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Abstract  Deformation of the helical springs is mostly considered as linear, due to their linearly proportionate elongation 
to their applied load. However, this assumption is not capable of capturing the full and accurate mechanical behavior of 
helical springs undergoing large deformations. Moreover, their mechanical behavior under compression is usually neglected. 
In this article, the problem of the tension-compression of a helical spring is solved with higher accuracy by considering a 
modification of its geometrical parameters. The novel solution, based on the use of variational methods, is both precise and 
much easier to apply than a solution based on the use of differential equations.  

Keywords  Geometrically Nonlinear, Nonlinear Spring, Helical Spring, Large Deformation, Nonlinear Deformation, 
Variational Methods 

 

1. Introduction 
Springs are essential components of many devices and 

machines. They can be used as damping element in a 
mechanical system to minimize vibration or impact. 
Nowadays, they are necessary components used in 
automotive, train, and aerospace industries [1, 2]. Spring 
behavior can be also used to model different materials such 
as polymer composites, or metals [3-5]. Spring failure due to 
forced vibration also needs to be addressed [6, 7]. To 
accurately model these materials, or to better optimize the 
mechanical system containing spring element, and to 
augment the efficiency, it is essential to account for 
nonlinearity of the springs [8-10], and propose a constitutive 
model which accounts for both contraction and extension of 
springs [11-13]. In this article, the problem of the 
tension-compression of a helical spring is solved with higher 
accuracy by considering a modification of its geometrical 
parameters. The novel solution, based on the use of 
variational methods, is both precise and much easier to apply 
than a solution based on the use of differential equations. 

Here, we consider a geometrically nonlinear problem.   
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Since the rod, in this case, is flexible, the impact of axial 
forces N and transverse forces Q is small compared to the 
bending moment  and twisting moment . Hence, the 
axial force N and transverse force Q are not taken into 
account. 

The axial line is a helix, and its radius-vector in the 
Cartesian coordinate system is described by the equation 

𝑅𝑅→ = 𝜌𝜌 �𝑖𝑖1
→𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑) + 𝑖𝑖2

→𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑)� + 𝑖𝑖3
→𝑏𝑏𝑏𝑏,        (1) 

where ϕ is the parameter that represents the angle, ρ is the 
cylinder radius, and  is the pitch of a spring. On the 
other hand, a helix line, as for any curve, is defined by setting 
the curvature k and twist 𝜒𝜒, linked to ρ and b correlations: 

𝑘𝑘 = 𝜌𝜌
𝜌𝜌2+𝑏𝑏2 ,𝜒𝜒 = 𝑏𝑏

𝜌𝜌2+𝑏𝑏2,            (2) 

Hence, their inverse relationships have the following 
forms: 

𝜌𝜌 = 𝑘𝑘
𝑘𝑘2+𝜒𝜒2 , 𝑏𝑏 = 𝜒𝜒

𝑘𝑘2+𝜒𝜒2,           (3) 

Furthermore, the tangent vector to the helix line is 
determined by the first derivative of the radius vector under 
the parameter 

𝑇𝑇→ = 𝑑𝑑𝑅𝑅→

𝑑𝑑𝑑𝑑
= 𝑅𝑅→

⋅

= 𝜌𝜌 �− 𝑖𝑖1
→𝑠𝑠𝑠𝑠𝑠𝑠(𝜑𝜑) + 𝑖𝑖2

→𝑐𝑐𝑐𝑐𝑐𝑐(𝜑𝜑)� + 𝑖𝑖3
→𝑏𝑏,  (4) 

and its length 

�𝑇𝑇→
.

� = �𝑇𝑇→ ⋅ 𝑇𝑇→�
1
2 = �𝜌𝜌2 + 𝑏𝑏2 = (𝑘𝑘2 + 𝜒𝜒2)

1
2      (5) 
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If we select a natural parameter as the parameter (which is 
the length of the arc S), then by using (5), we can obtain the 
natural parameter 

𝑠𝑠 = ∫ �𝜌𝜌2 + 𝑏𝑏2𝜑𝜑
0 𝑑𝑑𝑑𝑑 = �𝜌𝜌2 + 𝑏𝑏2𝜑𝜑 , 𝜑𝜑 = 𝑠𝑠

�𝜌𝜌2+𝑏𝑏2     (6) 

From (4) and (6), we can then obtain the radius-vector  

𝑅𝑅→ = 𝜌𝜌 �𝑖𝑖1
→𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑠𝑠

�𝜌𝜌2+𝑏𝑏2� + 𝑖𝑖2
→𝑠𝑠𝑠𝑠𝑠𝑠 � 𝑠𝑠

�𝜌𝜌2+𝑏𝑏2�� + 𝑖𝑖3
→𝑏𝑏 𝑠𝑠

�𝜌𝜌2+𝑏𝑏2  
(7) 

Since, in accordance with the statement of the problem, 
the rod elongation is not taken into account, the length of the 
rod remains unchanged and equal to L. To determine the 
spring length, we find the radius-vector for the farthest point 
at s = L. The spring compression λ is equal to the difference 
between the radius-vector projections on the axis of the 
spring in both initial and final states, such that 

