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Abstract This article investigates MHD effects on porosity and concentration in an unsteady flow in a vertical channel.
The nonlinear governing equations of motion with concentration equation incorporate variable porosity were employed and
solved analytically using a perturbation technique. The effects of the flow were determined through the physical parameters;
Womersley parameter (Al), Eckert number (Ec), Reynolds number (Re), Prandlt number (Pr), Grashof number (Gr), Schmidt
number (Sc), Chemical reaction parameter (K,), and the Mass Grashof number (Gc), were investigated on the temperature,
velocity and concentration. Graphical results are presented and discussed quantitatively. From the course of the investigation,
it was revealed that fluid temperature increase within the channel with increase porosity.
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1. Introduction

The study of flow and heat transfer in a porous media
has also received much attention in the last few decades
due to its ever-increasing applications in industries and in
contemporary technology. Phenomena of transport in porous
media are encountered in many Engineering disciplines.
Convective flow through porous medium has applications
in the field of Chemical Engineering for filtration and
purification processes. In Petroleum Technology, it is used to
study the movement of natural gas, oil and water through oil
channels or reservoirs. Agricultural Engineering deals with

the movement of water and studies in the root zone in the soil.

Reservoir engineers deals with the flow of oil, water and gas
in petroleum reservoirs.

Many researchers have worked on MHD flows, notably
among them are Mhone and Makinde [5] have studied
unsteady MHD flow with heat transfer in a diverging
channel. Ahammad and Mollah [1] studied the MHD free
convection flow and mass transfer problem over a stretching
sheet considering Dufour and Soret effects with magnetic
field. Hazarika and Jadav [4] worked on effects of variable
viscosity and thermal conductivity on MHD free convective
flow along a vertical porous plate with viscous dissipation.
Seddeek and Salama [7] carried out the effects of
temperature dependent viscosity and thermal conductivity
with variable suction on unsteady MHD convective heat
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transfer past a vertical moving porous plate. Chakraborty [3]
studied MHD flow and heat transfer of a dusty viscoelastic
stratified fluid down an inclined channel in porous medium
under variable viscosity. Soundalgekar et al [8] discussed
MHD effects on impulsively started vertical infinite plate
with variable temperature in the presence of transverse
magnetic field. Taneja and Jain [9] looked at the unsteady
MHD flow in a porous medium in the presence of radiative
heat where they obtained expressions for velocity,
temperature and rate of heat transfer. Attia [2] have
investigated an unsteady MHD couette flow and heat transfer
of dust fluid with variable physical properties.

Several studies involving heat and mass transfer in
Newtonian fluid flows through porous media have been
undertaken. However, the combine effects of porosity and
viscosity with viscous dissipation have not been
incorporated. This work is set out to investigate the effect of
porosity and viscosity on unsteady flow of MHD with
viscous dissipation and concentration in a porous vertical
channel.

2. Mathematical Formulation

The effect of a uniform transverse magnetic field B on
unsteady two-dimensional electric conducting fluid flows
are considered and its velocities are given as

q=u(x,y,t)i+v(x,y,t)j (@)
through a symmetric vertical channel ( D:—o0 / X/ + oo,
—b(x) £y £b(x)) where (x,y) are Cartesian co-ordinates

such that ox is the axis of symmetry of the channel and
y=1b(x) are the rigid and impermeable walls of the
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channel. The walls of the channel are kept at a constant
temperature T, . The fluid is incompressible with uniform

properties i.e. density p , kinematic viscosity v and

electrical conductivity o . A volume flux with oscillating
frequency & and pulse mis prescribed as in figure 1 below:

y y=b(x)
J [~ ]

T=Tw | —— ]
I

y(x)=—b(x)

™ .

| I=1 1 4

Problem Geometry (Source Mhone and Makinde, 2006)

Figure 1.

J-b(x)

o udy=Q(+ me'ot)

(b)

A uniform magnetic force is applied in the y—direction.

