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Abstract  Unstable equilibria associated with the nonlinear in-plane stability of an axially compressed simply supported 
inextensional Euler-Bernoulli beam resting on a tensionless unilateral Winkler (linear) foundation is dealt with in this work. 
The proposed approach is based on the construction of the system’s total potential energy and its exploration via Catastrophe 
Theory. The three-parameter singularity associated with the problem yields a special reduced type of the Butterfly 
Catastrophe, by evaluating the Bifurcation Set through successive eliminations. It represents a family of parameterized 
surfaces, which properly reconstructed show great resemblance to Swallowtail-like sections of the Butterfly Catastrophe. The 
unstable configurations, associated with one part of the beam in contact and the rest with no contact, are well captured and the 
corresponding critical buckling loads are established. The results obtained are found in good agreement with ones from two 
alternative approaches. Possible bifurcations prior to stable buckling as well as sudden jumps between classical Euler in- and 
out-of-plane buckling and the unbonded contact one are reported (a feature of the Cuspoids, including the Butterfly 
Singularity). Such undesirable phenomena have also been reported for nonlinear bilateral subgrade models. 
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1. Introduction 
The buckling and postbuckling response of beams/struts 

(of either infinite or finite length) on elastic foundation has 
been the subject of a huge number of publications over the 
last 50 years, which were based on various linear as well as 
nonlinear subgrade models [1-3]. Even a limited reference of 
all these investigations lies beyond the scope of the present 
work.  

This simple structural component can rather easily 
simulate the stability response related to practical problems 
of various disciplines. Among these, one may quote the 
lateral thermal buckling of railway tracks [4], the stability of 
the top chord of low (pony) truss bridges [5], the mechanical 
response of metallic aortic stents [6] etc. Other theoretical 
approaches have also been reported [7-9], which however 
did not consider any underlying physical problem. 

The overwhelming majority of the works cited above (and 
of numerous others not referenced here for brevity) was 
based on the assumption that the subgrade is always in 
contact with the supported structure (bilateral), i.e. that the 
foundation always reacts, either in tension or in compression. 

 
* Corresponding author: 
dimsof@civ.uth.gr (Dimitrios S. Sophianopoulos) 
Published online at http://journal.sapub.org/mechanics 
Copyright © 2018 The Author(s). Published by Scientific & Academic Publishing 
This work is licensed under the Creative Commons Attribution International 
License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

However, the simple ideal beam only in axial compression 
resting on an elastic foundation may also model practical 
applications, in which the subgrade is of the so-called 
one-way, i.e. tensionless, of unilateral type. In such 
situations, a separation between parts of the beam and the 
foundation may occur, and hence the relevant problem is a 
discontinuous – unbonded contact one. Such a phenomenon 
has been reported in the literature, but in a limited number of 
works. For instance, in an earlier paper [10], Yun and 
Kyriakides simulated the “beam-mode buckling” exhibited 
by buried pipelines in compression (where a section of the 
line lifts through the ground), adopting a tensionless Winkler 
foundation. Later, Silveira et al. [11] studied – among other 
types of structures – the response of a simply supported beam 
acted upon simultaneously by end moments and a 
compressive axial force, resting on a Winkler tensionless 
foundation. The authors used a semi-analytical methodology 
via a Ritz type approach, which led to the determination of 
the contact and no contact region between beam and 
subgrade. 

Moreover, Battiprolu et al. [12, 13] in order to simulate the 
response of a pinned-pinned beam interacting with 
polyurethane foam foundation, adopted a beam-model on a 
nonlinear tensionless viscoelastic subgrade under axial 
compression and distributed as well as concentrated 
transverse loading. They also investigated the effect of 
various parameters, such as the relative foundation-beam 
stiffness, nonlinearities etc. Separation between beam and 
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subgrade was evident also in this case. 
Finally, in a very recent paper [14], Ioakimidis derived the 

conditions of complete contact for a beam on a tensionless 
Winkler foundation, using symbolic computations available 
in modern quantifier elimination software [Mathematica, 
[15]]. In this study, the case of pure axial compression was 
considered, and as stated, the adopted subgrade model is 
frequently actually the case in practice. 

