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Abstract  Sophus Lie developed technique to obtain solutions of differential equations using continuous symmetries. 

Using these continuous symmetries, Peter E. Hydon developed technique to obtain discrete symmetries which led to finding 

further new solutions of the underlying equations. In this paper continuous and discrete symmetries of Korteweg de Vries and 

nonlinear filtration equations are analyzed. Using these symmetries group invariant solutions and the exact solutions of these 

equations are obtained.  

Keywords  Continuous symmetries, Discrete symmetries, Group invariant solutions 

 

1. Introduction 

Differential equations is an important branch of 

mathematics. Since the time of Leibneiz and Newton, 

different attempts have been made to develop techniques for 

finding their solutions. The process is still going on. 

In this context, Sophus Lie developed a technique  

known as group theoretic/symmetry methods for finding the 

solutions of differential equations. His method is, though, 

highly algorithmic but has an advantage that if the symmetry 

of that differential equation exists then it either gives the 

solution or reduce the problem into a comparatively simpler 

one. The symmetries used in his methods are continuous i.e. 

they depend upon some parameter [1]-[3]. In contrast to 

continuous symmetries there are other symmetries known as 

discrete symmetries which do not depend on parameter. 

However, these discrete symmetries are also useful in 

finding solutions of differential equations.  

Using continuous symmetries, Peter E. Hydon developed 

a technique [4]-[8] to get all discrete symmetries of 

differential equations. His technique has been used here to 

get all discrete symmetries of nonlinear filtration equation. 

Exact solutions, using these symmetries are then presented. 

Hydon considered an automorphism of 𝑟 −dimensional 

Lie algebra L of symmetries of differential equations. This 

gives a change in basis vectors and is represented as  

𝐗𝑖 = 𝑏𝑖
𝑙𝐗𝑙 .                 (1) 

As the structure constants do change under a 

transformation of the basis, we have the following  
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transformation law  

𝑐𝑙𝑚
𝑛 𝑏𝑖

𝑙𝑏𝑗
𝑚 = 𝑐𝑖𝑗

𝑘 𝑏𝑘
𝑛 , 𝑖, 𝑗, 𝑘, 𝑙, 𝑚, 𝑛 = 1,⋯ , 𝑟 .    (2) 

These constraints, called the nonlinear constraints. 

provide a real-valued matrix 𝐵 = (𝑏𝑖
𝑙) that corresponds to 

the automorphism. They fix some of the entries of matrix   

𝐵. The adjoint action of each basis vector, 𝑿𝑗 , generates a 

one-parameter Lie group of inner automorphisms whose 

matrix representation is [4]  

𝐴 𝑗, 𝜖 = 𝑒𝜖𝐶 𝑗   

= 𝐼 +
𝜖

1!
(𝐶(𝑗)) +

𝜖2

2!
(𝐶(𝑗))2 +

𝜖3

3!
(𝐶(𝑗))3+. .. (3) 

where  

(𝐶(𝑗))𝑖
𝑘 = 𝑐𝑖𝑗

𝑘 .                (4) 

The matrix 𝐵 can be further simplified with the help of  

𝐵 = 𝐵𝐴(2, 𝜖2)𝐴(1, 𝜖1)𝐴(3, 𝜖3)𝐴(5, 𝜖5)𝐴(4, 𝜖4).  (5) 

The simplified matrix is then used to write determining 

equation whose solution is of the form  

(𝑥 , 𝑡 , 𝑢 ) = ( 𝑥 (𝑥, 𝑡, 𝑢), 𝑡 (𝑥, 𝑡, 𝑢), 𝑢 (𝑥, 𝑡, 𝑢))   (6) 

from where we get all the symmetries, i.e. both continuous 

and discrete.  

2. Symmetries of Korteweg de Vries 
Equation 

Korteweg de Vries (KdV) equation 

𝜕3𝑢

𝜕𝑥3 + 6𝑢
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑡
= 0,             (7) 
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is a mathematical model of waves on shallow water surfaces. 

Many different variations of the KdV equation have been 

studied. The mathematical theory behind the KdV equation 

is a topic of active research. KdV equation was first 

introduced by Boussinesq (1877) and rediscovered by 

Diederik Korteweg and Gustav de Vries (1895). 