𝜆𝜆 = 𝑅𝑅→ (𝜌𝜌, 𝑏𝑏, 𝐿𝐿) ⋅ 𝑒𝑒3
�� − 𝑅𝑅→ (𝜌𝜌0,𝑏𝑏0, 𝐿𝐿) ⋅ 𝑒𝑒3

��

= 𝐿𝐿

⎝

⎛ 𝑏𝑏
�𝜌𝜌2 + 𝑏𝑏2

−
𝑏𝑏0

�𝜌𝜌0
2 + 𝑏𝑏0

2
⎠

⎞, 

𝜆𝜆 = 𝐿𝐿 � 𝜒𝜒
�𝑘𝑘2+𝜒𝜒2 −

𝜒𝜒0

�𝑘𝑘0
2+𝜒𝜒02

�.                    (8) 

Because we are considering a physically linear problem, 
the bending moment  and twisting moment  are 
proportional to the change of the curvature and torsion, 
respectively. If the initial curvature of the rod (wire) is  
and its torsion (twist) is , we have 

𝑀𝑀𝑢𝑢 = 𝐸𝐸𝐸𝐸(𝑘𝑘 − 𝑘𝑘0), 𝑀𝑀𝑘𝑘 = 𝐺𝐺𝐼𝐼𝑝𝑝(𝜒𝜒 − 𝜒𝜒0).         (9) 

Hence, the strain potential energy, just considering 
bending moment and torsion, can be calculated as 

𝑊𝑊 =
1
2
�

𝑀𝑀𝑢𝑢
2

𝐸𝐸𝐸𝐸
𝑑𝑑𝑑𝑑

𝐿𝐿

0
+

1
2
�

𝑀𝑀𝑘𝑘
2

𝐺𝐺𝐼𝐼𝑝𝑝
𝑑𝑑𝑑𝑑

𝐿𝐿

0
, 

𝑊𝑊 = 1
2
𝐸𝐸𝐸𝐸 ∫ (𝑘𝑘 − 𝑘𝑘0)𝐿𝐿

0

2
𝑑𝑑𝑑𝑑 + 1

2
𝐺𝐺𝐼𝐼𝑝𝑝 ∫ (𝜒𝜒 − 𝜒𝜒0)𝐿𝐿

0

2
𝑑𝑑𝑑𝑑.  (10) 

If we consider the helical spring with the free ends under 
axially symmetric load, its curvature and twist are constant 
along its length. Under these conditions,  

𝑊𝑊 = 1
2
𝐸𝐸𝐸𝐸(𝑘𝑘 − 𝑘𝑘0)2𝐿𝐿 + 1

2
𝐺𝐺𝐼𝐼𝑝𝑝(𝜒𝜒 − 𝜒𝜒0)2𝐿𝐿.         (11) 

In accordance with the principle of virtual work, the sum 
of the works by external and internal forces on the possible 
displacements is zero. This condition is equivalent to the 
condition where the sum of the variation work of external 
forces and strain energy is zero 

𝛿𝛿𝛿𝛿 + 𝛿𝛿𝛿𝛿 = 0.                  (12) 
The variation of strain potential energy is equal 

𝛿𝛿𝛿𝛿 = 𝐸𝐸𝐸𝐸(𝑘𝑘 − 𝑘𝑘0)𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐺𝐺𝐼𝐼𝑝𝑝(𝜒𝜒 − 𝜒𝜒0)𝐿𝐿𝐿𝐿𝐿𝐿.      (13) 
A variation of the work in the result of external forces is 

. Since the variation of the movement of the 

points under the applied load is equal to the variation of the 
spring compression, 

    𝛿𝛿𝛿𝛿 = 𝐿𝐿𝐿𝐿

⎝

⎛ 𝜒𝜒
�𝑘𝑘2 + 𝜒𝜒2

−
𝜒𝜒0

�𝑘𝑘0
2 + 𝜒𝜒0

2
⎠

⎞ 

= 𝐿𝐿 ��
1

�𝑘𝑘2 + 𝜒𝜒2
−

𝜒𝜒2

(𝑘𝑘2 + 𝜒𝜒2)
3
2

�𝛿𝛿𝛿𝛿 −
𝜒𝜒𝜒𝜒

(𝑘𝑘2 + 𝜒𝜒2)
3
2

𝛿𝛿𝛿𝛿�. 