To this end, when the above described simple beam-model 
lacks imperfections and lateral restrictions, if it is loaded by a 
pure axial compressive force, only four (4) postbuckling 
deformation patterns may occur, as the load gradually 
increases from zero. Namely, the 1st one (abbreviated in what 
follows by PB1) is associated with the in-plane buckling 
“away” from the foundation (full separation – no contact at 
all), that is realized by the 1st Euler stable buckling mode in a 
single semi-wave form, with well-known properties. The 2nd 
pattern (PB2), out-of-plane Euler buckling in any mode, also 
stable, may as well occur but is not affected by the presence 
of the subgrade (friction neglected). The corresponding 
critical loads may be greater of small than the ones of the 1st 
pattern, depending on the beam’s properties and 
cross-section orientation. The 3rd simplest possible 
postbuckling configuration (PB3) is related to a single 
wave-form-like deformed shape in full contact with the 
subgrade, i.e. the whole beam is deflected inside the 
foundation. This will be possible only for certain 
combinations of the beam and foundation parameters [5, 14, 
16-17] and the critical load may also be smaller or greater 
than the ones of PB1 and PB2. The last pattern (PB4) 
includes discontinuous contact, with yet unknown in number 
and length consecutive regions in contact and no contact. 
However, energy considerations and application of the 
principle of Mathematical Induction [18] have shown [19] 
that, in the foregoing case, the buckled deformed 
configuration is associated with only one part of the beam in 
contact with the foundation and the remaining not in contact. 
This finding was based on a Pasternak tensionless subgrade 
model, and hence is a fortiori valid for the Winkler model as 
well. 

Focusing on establishing the nonlinear stability of PB4, 
which is an unstable case with profound symmetry, the 
present work tackles the problem by constructing the total 
potential energy function of the system and exploring its 
nature via Catastrophe Theory [20-22]. The three parameter 
Singularity arising was found to be a special reduced case  
of the Butterfly, namely the symmetric one [23], with its 
Bifurcation Set strongly resembling Swallowtail-like 
sections of the original Singularity [24]. This set, evaluated 
by means of successive eliminations, as demonstrated by 
Deng [25], produced critical buckling loads and 
corresponding deformed configurations. The results 
obtained were compared with the ones of two more 
alternative approaches and good agreement was established. 
It was found that the unstable configuration dealt with  
herein may appear either prior to or between the in- 

and-out-of-plane Euler buckling, which may lead to sudden 
jumps and unexpected bifurcations, a fact of importance for 
practical design and simulations.  

This could be avoided by carefully selecting the beam and 
subgrade parameters, which is not an easy task, since 
especially the stiffness of the foundation cannot be directly 
determined [26]. Similar undesirable phenomena have also 
been reported in the literature, but for bilateral contact only 
[7, 8, 27, 28]. 

For the completeness and full validation of the present 
theoretical findings, in their entirety, experiments should be 
carried out. This task is ongoing by the authors, and 
hopefully its outcome will be soon available. 

2. Problem Description 
We consider a simply supported inextensional 

Euler-Bernoulli beam of flexural rigidity EI and of uniform 
cross section, resting on a linear (Winkler type) tensionless 
foundation, characterized by a stiffness parameter kf, and 
acted upon by an axial compressive force P. Let W(y) be the 
beam’s in-plane flexural deflection. The material of the 
beam is assumed linearly elastic and there are no lateral 
restrictions. The undeformed pre-buckling configuration is 
shown in Figure 1, that follows.  

 

Figure 1.  Axially compressed simply supported beam resting on a 
Winkler type unilateral elastic foundation 

We then focus on the 4th possible postbuckling behavior 
described in the Introduction, which is related to one portion 
of the beam in contact with the foundation and the remaining 
one with no contact. Due to the nature of the foundation 
(tensionless and linear) the problem is symmetric and thus 
one may arbitrarily choose to investigate the case of either 
the 1st or the 2nd region being in contact. In this work we 
consider the 1st one in contact, depicted in Figure 2. 

 
Figure 2.  Postbuckling configuration of the beam dealt with 

Hence, it is convenient to express this shape in a Fourier 
series expansion, retaining only the two leading coefficients, 
which suffice for the problem at hand, i.e. 
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If more than two terms are used, no additional accuracy is 
expected, only obstacles in the analysis that follows. 