Following are the basis elements and nonzero structure 

constants of the 4-dimensional Lie algebra of KdV equation 

(7)  

𝐗1 =
𝜕

𝜕𝑥
, 𝐗2 = 𝑥

𝜕

𝜕𝑥
+ 3𝑡

𝜕

𝜕𝑡
− 2𝑢

𝜕

𝜕𝑢
, 

 𝐗3 = 𝑡
𝜕

𝜕𝑥
+

𝜕

𝜕𝑢
, 𝐗4 =

𝜕

𝜕𝑡
.                  (8) 

𝑐12
1 = 1, 𝑐23

3 = 2, 𝑐34
1 = 1, 𝑐24

4 = −3.        (9) 

The corresponding (one-parameter) Lie groups of point 

symmetries  

𝑒𝜖1𝐗1  (𝑥 , 𝑡 , 𝑢 ) = (𝑥 + 𝜖1, 𝑡, 𝑢),            (10) 

𝑒𝜖2𝐗2  (𝑥 , 𝑡 , 𝑢 ) = (𝑒𝜖2𝑥, 𝑒3𝜖2𝑡, 𝑒−2𝜖2𝑢),     (11) 

𝑒𝜖3𝐗3  (𝑥 , 𝑡 , 𝑢 ) = (𝑥 + 𝑡𝜖3, 𝑡, 𝑢 + 𝜖3),      (12) 

𝑒𝜖4𝐗4  (𝑥 , 𝑡 , 𝑢 ) = (𝑥, 𝑡 + 𝜖4, 𝑢).           (13) 

The only discrete point symmetry of the KdV equation (7) 

is  

Γ𝐷  (𝑥 , 𝑡 , 𝑢 ) = ( −𝑥,−𝑡, 𝑢 ),          (14) 

which can easily be obtained by following theprocedure 

given in the previous section. 

Using the continuous symmetry generators, the 

one-dimensional optimal algebra is obtained as:  

𝐗1, 𝐗2, 𝐗3, 𝐗4, 𝐗3+𝐗4, and 𝐗3-𝐗4. 

The discrete symmetry Γ𝐷, maps 𝐗3-𝐗4 to 𝐗3+𝐗4. Thus, 

there is a reduction of number of elements of the optimal 

algebra [3].  

3. Exact Solutions 

In this section exact solution of KdV equation, 

corresponding to each element of the optimal algebra, are 

obtained. 

𝐗1 gives a constant function, i.e. 𝑢 = 𝑐, which is a trivial 

solution. 

The invariants for the generator 𝐗2 are  

𝐹 = 𝑢𝑥2 and 𝑟 =
𝑥3

𝑡
.            (15) 

The invariant equation is  

 −𝑟2 + 24𝑟 𝐹′ 𝑟 + 3𝑟𝐹 𝑟 𝐹′ 𝑟 + 27𝑟3𝐹′ ′′  𝑟  

−24𝐹(𝑟) − 2𝐹2(𝑟) = 0.           (16) 

The solution of this invariant equation is 𝐹 = 𝑟.  

Therefore, the solution of the KdV equation is 𝑢(𝑥, 𝑡) =
𝑥

𝑡
. 

For 𝐗3, 𝑢(𝑥, 𝑡) =
𝑥+𝑘

𝑡
. 

For 𝐗3+𝐗4, the invariants are 𝑥 −
𝑡2

2
 and 𝐹(𝑟) = 𝑢 − 𝑡. 

The KdV equation takes the form 𝐹′′′ + 𝐹𝐹′ + 1 = 0, which 

is a third order nonlinear differential equation. 

4. Symmetries of Nonlinear Filtration 
Equation 

The motion of a non-Newtonian, weakly compressible 

fluid in a porous medium with a nonlinear filtration law  

𝑉 = − ‍𝐷  
𝜕𝑢

𝜕𝑥
  𝑑  

𝜕𝑢

𝜕𝑥
 ,          (17) 

where 𝑉 is the speed of filtration and 𝑢 is the pressure is 

described by nonlinear filtration (NLF) equations [10,11] 

𝜕𝑢

𝜕𝑡
= 𝐷  

𝜕𝑢

𝜕𝑥
 
𝜕2𝑢

𝜕𝑥2 .             (18) 

The function 𝐷(𝜕𝑢/𝜕𝑥) is known as filtration coefficient. 

In general the filtration coefficient is not fixed. NLF 

equations have been solved for various filtration coefficients 

[10,11]. 

We choose  

𝐷  
𝜕𝑢

𝜕𝑥
 =

1

1+ 
𝜕𝑢

𝜕𝑥
 

2
 
,            (19) 

to find the discrete symmetries and group invariant solutions 

of this NLF equation which then lead to solutions under 

transformations due to the discrete symmetries. 

The infinitesimal generators of (one-parameter) Lie 

groups of point symmetries of the NLF equation are [12]. 

