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Abstract  The central goal of this paper is to present an algorithm for optical phase gradient evaluation from only one 
fringe pattern using the two-dimensional continuous wavelet transform (2D_CWT) analysis. The phase gradient is computed 
from the extremum scales correspond to the maximum ridge of the wavelet coefficients modulus. Spatial modulation process 
is realized by combining two shifted fringes patterns, we use only single fringe pattern and we suggest to generate its 
quadrature using spiral phase transform SPT. The obtained results with computer simulation and image quality index values 
show a good performance of the proposed algorithm, and eventually, we can reconstruct the spatial phase distribution by 
integrating numerically the phase gradient along x and y-direction. Also, experimental results are given by exploiting speckle 
fringe correlation recorded in digital speckle pattern interferometry. 
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1. Introduction 
Optical phase extraction becomes a key technique in the 

analysis of the fringe pattern given in interferometric 
metrology. The phase distribution encoded in the recorded 
fringe pattern intensity provides full-field measurements of 
physical magnitude like displacement, strain, temperature, 
refractive index changes. The phase shifting [1] and the 
Fourier transform methods [2] are the most common 
techniques used to extract phase from the fringe pattern. 
Several authors have reported the use of the wavelet 
transform to retrieve phase distributions encoded by fringes 
pattern [3, 4].  

Two-dimensional continuous wavelet transform 
(2D-CWT) techniques are used to successfully demodulate 
fringe patterns [5, 6]. These algorithms give a wrapped phase 
distribution from modulated fringe patterns due to use of 
arctangent [7], thus, phase unwrapping is necessary, and 
phase gradient leads directly to continuous phase distribution 
phase distribution [8, 9]. Avoiding the complex step of the 
phase unwrapping. We present here a study of the phase 
gradient extraction from a single fringe pattern using the 
two-dimensional continuous wavelet transform algorithm 
2D-CWT; it is easy to compute the phase gradient from 
maximums scales relating to the ridge point of the wavelet 
coefficient modules, which are integrated to give directly the 
continuous phase distribution.  
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The first section of this paper will examine the fringe 

pattern intensity distribution analysis using two-dimensional 
continuous wavelet transform (2D-CWT). The second part 
presents the algorithm for extraction of phase gradient from 
ridge wavelet and we are finishing the work by presenting 
differents obtained results using computer simulation and an 
experimental fringe pattern given from digital speckle 
pattern interferometry. 

2. Fringe Pattern Analysis by 2D 
Continuous Wavelet Transform 

An interference fringe pattern intensity distribution is 
commonly expressed as: 

( , ) ( , ) cos( ( , ))f a x y b x y x yϕ= + ⋅
    

(1) 

Where ( , )a x y presents the background illumination, 

( , )b x y denotes modulation factor of the fringe pattern, and 

( , )x yϕ is the phase distribution related to the desired 
physical magnitude. Since fringe pattern can be presented in 
digital format, the image processing techniques can be 
exploited to analyze them. Between these techniques, 
2-CWT (two-dimensional continuous wavelet transform) has 
been successfully applied since it is robust and particularly 
helpful for detecting the characteristics of local fringes [10, 
11]. 

Compared with the one-dimensional CWT algorithm [12], 
the 2D-CWT algorithm is more suitable for interferogram 
analysis due to its multiscale zooming capabilities.  

The wavelet coefficients can be calculated by the 
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correlation product between an image and the mother 
wavelet with different values of dilatation and angle of 
orientation, and it is a measure of the local similarity 
between them, the wavelet coefficients of a given signal 

( , )f x y can be defined as: 

2 1

(t,d, , )

( , ) ( ( , ))

w s

s f x y s R x t y d dxdyθ

θ

ψ− ∗ −
−

=

⋅ − −∫∫
   (2) 

Where the symbol ∗ denoted the complex conjugate 
operator, t  and d  are respectively the translation 
parameters on x  and y  directions, s is a scale vector, θ  
is a rotation angle, ψ  is the 2D mother wavelet and Rθ  is 

the conventional 2x2 rotation matrix corresponding to θ . 