A very small magnetic Reynolds number is assumed and
therefore the induced magnetic field is neglected. Two key

ou ov
+

physical effects occur when the fluid moves into the
magnetic field; the first one is that an electric field E is
induced in the flow. There is no excess charge density and
then V.E=0 . Neglecting the induced magnetic field
implies that VxB =0 and therefore the induced electric
field is negligible. The second key effect is dynamical i.e. a
Lorentz force (J x B), where J is the current density acts on
the fluid and modifies its motion. Therefore, there is a
transfer of energy (J.E) from the electromagnetic field to
the fluid. In this study, relativistic effects are neglected, and
J is given by Ohm’s law:

J=0(qxB) (©)

Within the framework of these assumptions the
magneto-hydrodynamic flow relevant to the problem is
governed by the set of equations.

3. Mathematical Analysis

The governing equations for motion under the auspices
of the Continuity equation, Momentum equation, Energy
equation and Concentration equation are considered,
following Hazarika and Jadov [4] and Mhone and Makinde
[5] resulted into the following equations;

Z42 o0 1
oy @
ou ou au 1 0P 2 aBgu bu?
—+U—+V—=-——+WU———+ —To)+ c-C 2
a xS " 9p(T -Tp)+9B(C—-Cop) &)
@+u@+v@ —E@-FVVZV 3)
a ox oy poy
or o1t aT
—+U—+V—=
ot ox oy
2 2 2 2,2 (4)
LV2T+2L (6_uj + ol +1 @+6_u +UBOu +9p8(T -Ty)+9p(C—-Cp)
oCp Cp|\ox oy 2\ ox oy oCp
oc  eC oCc _oé*C o
With the following conditions:
Symmetry: a—u:O,v:O, ﬂ:O,C:OOny:O (6)
oy oy

. db

Non-slip: u+v&=0, T=T,, C=C, ony=hb(x) @
It is convenient to introduce the stream function y defined by

0
T A 4 ®

oy OX

So that
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a_y w3y
X OXoy X x>
u_y n_ Py )
y  oy? o  oxoy
Substituting equation (9) into (1) gives
2 2
oy Sy =0 It satisfied continuity equation. (10)
OXoy  OXoy
2 2
But a_y/+a_ =w® Which can be written as
2 ay2
Vzt//=a) (11)
To eliminate the pressure term from (2) and (3), differentiate (2) with respectto y and (3) with respectto x gives
ofou ou  au 16{6p_ ,0u oBZou 2béu
—| —=+tU—+V— == —| = [+VW ———F — gB(T -Ty)+gB(C—-Cy)| (123)
ay{at ox ay} pylox]” " oy p y ko ay[ ° o)
0 av+ 6v 6v __1 0 6P w2 (12b)
ox| ot ax ay p OX ax OX
Subtract equation (12b) from (12a) to give
aauavaauava'auav o[ ou ov
— |[+—|vV—-vV— |+—|U——-Uu— =WV
6y6x8y6'y6x6x_6y OX oy ox
(13)
oB¢au 2bau
—— 9B(T -Tp)+9B(C-Co)
p oy koy ay[ ’ 2
Substituting (9) into (13) yields
0|y Py o) dvdy dwiy| 0oy vy
ot| oy?  ox? | oy| oOx gy ox ox% | x| Yy oy? Oy ox?
(14)
o’y %y | oBf %y 2b 6260 0
w2 | S 282 E Y = [9B(T ~To)+9B(C-Cy)]
oys o P oy? 'S oy? ay
Simplifying (14) further to obtain
o0 o(oy oBE &? 2b62a) 0
or) _ gz, o8 - —[9BT ~To)+9B(C~Co)] (15)
o (vx) P Ko oy
2 2 2 2
where L) vy ooy, 0 0wy ov iy 0y) (16)
| oY oxt OX gy oy oxdy Ox oyox | 0 (Y,X)
Substituting (9) into (4) leads to
2 )2 2 )2 2 2V
oT oyl oyal _ k (2 v |[o%w 0%y 1| 6%y 0% v
———=——VT+2— | —— | +=| ——
6t oy ox ox oy pCp Cp| | oxoy oxoy 2| oy?  ox?
17
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Further simplifying of (17) resulted into