This smooth ,  rC r ∈Ν  function satisfies the boundary 
conditions, and moreover, in order that there is free rotation 
at the two ends of the beam and one global extremum in the 
deflection of each region, it is easily found that the ratio of 
the two state variables q1 and q2, designated as β = q1/q2, 
must satisfy the inequality 2β < . Additionally, for the 
function given in Eq. (1) to possess only one more root 
within the interval ( )0,  , symbolic computations using the 
powerful Reduce command embedded in Mathematica [15] 
yield the following conditions, which represent a logical 
expression of a clear dissolution – conjunction type, 
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resulting to the evaluation of the length a depicted in Figure 
2, which is found equal to 
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3. Mathematical Formulation 
We then proceed with the evaluation of the system’s total 

potential energy function VT being in fact the sum of the 
strain energy due to bending U1, the strain energy due to 
subgrade reaction U2, and the work of the external force Ω. 
In doing this, we follow standard procedures of Mechanics 
and we adopt an approximate nonlinear curvature expression 
[29, 30] of the form 
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The various components of VT are thereafter formulated 
as: 
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The last expression is the so-called fixed length condition, 
adopted from Gilmore, page 258 [21]. 

We then introduce the following dimensionless 
parameters: 
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Moreover, we approximate function arcsec[p1/p2], which 
appears in the evaluated expression of U, according to the 
formula  
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up to the 6th order. Higher order approximants lead to 
identical results, since z, i.e. -2p1/p2 is (in absolute value) 
restricted to vary between the boundaries of inequality (2).  

Radicals appearing in the various expressions of the 
components of the total potential energy function are also 
approximated via series expansions up to the 6th order. The 
reason for the choice of this specific order of truncation, and 
not of a higher one, is explained at the end of this Section. 

The final outcome of the dimensionless total potential 
energy function of the beam yields: 
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(9) 
This function is obviously smooth (with continuous 

derivatives up to the 6th order), since it involves only simple 
algebraic manipulations of the parameters and no 
discontinuities, due to the absence of denominators that may 
be equal to zero. Hence, the potential and the families of 
functions that it represents may be treated via Catastrophe 
Theory. 

Evidently, the strongly nonlinear total potential energy 
function of the original (continuous) structural system 
depends on three parameters: the magnitude of the external 
compressive load λ, the stiffness of the foundation μ and the 
length of the beam’s portion in contact with the subgrade a. 
The truncated potential also depends on three parameters, as 
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in (9), which in turn depend on the original ones (β silently 
refers to a). Since the proposed analysis leads to a potential 
dependent only on one generalized coordinate, and the 
problem at hand is an elastic stability one, the 6th order 
truncation appears a reasonable choice. Note that the 
swallowtail and butterfly singularities associated with such 
a choice are scarce in structural engineering; additionally, 
the results produced will be verified in a satisfactory 
manner, through the application of two more different 
approaches, as presented in Section 4.  

4. Catastrophe Theory Analysis 
In this Section we explore the nature of the truncated total 

potential energy function of the system, according to the 
Theory of Catastrophes. Apparently, the function given in Eq. 
(8), although it can be seen as a reduced – special case of the 
Butterfly Singularity [21, 22], it still represents a symmetric 
butterfly function, exhibiting in general a symmetric 
catastrophe manifold [23]. This feature will be sought by 
exploring the nature of the foregoing Singularity via an 
alternative scheme. In doing this, we employ an elimination 
method, reported by Deng [25], and using simple Algebra, 
we reach to the Bifurcation Set (Bs) of the Catastrophe at 
hand. Dropping the subscript of p1 in Eq. (8), the 
corresponding equilibrium equations at the critical states and 
the final expression of the Bs are given by: 
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Using the expressions of ξi, i=1,2,3 given in (9), and after 
cumbersome symbolic manipulations, Eq. (10b) yields a 
second order polynomial equation with respect to λ, the 
coefficients of which are lengthy nonlinear functions of β 
and μ, not presented herein for brevity. However, for 
arbitrary positive values of μ and for β varying according to 
inequality (2), it is found that this equation has always two 
distinct real positive roots, namely λ1 and λ2. Their values are 
given in Eqs. (11a,b) as follows: 
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The parameterized families of surfaces defined by Eq. 
(10b) could be represented as three-dimensional contour 
plots in the (λ, β, μ) space and then compared with standard 
bifurcation sets of the Elementary Catastrophes in a 
geometrical manner [24]. This will be demonstrated in the 
next Section. 