Therefore, 

𝛿𝛿𝛿𝛿 = 𝑃𝑃𝑃𝑃 � 𝑘𝑘2

(𝑘𝑘2+𝜒𝜒2)
3
2
𝛿𝛿𝛿𝛿 − 𝜒𝜒𝜒𝜒

(𝑘𝑘2+𝜒𝜒2)
3
2
𝛿𝛿𝛿𝛿�.        (14) 

Considering (12), (13) and (14), we obtain 
𝐸𝐸𝐸𝐸(𝑘𝑘 − 𝑘𝑘0)𝐿𝐿𝐿𝐿𝐿𝐿 + 𝐺𝐺𝐼𝐼𝑝𝑝(𝜒𝜒 − 𝜒𝜒0)𝐿𝐿𝐿𝐿𝐿𝐿 

−𝑃𝑃𝑃𝑃 � 𝑘𝑘2

(𝑘𝑘2+𝜒𝜒2)
3
2
𝛿𝛿𝛿𝛿 − 𝜒𝜒𝜒𝜒

(𝑘𝑘2+𝜒𝜒2)
3
2
𝛿𝛿𝛿𝛿� = 0      (15) 

By regrouping components containing variations and 
taking into account that the variation of curvature and torsion 
are arbitrary, to satisfy Equation (15) it requires to cancel out 
(nullify) the coefficients behind variations. Therefore, we 
obtain the equations 

𝐸𝐸𝐸𝐸(𝑘𝑘 − 𝑘𝑘0) + 𝑃𝑃
𝜒𝜒𝜒𝜒

(𝑘𝑘2 + 𝜒𝜒2)
3
2

= 0, 

and 𝐺𝐺𝐼𝐼𝑝𝑝(𝜒𝜒 − 𝜒𝜒0) − 𝑃𝑃 𝑘𝑘2

(𝑘𝑘2+𝜒𝜒2)
3
2

= 0,      (16) 

The obtained equations (16) allow us to exclude the force 
P. Furthermore, by using correlations 

 for the circular rod, we can 
find the relation between the twist and the curvature: 

(1 + 𝜈𝜈)𝑘𝑘(𝑘𝑘 − 𝑘𝑘0) + 𝜒𝜒(𝜒𝜒 − 𝜒𝜒0) = 0         (17) 
By expressing the torsion and bending through the radius 

and the pitch of spring, in accordance with (2), we get:  

(1 + 𝜈𝜈)
𝜌𝜌

𝜌𝜌2 + 𝑏𝑏2 �
𝜌𝜌

𝜌𝜌2 + 𝑏𝑏2 − 𝑘𝑘0� +
𝑏𝑏

𝜌𝜌2 + 𝑏𝑏2 �
𝑏𝑏

𝜌𝜌2 + 𝑏𝑏2 − 𝜒𝜒0�

= 0, 

Then, by expressing the pitch through the radius and 
elevation angle of the helix line, we can calculate: 

(1 + 𝜈𝜈)
𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼
𝜌𝜌

�
𝑐𝑐𝑐𝑐𝑐𝑐2 𝛼𝛼
𝜌𝜌

− 𝑘𝑘0�

+
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼

𝜌𝜌
�
𝑐𝑐𝑐𝑐𝑐𝑐 𝛼𝛼 𝑠𝑠𝑠𝑠𝑠𝑠 𝛼𝛼

𝜌𝜌
− 𝜒𝜒0� = 0, 

and thus obtain a formula for easily determining the spring 
strain 

𝜌𝜌 = (1+𝜈𝜈)+𝑡𝑡𝑔𝑔2𝛼𝛼
(1+𝑡𝑡𝑔𝑔2𝛼𝛼)�(1+𝜈𝜈)𝑘𝑘0+𝜒𝜒0𝑡𝑡𝑡𝑡𝑡𝑡 �

.             (18) 

2. Result and Discussion 
Figures 1 to 5 show the results of the spring deformation 

with the following parameters: Young's modulus 𝐸𝐸 =
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2 𝑀𝑀𝑀𝑀𝑀𝑀 ; Poisson's ratio 𝜈𝜈 = 0.3 ; wire (rod) diameter 
𝑑𝑑 = 0.1 𝑚𝑚𝑚𝑚 ; the mean radius of the cylinder (coil) 
𝑟𝑟0 = 10 𝑚𝑚𝑚𝑚; the initial value of the parameter determining 
pitch 𝑏𝑏0 = 10 𝑚𝑚𝑚𝑚; and the initial value corresponding to 
the initial curvature 𝑘𝑘0 = 0.05, the initial torsion 𝜒𝜒0 = 0.05, 
and the initial elevation angle 𝛼𝛼0 = 0.7854. 

This example has the typical feature of a large spring pitch. 
The calculated results show that the single relationship 
between the radius and elevation angle is close to linear as it 

is shown in Figure 2, whereas all other parameters are far 
from linear. Furthermore, the relationship between force and 
displacement (Figure 5) is negative under compression, 
which is the main reason for instability. The derived 
formulas can be used to calculate long multi-turn springs, 
with negligible boundary condition effects. When 
considering short springs, we need to consider the boundary 
conditions. 

 

Figure 1 
 

Figure 2 

 

Figure 3 
 

Figure 4 

 
Figure 5 
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3. Conclusions 
In contrast to many cases, were deformation of the helical 

springs is considered as linear, due to their linearly 
proportionate elongation to their applied load, as well as 
neglecting its behavior under compression, in this work we 
achieved the full picture of spring’s mechanical behavior 
undergoing large deformation, accounting for nonlinearity, 
and contraction. It was shown that the solution based on 
variational principle, is both precise and much easier to apply 
than a solution based on the use of differential equations. 
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