oT o(Mw) Kk v(2y 2} av(o% ) oB(oy)
ML oMy k Gor v (& dy| 4oy, o(_v'j

at a(y,x) pCp Cploy? ox* ) Cploaxay) pCploy
(18)
+gﬂ(ra1 _T0)+ gﬁ(cw _CO)
Similarly substituting (9) into (5) using the same approach as in above leads to
8C oy aoC oy aoC _a°C o°T
—+ L =T~ =D—+D—+K (C-C
8t+6y ox  ox oy 6y2+ 18y2+ L o) (19)
Simplifying equation (19) further to obtain
2 2
§+Q v.C =DQ+D1£+KL(C—CO) (20)
ot ol y,x ay? ay?
The corresponding boundary conditions are:
2
a_‘é’:o, wv=0, T —0 ony=0 (21)
dy Oy db iot
—=——=0, T=T,, =Q+me“") ony =h(x). 22
dy ~ ox dx o ¥ =Q( ) ony =Db(x) (22)
The function b(x) is assumed to depend upon a small parameter ¢ such that
b(x,g)zaos(g—xj(0<gzi<<l) (23)
a, L

where a; the characteristics constant half width of the channel, L is the characteristics constant length of the channel and S

is the function describing the channel wall divergence geometry. This assumption helps us to simplify the problem by writing
the equations in non-dimensional form.

To achieve this, Tj is defined as the reference temperature and the following non-dimensional qualities were introduced.

2
w!:%’ X,:S_X’ yr:l, V/!:%, t’:é‘t,
o o
0: T—TO , p,: an P' ¢: C—CO
To—To pVQ Co —Co

Differentiating (24) with respect to x, y and t the non-dimensional quantities and Substituting into (15, 17, 18, 19) and after
neglecting terms of order £ and higher order as well as the primes for charity to obtain

2 2 2

a—a)—oza—a):Re Q(w’w)ﬂlﬁ W+Daa Vos —Gr%—Gc% (25)
oy2 ot o (y.x) o2 oy? oy oy

00 00 06,0 o’y ? o’y ?

7—aPrE=RePr 5[’—}—QEC — | ~Gro0-Geg |-PrE.| — (26)
oy X oy oy

%+Relé v.¢ =Sc@+8 82—0+K¢ 27
ot a ol y,x oy? Clayz ! @7

Where Gr= gﬂ%L(TW —Tg) thermal Grashof number, Gc= gﬂ%l'(cw —Cy) mass Grashof number,

2

2 ) &
:M is the magnetic field intensity parameter a=;a0 the womersley number, Re:Q— the effective
v v

PQ

Q
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2
Reynolds number E. :2Q— is the Eckert number Sc=Daygs Schmitt number and k ;=k; & chemical
aO(TW _TO)Cp

. v
reaction number and Pr=pC, K the prandlt number

The boundary conditions are:
%y Gl% 20

—> =0, y=0,—=0, —=0 Ony=0 28

2 o o (28)

a .

E‘”:o, p=1 0=1 w=1+me" Ony=5(x) (29)

Due to the nonlinear nature of the equations, it is convenient to adopt a power series expansion with the effective flow

Reynolds humber (Re) as follows:

8

- - 0 - -
wzz ej(y/js+me't(//j), a):ZReJ(a)J—S+me'ta)J—)
j=0 j=0

8

0= Rel(0;s+me"s;),
j

(30)
¢=> Rel(pjs +me''y))
j=0 j=0

where wis, ¥, @js, @, Ojs, 0, Pjs and ¢; are functions of S(x) and y. it is important to note that the real part of the
equation (30) forms the solution of the problem which is physically meaningful. Substituting equation (30) into equations

(25-27) and collecting terms of like order of Re and me't , gives zero order:

o 0w 8w o . Ow;i :
> Rel( st +me't 2’)—0{ > Rel (— L +mie"w)) |=
io0 oy oy ico at

['e] i 62 .
0+Q> Rel( Vis |

PP 2 2 2
5 me't V;J)+ Da[a ‘//205 +me't =20 o l//o +Re V/le +Remeit Z¥4 V?J (31)
Re j=0 ay
00; it 00 ¢ 09;
corCls et 20y o Yis et 2
oy ay oy

j=0

. 0%0; -
ZRe ( > e’ —) aPr ZRe L mie 9;) |=
8y ot
00 . 62 . . 82 . 0 ) A
Re Pr[O—QEC[Z Rel( V/ZJS +me't WZJ )J—Gr D> Rel(6+ me'tHj)]
j=0 oy oy '

j=o

o ) ) © L B2y
-Gc ) Re! (gjs + me'tqﬁj)— E. Pr[z Rel( WZJS melt £V )
j=0

2

0w oy? ] e
Z;)Re (¢Js+m|e't¢1)+Re Sc[z Rel( 4 it ¢')]

j

+me
o o ay?