For real applications, i.e. for a specific value of µ one 
may engage expressions (11a,b) in a minimization procedure 
via Mathematica [15], and evaluate the critical (buckling) 
load and the corresponding critical value of β = βcr. The latter 
is the quotient of the state variables at the instance of 
buckling. 

5. Results and Discussion 
Initially the Bifurcation Set defined in Eq. (10b) is 

presented graphically in terms of three-dimensional contour 
plots. Due to its strong nonlinearity, a full range 
reconstruction requires immense computer power, and hence 
partial range reconstructions are produced for increasing 
values of λ and μ. These and shown in Figures 3 and 4. 

The surfaces contained in these Figures clearly resemble 
to Swallowtail-like sections of the Symmetric Butterfly 
Catastrophe, as given in [24]; this is rather expected, due to 
the nature of the truncated potential. These surfaces however 
cannot be produced directly from this potential using 
advanced symbolic manipulations and sophisticated graphics 
(due to unavoidable memory overflow), but only via the 
Bifurcation Set evaluated according to the above scheme. 
Moreover, and according to the preceding analysis, 
numerical results are presented in what follows, considering 
seven (7) combinations (Combos) of beam and subgrade, 
adopted from the relevant literature. 

More specifically, Combo 1 is taken from the work of 
Kounadis et al. [29], while the remaining ones are those used 
in [11] and [31]. The critical (buckling) load λcr, found in this 
investigation, is compared with the corresponding buckling 
loads of in plane buckling (1st mode – no contact), of out of 
plane lateral buckling (1st mode – no influence of subgrade 
reaction) and of the case of full contact in a simple 
semi-wave, if existent. The outcome of the analysis is shown 
in Table 1, from where one may observe that – for the 
combinations considered – postbuckling response PB3 (full 
contact) is not possible. 

Before discussing these results, it is considered 
appropriate to compare them with ones obtained from 
different methods. In doing this, two additional approaches 
are utilized for the problem at hand. The 1st is based on a flat 
Galerkin scheme and the 2nd on modeling the system in SAP 
2000 software [32]. 

 
 
 
 



 International Journal of Mechanics and Applications 2018, 8(1): 1-9 5 
 

 

 

Figure 3.  Partial 3D contour plots of the Bifurcation Set for small values of λ and μ, seen from different viewpoints 

 

Figure 4.  As in Figure 3, but for large values of λ and μ 
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The former approach is the one described in [19] properly 
adjusted to the Winkler subgrade model, by vanishing the 
parameter associated with the shear layer in the Pasternak 
model. The latter takes advantage of the modeling 
capabilities of the aforementioned software according to the 
following steps: (a) for each Combo number the beam is 
designed as a single straight elastic frame element, simply 
supported inextensional and restricted to deform only 
in-plane; in cases where the libraries of the software do not 
include the cross-section corresponding to the specific 
Combo, it is drawn externally and imported afterwards as a 
dxf file, (b) the beam is discretized – divided densely into 
frame sub-assemblages with free to rotate internal joints in 
all directions, but also restricted to translate only vertically, 
(c) at each intermediate joint a gap – compression only – 

nonlinear link is inserted, with its stiffness defined from each 
individual Combo accordingly, and (d) a nonlinear buckling 
analysis is performed. The self-weight of the beam is not 
accounted for. 

Both alternative approaches yield results in good 
agreement with the ones obtained from the method proposed 
herein. The 1st (Galerkin) approach produces upper-bounds, 
while the SAP model lower-bounds. Interestingly enough, 
the FE model failed to converge in more than two buckling 
modes; this may be considered as a simple – but existent – 
indication of absence of a 3rd mode, according to the findings 
of the Mathematical Induction mentioned in the Introduction, 
also for the simplest subgrade model. The results of the two 
approaches are summarized in Table 2. 

