 1

3( ) [( )( 4 )] [ ( ) ]
4 4 2

Fr a F aα α ω σ σ µ
ω ω ω

= + − + + − ,  

21
4

2

3( )
4

r β
ω

= ,     21
5 2 1 2 32

2

3[( )( 2 )]
4

r aβ β ω σ
ω

= − ,  

2 4 2 2 2 22 2 2
6 1 2 2 3 1 32

2 2 2

3( ) [( )( 4 )] [ ( ) ]
4 4 2

Fr a F aβ β ω σ σ µ
ω ω ω

= + − + + − .  

Coefficients of Eq. (37) 

1l µ= , 
2 2

2 2 21 2
2 2 32 2

1 2

6
4 4
F Fl µ σ σ
ω ω

= + + − − , 
2 2

3 2 21 2
3 2 32 2

1 2

4 [ 4( )]F Fl µ µ σ σ
ω ω

= + + − + , 

2 2 2 2
4 2 2 2 2 21 2 1 2

4 2 3 2 32 2 2 2
1 2 1 2

[ 4( ) ( )( )]
4 4

F F F Fl µ µ σ σ σ σ
ω ω ω ω

= + + − + + − − . 
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