(33)
w 29 N2, _—_— _
+S¢ ZReJ(a ‘92’5 +me't oo 921) +K1{Z Re1(¢js+me't¢j)J
j=0 oy oy

j=0
when j = 0, and collecting terms of like order of me't

, lead to Zero order (31), (32) and (33) yields
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e Y.

8y2
oy
2“0

2

@—ﬁ@o_—zEC Pr "”206#
oy oy
%4 1 . Sc, 626,
— Kl =-—
oy S Sc oy

Considering the term js in (32), (32) and (33) the following set of equations were obtained.

2
%0, o
Os _E, Pr( "’OSJ
oy

-
2
a a)OS _0
v
621//
ayzos = —ps
2 2
0 ¢os_ﬁ¢o :S_Cla Bos
oy2  Sc’ Sc g2
The boundary conditions are
2 2
a_‘/'zoza#:ol%:o' Wo =Wos =0, %:%:0' O _ s
oy oy &y oy o oy
oyy Oy,
EOZ 6;35:0, wo=vos =1 =0 Gs=1 =0 dos=1
When j = 1 order 1 gives:
82l//1__
-

az—a}l—ﬂfaa=§(%’WOS)+Q(%S’W°)+QGZ"’°—Gra‘go—ec%
oy? o (yx) o (v.x oy? oy oy

? NG , 2 2
a_zl_aprglzpr Q(l//o Os)+§(l//0s a)o)+ZQEca l/;O 0 4//205
ay 0 (y,X) 0 (y,X) ay ay

=0, on y=0

on y=S(X)

—GrPréy—GcPrg —ZECPY[

82_¢l__u+ K1]¢1_8_0182_6?1
ay? Sc "~ Sc ay?

Considering the term js the following set of equations were obtained.

62w
ayzls =~y

oy s N 0%y 3y
o’ oyt

35

(34)

(35)

(36)

37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)
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aza’.Ls :Q(‘/’Os ’C‘)OS)_QaZV/OS _Gr 0bhs _Gc Ods (49)
> 0 (V.0 oy® oy oy

2 2 2 2

N

4 =Prg—("”°S bs) g, (—a"’osj ~ Grf — Geglyg — 26, Pr 0 O Vs (50)
oy (¥, X) y° oy
’#hs  k S¢, 82

‘@s L, __sa «912_5 (51)
oy c Sc oy

We now solving the following equations: (34), (35), (36), (37), (38), (39), (40), (41), (42), (43), (44), (45), (46) (47), (48),
(49), (50) and (51) and the stream function ¥, vorticity @, temperature distribution € and volume fraction ¢ were
obtained thus:

1+ me't
Wy = Wcosh Ay (52)
1
@os —@y (53)
_@+me")[ (A7 +1)y  sinh Ay
Y. { S(x) _ sinh ﬂi(x)} (4)
3
_S(y vy (55)

Vos = 5 Ths(x)

2E, Pr(L+me't) {2/11 cosh 4 S(x) + S(x)sinh 4 S(x)

= cosh A,y —ysinh A4 y} (56)
° " (2~ 22)S(x)sinh 4S(X) cosh 2,5 (X) ? !

L EoPry* s

Ops =1 57
0s 128(X)2 ( )
4 = 25 E, Pr(1+me')
U se(af - 25)s(%)
| S(x)sinh 4,S(x) A2 cosh A S(x) ]
cosh 1,S(x) 2 2 cosd,y
—yilz sinh 4;S(x) — 24, cosh 4;S(x)
cosh d;S (x)sinh 445 (x) N -
245c ~ 24 ~
. 21K_ - 1 -2cosh21y
Sinh 4S()| 42+ (Ki=1) smhilS(x)(ﬂ,z+§(Kl—|)j
222 cosh Ay N ﬂfysinh Y
coshﬂQS(x)(ﬂff+%(K1—i)) (222+é(K1—i)jsinh215(x)
b = - Sc, PrEc Cosh(i |S<_1Jy_ : EcPrsy, (59)
c S%(x)(2Sc - Ky)

cosh [i\/gJ S(x)(Sc—Ky)
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2E.Gr Pr(L+me')
2 +
(42 = 22)S(x)sinh 4,5 (X)