𝐗1 =
𝜕

𝜕𝑥
, 𝐗4 = 𝑥

𝜕

𝜕𝑥
+ 2𝑡

𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑢
,     (20) 

𝐗2 =
𝜕

𝜕𝑡
, 𝐗5 = 𝑢

𝜕

𝜕𝑥
− 𝑥

𝜕

𝜕𝑢
.           (21) 

𝐗3 =
𝜕

𝜕𝑢
,                         (22) 

Corresponding (one-parameter) Lie groups of point 

symmetries are  

𝐺1 (𝑥 , 𝑡 , 𝑢 ) = (𝑥 + 𝜖, 𝑡, 𝑢),           (23) 

𝐺2 (𝑥 , 𝑡 , 𝑢 ) = (𝑥, 𝑡 + 𝜖, 𝑢),           (24) 

𝐺3 (𝑥 , 𝑡 , 𝑢 ) = (𝑥, 𝑡, 𝑢 + 𝜖),           (25) 

𝐺4 (𝑥 , 𝑡 , 𝑢 ) = (𝑒𝜖𝑥, 𝑒2𝜖𝑡, 𝑒𝜖𝑢),       (26) 

𝐺5 (𝑥 , 𝑡 , 𝑢 ) = (𝑥cos𝜖 + 𝑢sin𝜖, 𝑡, −𝑥sin𝜖 + 𝑢cos𝜖).  (27) 

Using these symmetries in the technique mentioned in 

Section 1, following discrete symmetries of the nonlinear 

filtration equation are obtained 

Γ𝐷1 (𝑥 , 𝑡 , 𝑢 ) = ( −𝑥, 𝑡, −𝑢 ),          (28) 

Γ𝐷2 (𝑥 , 𝑡 , 𝑢 ) = ( 𝑥, 𝑡, −𝑢 ),           (29) 

Γ𝐷3 (𝑥 , 𝑡 , 𝑢 ) = ( −𝑥, 𝑡, 𝑢 ).           (30) 

5. Exact Solutions 

In this section an attempt has been made to find the group 

invariant solutions of the NLF equation due to the groups 

generated by 𝐗𝑖 , the basis generators. The group invariant 

solutions are then transformed using the discrete symmetries 

to obtain solutions. 

For 𝐗1 , 𝑢(𝑥, 𝑡) = 𝐹(𝑡),  where 𝐹(𝑡)  is invariant. On 

substituting it in NLF equation we have 𝐹(𝑡) = 𝑐 , i.e. 

𝑢(𝑥, 𝑡) = 𝑐, which is trivial solution. 
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The symmetry generator 𝐗2, yields 𝑢(𝑥, 𝑡) = 𝐹(𝑥). We 

now substitute this solution in NLF equation to determine 𝐹. 

We obtain  

𝐹(𝑥) = 𝑐1𝑥 + 𝑐2 = 𝑢(𝑥, 𝑡).          (31) 

There does not exist any group invariant solutions due to 

𝐗3. 

For 𝐗4 , the invariants are 
𝑥

√𝑡
= 𝑟 and 𝐹 =

𝑢

√𝑡
. Writing 

NLF equation interms of these invariants to determine 𝐹.  

2𝐹′′ (𝑟) = 𝐹(𝑟) − 𝑟𝐹′(𝑟) + (𝐹′(𝑟))2𝐹(𝑟) − 𝑟(𝐹′(𝑟))3. (32) 

This is a second order nonlinear ODE for 𝐹 , whose 

solution is 𝐹 = 𝑟 . Hence, 𝑢 = 𝑥  is the solution of the 

equation under consideration. 

For 𝐗5, we have 𝑣 = 𝑢2 + 𝑥2, and  

𝑡 = 𝑟.                 (33) 

Therefore, we have  

𝑣 = 𝐹(𝑟),               (34) 

We now substitute this solution in NLF equation to obtain  

𝐹(𝑟) = −2𝑟 + 𝑐.            (35) 

So  

𝑢(𝑥, 𝑡) = ± 𝑐1 − 2𝑡 − 𝑥2,        (36) 

All these solutions are due to the continuous symmetries 

of the NLF equation. Using discrete symmetries one more 

solution 𝑢(𝑥, 𝑡) = −𝑥 is also obtained. 

6. Conclusions 

There is a lot of literature available on the applications of 

continuous symmetries, in particular, on finding solutions of 

ordinary and partial differential equations. In recent past, 

Peter E. Hydon introduced a technique to obtain discrete 

symmetries using continuous symmetries. These discrete 

symmetries are then used to obtain some new solutions that 

could not be obtained by only using continuous symmetries. 

In this paper, using both discrete and continuous symmetries 

of the Korteweg de Vries (7) and the nonlinear filtration 

equations, group invariant solutions and the exact solutions 

of these equations are presented. 
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