(x cos sin , y cos x sin )R yθ θ θ θ θ= ⋅ + ⋅ ⋅ − ⋅
  

 (3) 

For the purpose of rigorous derivation, the most widely 
used 2D complex Morlet wavelet is employed here. The 2D 
complex Morlet just can be used to demodulate the fringe 
pattern with 2D-CWT, it is essentially a plan wave within a 
Gaussian window is given by:  

2 2
0exp( ( ) / 2) exp( ( cos sin )m x y ik x yψ θ θ= − + ⋅ ⋅ + ⋅  

   (4) 

Where 0k  is a fixed spatial frequency, and chosen to be 
about 5 to 6 to satisfy the admissibility condition [13], and 

2 1i = −  represents the complex unit. 
In the 2D-CWT, for the fringe pattern, the wavelet rotates 

at the angle of θ , and scans the whole fringe pattern across 
the two direction x and y by translation t  and d
respectively, 0s >  is the scale factor. 

3. Phase Gradient Retrieval from 
Wavelet Ridge 

The analysis in CWT wavelet domain needs a fringe 
pattern with the spatial carrier in a chosen direction, for this 
reason, and using an appropriate modulation rate m, we 
combine numerically fringe pattern and its quadrature with 
the matrix cos(mx) and sin(mx) respectively to derive the 
modulated fringe pattern with a digital spatial frequency 
carrier [14]. Removing the background illumination from the 
intensity distribution of fringe pattern expressed in equ (1), 
by a low pass filter, it becomes as: 

( , ) ( , ) cos( ( , ))f x y b x y x yϕ= ⋅    (5) 

Recently, Larkin and all have proposed spiral phase 
quadrature transform (SPT) for the two-dimensional fringe 
pattern [15, 16]. Spiral phase transform of f is defined as: 

( ) exp( ) sin( )SPT f j j D b ϕ= ⋅ ⋅ ⋅ ⋅    (6) 

The quadrature term (b.sinφ) appears in the equation, 

where j is a complex unit verifying 2 1j = −  and D 
represents direction map. From the equation (6), we obtain 
sine fringe pattern (quadrature) as: 

sin( ) exp( ) ( )b j j D SPT fϕ⋅ = − ⋅ − ⋅ ⋅    (7) 

The direction map is giving in this paper as it is presented 
in [17], the ratio between the gradient of the phase in x and y 
is expressed as: 

tan( ) /y xD ϕ ϕ= ∇ ∇      (8) 

The problem in this equation is that phase is unknown, so 
instead the direction map, we define orientation map 
formulated as: 

tan( ) /y xf fβ = ∇ ∇       (9) 

Then, orientation and direction map are related by: 

exp(j ) exp(j )D β⋅ = ± ⋅    (10) 

So, from this similarity between the two magnitudes, we 
define the quadrature map as: 

( , ) sin( ) exp( ) ( )q x y b j j SPT fϕ β= ⋅ = − ⋅ − ⋅ ⋅   (11) 

We obtain modulated fringe pattern digitally by 
introducing spatial carrier characterized by their modulation 
ratio m and the intensity distribution in a modulated fringe 
pattern defined as follow: 

cos(m x) q sin(m x)mf f= ⋅ ⋅ − ⋅ ⋅    (12) 

This gives  

cos( )mf b m xϕ= ⋅ + ⋅      (13) 

A phase-modulated carrier is then added to the phase of 
interest to enable the wavelet phase extraction.   

Computing the 2D-CWT wavelet coefficients of the 
modulated fringe pattern, we extract the wavelet ridge 
defined as the maximum of the obtained coefficients and its 
modulus should have a maximum value when the dilatation 
and rotation of the mother wavelet and the fringe pattern are 
more locally similar. 

A new matrix is constructed by picking up the maximum 
value of each column of the wavelet coefficient modulus 
array, this is called the wavelet ridge, and then, the 
corresponding scale value is determined from the ridge 
wavelet. By repeating this process to all pixel of the fringe 
pattern, the phase gradient is then estimated. 

The local maxima of the modulus of wavelet coefficients 
at all positions make up of the wavelet ridge [18, 19], 
supposing that the scales relating to the ridge points, the 
maximum scales maxs  correspond to the maximum ridge of 
the wavelet coefficients modulus is defined as:  

max
, [0,2 ]

( , ) arg max ( , , , )
s R

s w t d s
θ π

θ θ
+∈ ∈

=     (14) 

Where maxs  represent the scale value for maxima. 
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In term of representation of cwt transform, given a 2D 
signal, we produce a 4D representation which cannot be 
readily plotted or visualized. There exist several possible 
representations [20]. That the CWT can determine the local 
frequency [21], we have a natural way to detect the phase 
gradient that can be obtained from the local frequencies as:  

( )12 2
0 0 max( 2) / 2k k s mϕ∇ = + + −     (15) 

Where m is the modulation ratio. 