25¢,GCE, Pr(1+me')
Se(4 = 23)S(x)

ih .
{W 25 cosh 4,8 (x) - y A sinh 4S(x) - 2 cosh @S(x)} dy

it
cosh 28(;chIZEC Pr£1+ me"™)
Sc(4 =43)S(x)

S(x)sinh 4S(x)
cosh 4,S(x)

2S¢, GCE, Pr(1+ meit)
Sc(4f - 43)8 (%)

inh . , .
{W /122 cosh A, S(x) — yﬂf sinh 4 S(x) — 24, cosh @S(x)}( é(Kl - |)J

cosh dyS(x)sinh 4S(x)

A3 cosh 2,S(x) — yAZ sinh 4 S(x) — 24 cosh @S(x)}{

cosh( /Slc(Kl—i)jS(x)sinh A4S (%)

S(x)sinh 4;S(x)

1 .
1/&(&")]

sinh 41y

25¢,GCE, Pr(1+me™)
Sc(A2 - 23)S(x)
it i
2[ 2E.GrPr(1+me") ]Jr r(x)smm‘ls(x),zzz cosh 4,S(x)

(A2 - 22)S(x)sinh 45(x) cosh 1,5(x)

[,/;m—nj
—y/112 sinh 4;S(x) — 24, cosh 4 S(x)

cosh d;S(x)sinh 4;S(x)

o

@+ me")(A2 +1)S'(x) R CONENE)
A2 (5())° 2 (s’
_Q(1+me")+ 2E,GrPr(1+me")
sinh 4S(x) (42 — 22)S(x)sinh 45(x)

sinh ;S (x) —

248

1 .
22+ = (Kq—i
(2 Sc( 1 )j

2S¢, GeE, Pr(1+ me")ﬂi

+1
Se( - 73800 24 + & (K= s 2559

2,S¢c—

- sinh 4 S(x)

37
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@+ meit)ﬂi {cosh MS(X)+ S'(2x)

A J
- cosh 4;S(x
(sinh 4S(x))? Ak
[ 2E.GrPr(L+me")23 (ZﬂicoshﬂlS(x)+S(x)sinhils(x)
(A% — 22)S(x)sinh 4,5 (x) cosh 2,5(x)

)]sinh ApS(X)

~ 225¢,GCE,, Pr(1+me™)
Sc(A2 —/122)3(x)(,122 +é(r<1 —i)jsinh S ()

it .
( 22ECZGrPr(1J_rme ) Js(x)coshﬂ;lS(x)— _LX)Z S(x)?
(4 —43)S(x)sinh 4 S(x) 2(S(x))

2S¢ GeE, Pr(1+ meit)
Sc(4 - 43)8 (%)

_|'| S(x)sinh 4,S(x) 2 a2 B fi .
{coshXQS(x)ﬂQ cosh 4,S(x) — y4 sinh 4;S(x) ZﬁicoshﬂiS(x)}( Sc(Kl |)]

,1 . .
cosh( Sc(Kl_I)JS(X)SliS(X)
sinh fi(K —i) |S(x)

Sc !

@+me")(A2 +1)S'(x)  S'(x) S’(X)J
+ 5 5 + ) + 3
A (S(0) (5(3)
Q@+me")  2EGrPrl+me")
sinh 43S(xX) (42 — 22)S(x)sinh ;S ()

_ _ sinh 41y
25¢;GCE, Pr(1+me't) 4 2hSe_ 248 1

Sc(A? —ﬂ,ZZ)S(x)[AZZ +é(r<1 —i)jsinh AS(X) [222 +é(K1 —i))

S(x)sinh 4;S(x) —

sinh 4y

2
h
’ (sinh 4S(x))? oSy

@+me')y {cosh S (X)+ SI(X)J

2E,GrPr(1+me') A3 [2/11 cosh 4 S(x) +S(x)sinh zls(x)j .
+ sinh A,y
(A2 = 23)S(x)sinh 4,S(X) cosh 4,S(x)

it
N 4 2S¢, GeE,, Pr(1+me™) ysinh 4y

Sc(? —ﬁ)S(x)[zg +$(K1 - i)jsinh A4S ()

it !/
J{ 2E.Gr Pr(1+ me") }ycoshlly— S'(x) y2
(A2 = 23)S(x)sinh 4,S(x) 2(S(x))°

(60)