Table 1.  Numerical results for the beam – subgrade combinations considered, based on the proposed Catastrophe Theory approach 

No μ PB3 
λcr PB4 

PB2 PB1 λcr βcr acr 

1 5000 

* 

145.12 36.28 28.08 -0.983 0.336 

2 915751 1914.8 383 24523 -0.953 0.342 

3 5723443 4791.9 958.4 15133 -0.953 0.342 

4 34886 388.13 64.11 107.1 -0.957 0.341 

5 218036 934.46 154.4 596.8 -0.953 0.342 

6 1789 108.97 15.99 9.51 -1.065 0.321 

7 143.1 43.10 6.32 14.77 -0.136 0.478 
* = not possible 

Table 2.  Numerical results for the beam – subgrade combinations considered, based on the proposed Catastrophe Theory approach 

Combo No. 
Galerkin Approach SAP 2000 model 

PB1 PB4 PB1 PB4 

N/A λcr λcr acr λcr λcr / mode No. acr 

1 

As in Table 1 
(not 

dependent on 
the approach) 

29.32 0.339 35.94 27.85 / 1 0.332 

2 2464.3 0.345 380.77 2439.15 / 2 0.338 

3 15180 0.346 961.02 14980 / 2 0.339 

4 108.75 0.344 65.22 106.48 / 2 0.338 

5 600.12 0.345 153.37 594.61 / 2 0.339 

6 10.76 0.324 14.87 9.02 / 1 0.338 

7 15.22 0.484 6.21 14.62 / 2 0.469 
 

From all the above it is readily perceivable that, in some 
cases, the critical load corresponding to the unbonded 
contact configuration is smaller than both the in-plane and 
out-of-plane classical Euler load. This implies that an 
unstable bifurcation may occur prior to stable states, a 
finding important for design and simulations. In other cases, 
this specific load lies between the Euler loads. As the 
external compressive force increases from zero, this last 
finding may be interpreted as a possibility of sudden jumps 
between unstable and stable states. This is a well-known 
property of the butterfly singularity, and may occur even in 
the case of the simplest subgrade model (dealt with in this 

work). This undesirable behavior should be accounted for, 
when addressing the buckling of beams on elastic 
foundations. Similar jumping phenomena have also been 
reported in the literature [7, 8, 27, 28] for nonlinear bilateral 
subgrade models. As mentioned in the Introduction, to avoid 
such a behavior, a proper choice of beam and subgrade 
parameters should be made. 

Characteristic quantitative plots of the postbuckling 
deformed shape of the beam for PB4 are presented in Figure 
5, for different values of μ. As this parameter increases, the 
corresponding length of the part of the beam in contact 
decreases, as well expected from the whole analysis. 
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Figure 5.  Qualitative buckled configurations for (a) large, (b) medium, and (c) small values of μ 

 

Figure 6.  Sections – contour plots of the Bifurcation Set for four (4) of the combinations of Table 1 

 
Finally, it is also expedient to show contour (β, λ) plots – 

sections of the Bifurcation Set for some of the above 
combinations of the parameters, as illustrated in Figure 6. 
From these plots one may see the numbers and types of the 
stationary points in the chosen territories of the parameter 
space, as well as the evaluated critical value of β (as given in 
the above Table), which provides the smallest critical load. 
The reconstruction of these kind of plots is a standard 
procedure accompanying Singularity Theory, and this is the 
main reason of their presentation. 

To the knowledge of the authors, no experimental works 
have been yet reported, concerning the problem at hand. It is 
recommended that such experiments should be carried out, 
in order to fully validate the theoretical findings presented so 
far. 

6. Conclusions 
The most important conclusions drawn from the present 

study are the following: 
(a) The consideration of discontinuous (unbonded - 

unilateral) contact between beam and foundation, being an 
unstable postbuckling response, leads to a total potential 
energy function which is a special reduced form of the 
Butterfly singularity, namely the symmetric one. The 
resulting three-parameter bifurcation set, an outcome of 
successive eliminations, resembles Swallowtail-like sections 
of this particular Catastrophe reported in the literature. 
Results obtained from the present approach, in terms of 
critical loads and unbonded beam lengths were found in 
satisfactory agreement with ones of two alternative 
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approaches. 
(b) For the cases considered, unstable bifurcations prior to 

Euler buckling may occur, while also sudden jumps may be 
possible (a salient feature of the Butterfly Catastrophe), 
while full contact in a single semi-wave form is not possible. 
For structural design, these findings are considered of 
importance, and should be accounted for both in practice and 
simulations. Similar phenomena have also been reported in 
the literature for nonlinear bilateral subgrade models. 
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