_ @+ me't)

International Journal of Mechanics and Applications 2021, 10(2): 30-50

(ﬂf +1)y  sinh 4y

112

+Re

+Reme'

a):iermeit
s(x)

S'(y* y*

+Re

|

S(x)

Syt

48

sinh 4 (x)

v

-

Sy* Y

L+ me')

(/112 +1)y  sinh 4y

212

720

i

12

120S(x)

|

2

S(x)
y2
2

b24d7 sinh d7 Yy + b26 y5

by byoy?

sinh 4 (x)

|

EcPr y7
3240S(x)?

+Gc[

4

+03p

d7

(bsq +2b3g +b3gdg)

cosh 4,y N

60

|

sinh A1y

6

2

—byqy —bay

At

sinh 4,

Y,

cosh 4y
+byg 221 +b39
A

cosh A,y N

2
y
“—+by
> 1

sinh 41y
2

ycosh 44y 2sinh Ay

39

Ne—

Z

/112

bs3

23

ba

3

ysinh 4y 2cosh Ay

1+

4

24

+b36[

me
sinh 43s(x)

/112

it

S(x)y
2

_Q[

%3

sinh /Ily]

_ Y

6S(x)

Ec Pr(f— S(x)4J

4
J+b37 i/—2+b38

b35[ 7

sinhdgy

|

i (61)

2

+bggy +byg

6

3
2 |_Gr|1+

12S(x)?

3
—Gc[b24d7 sinhd;y+ bzgy ]+b39y+b4o

bog sinh A1y +byg cosh A,y +byg +bsq Sinh 4y +

+Reme"

bs, cosh A1y + b33 sinh Ay y + b3, cosh Ay y +bag ysinh 41y

$ =bpy cosh d7y +bpgy?

+me

+bsgy cosh 4y + by y2 +byg sinhdgy
25¢,E, Pr(L+ me“)j
Sc(4f — 45)8 ()

S(x)sinh 4S5 (x)42 — yAZ sinh 4, S (x) - 244 cosh @S(x)]cos dgy
cosh dgS(x)sinh 4, S(x)

+

224S¢ ~ 27

. Lo i i
sinh @S(X)[/122+SC(K1—')) sinhﬂiS(X)(122+Slc(K1—i))
cosh 41y —

122 cosh A,y

Afysinh 4y
cosh 125(x)(122 +é(}<1 —i)j (/122 +é(|<1 —i))sinh AS(%)

(62)
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+Re(b76 sinh dygy +by7 Cosh dygy +l7g cosh d7y +bggy* +bgy y® +b86y+b87)

b62 sinh de + b63 cosh dgy + b64 sinh d8y + b65 cosh d8y +

: (63)
+Reme't| by sinh 4 y +bg7 cosh Ay +bgg sinh A,y + bgg cosh A,y + by cosh dgy
+by1ysinh Ayy +b7,y° +73y* +b74 Y% +bysy? +l6y + by
4 o
9=1+ EC Pr(y SZ(X) )
12S(x)
- 241 cosh 4;S(X) + S(x)sinh 4;S(x
) 2E, Pr(i+mel) 4 c0sh ;5 (x) +S(x)sinh 4,5(x)
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dg = +\/ar Pr (154)
dg =+ 1+Sfl (155)
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4. Method of Solution

The problems of consideration are solved analytically which resulted into the graphical results under results and
discussion.
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Figure 7. Temperature profile for different value of Eckert numbers

5. Results and Discussion

In order to study the behaviour of velocity, temperature
and concentration profile, a comprehensive numerical
computation using mathematical software Maple 12 was
carried out for various values of the parameters that describe
the flow characteristics, and the results were reported in
terms of graphs as shown in figures (1)- (7). The pulse m was
chosen small so that the ensuring flow is a small oscillatory
disturbance about the steady flow. We have observed that for
every m, the womersley parameter « can be varied only for
a range of values, hence we set a«=0.5. The effect of
varying the Reynolds number Re, the Eckert number E.
and the Prandtl number Pr to flow structure were observed.
Therefore we set Re=0.1, E. =1, Pr=7.1 in the ensuring

analysis, we assume that m and Q can be varied while
keeping Re, E; andPr fixed. This assumption is valid

because the physics of the problem and the range of values of

m and Q that are involved. When the porosity was
considered, figurel shows that the effect of increasing values
of Q on steady flow is to dampen the velocity profile. This
is well known for Hartmann flow. And with increase in
Magnetic field intensity parameter (omega) numbers there is
Velocity increase which pushed the flow to the wall of the
channel that leads to increase in heat along the wall of the
channel thereby increasing the velocity in the boundary layer.
This is depicted in Figure 2 with increase in thermal Grashof
numbers the velocity increase and the flow were pushed
away from the wall. This suggests that unsteadiness has the
effect of cooling the fluid. For increase in Reynolds number
velocity decreases as shown in figure 3. This suggests that
in this model, increasing Reynolds number enhances
unsteadiness. The pressure gradient, which is trying to
accelerate the fluid, is counteracted by the magnetic drag.
Figure 4 shows that there is slight decrease in temperature as
Magnetic field intensity parameter (omega) increases. The
effect of thermal Grashof number and mass Grashof number
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in figure 5 but not well felt on temperature in figure 6 there is
a slight increase in temperature as Eckert number increase in
figure 7.

6. Conclusions

A model was formulated with the inclusion of
concentration equation. The study added porosity parameter
to explain viscous dissipation in a porous vertical channel.
Approximate numerical solutions were found using regular
perturbation technique together with their boundary
condition. The outcome of study showed that increase in
viscous dissipation led to decrease in Temperature and
velocity profile but not in concentration. The porosity effect
on heat and mass transfer were clearly exposed with the
significance of the parameters introduced.

Overall observations based on the problem formulated and
analysed upon which conclusions were drawn and listed as:

i. evaluated the effect of porosity on heat and mass
transfer of natural convection fluid flow in porous
media;

ii. assessed the impacts of porosity on heat and mass
transfer of MHD fluid flow in porous media;

iii. established the influence of MHD fluid flow on
vertically porous channel; and

iv. determined the effects of porosity on heat and mass
transfer of MHD fluid flow in a vertically porous
channel. Limitation exhibited by the methods used
was that: The porosity effect on heat and mass transfer
over a vertical porous channel was considered. The
resulting governing equations were simplified and
solved using perturbation technique. The results are
presented in graphical forms.

The impact of variations of velocity, temperature and
concentration parameters on non-dimensional variables of
the heat and mass transfer was established to explain
porosity heat and mass transfer of MHD fluid flow in porous
vertical channel. The influence of porosity effects were also
noticed along with other listed parameters and these
contributed chronologically to MHD fluid flow thereby
explaining heat and mass transfer over porous vertical
channel.

The study concluded that increase in mass Grashof,
thermal  Grashof, magnetic parameter; womersley
parameters, Reynolds, Eckert, Schmidt and chemical
reaction numbers had significant effects on the MHD fluid
flow in porous vertical channel.

Nomenclature

v = The kinematics Viscosity coefficient
p = The fluid density

o = Electrical conductivity of the fluid
w = Stream function

C = Concentration of the fluid within the boundary layer.

0 = A volume flux with oscillating frequency

m = Pulse

Q = Magnetic field intensity parameter (Omega)
Re = Effective flow Reynolds number

A = Womersley number

Gr = Thermal Grashof number
Gc = Mass Grashof number
Cp = Specific heat at constant pressure

T = Temperature in the boundary layer
¢ = Non-dimensional temperature
E. = Eckert number

P = Pressure

U = Velocity component in the x-direction
V = Velocity component in the y-direction
t=Time

Sc = Schmidt number

K, = Chemical reaction number

u, v, w = Cartesian velocity components

X, Y, Z = Cartesian coordinates

Q = The flux rate across any section of the channel.

K = The wall slip parameter.

By = The electromagnetic induction

U = The magnetic permeability

Ho = The intensity of magnetic field

A = The characteristic half-width of the channel

& = A small dimensionless parameter that specifies the
slow variation in the cross- section of the channel

L = The channel characteristic length

Y = #b(x) are the rigid and impermeable walls of the
channel

Pr = Prandlt number
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