4. Computer Simulation and 
Application on Real Fringes  

To prove the effectiveness of the proposed method, we 
have tested it with simulated fringe patterns using MatLab 
software; the test phase distribution shown in figure (1.a) that 
we used has the following expression: 

2 2 1 2( , ) 0.15 (( 128) ( 128) )x y x xϕ = ⋅ − + −      (16) 

Where x and y are the pixel coordinates. The horizontal 
and vertical phase gradient respectively simulated from the 
phase is shown in the figure. (1.b) and (1.c), figure (1.d) 
shows the three-dimensional representation of phase 
distribution and its one dimensional plotted line profile along 
row 128 is showed in figure (1.e). 

In figure (2.b) we present the fringe pattern coded by the 
known simulated phase, and its quadrature obtained by spiral 
phase transforms SPT presented in figure (2.b). By 
combining numerically the fringe pattern and its quadrature, 
we obtained the modulated fringe pattern shown in figure 
(2.c) with a spatial carrier of frequency m = 1.5 red/pixel.  

The 2D-CWT is applied to demodulate the modulated 
fringe pattern with both horizontal orientation 0θ =  , 
vertical orientation 90θ = 

, and a scale vector vary from 2 
to 12 with increments of 0.01, we obtain the results presented 
in figure (3). The right column present the 3d plotted original 
phase gradient distribution along x and y-direction. The 
middle column presents the retrieved phase gradient by using 
the proposed algorithm, and the left column presents the 
plotted profile along one row from original and estimated 
phase gradient.  

 
 

        

(a)       (b)       (c) 

      

(d)          (e) 

Figure 1.  Computer simulation (a) simulated phase map (b, c) simulated horizontal and vertical Phase gradient (d) 3d plotted phase map and (e) plotted line 
profile for row (:,128) 
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(a)        (b)       (c) 

Figure 2.  Results of computer simulation (a) fringe pattern intensity distribution (b) quadrature map obtained by SPT (c) fringe pattern with spatial carrier 

     

     

Figure 3.  Right: Original phase gradient distribution along x and y-direction. Middle: Retrieved phase gradient. Left: Plotted profile along one row from 
original and estimated phase gradient 

By implementing a numerical integration of the two phase 
gradient, we obtain directly the continuous phase distribution 
without phase unwrapping step as illustrated in figure 4.  

 

Figure 4.  Profile of the obtained phase distribution by numerical 
integration   

The performance of evaluation algorithm is measured by 
image quality assessment (Q) [22]. This quality index model 
any distortion as a combination of three different factors: 
loss of correlation, luminance distortion, and contrast 
distortion. The first component is the correlation coefficient 
between the original and the test images x and y, which 
measures the degree of linear correlation between them. It is 
defined as: 

1 /xy x yQ σ σ σ=      (17) 

The second component measures the mean luminance 
between x and y, which is defined as: 

( )2 2
2 2 . / ( ) ( )Q x y x y= +       (18) 

The third component measures the similarity the contrasts 
of the image are defined as follows: 
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( )2 2
3 2 /x y x yQ σ σ σ σ= +     (19) 

The proposed image quality index is defined as a product 
of three components: 

1 2 3Q Q Q Q= × ×       (20) 

Where x  and y presents the average of the image x and 

y, xσ  and yσ  the standard deviation of the two images, 

respectively. The Q values are in the range [-1, 1] where 1 is 
satisfied for an exact retrieval characteristic. The table below 
shows the metric value given by Q index that compares the 
original phase gradient distribution with there obtained by 
2D-CWT. 

Table 1.  Quality measurement by metric similarity Q 

Retrieved characteristic map Q index value 

Horizontal phase gradient 0.90 

Vertical phase gradient 0.90 

Recovered phase distribution with numerical 
integration 0.96 

After validation of the proposed cwt algorithm by 
simulation and her good accuracy showed using Q index, we 
exploit an experimental fringe recorded using digital speckle 
pattern interferometry [23].  

The experimental evaluation of the proposed method is 
performed with a speckle fringe correlation obtained in 

speckle interferometry, it is a powerful optical measurement 
technique used for industrial measurements to study 
deformations, vibrations, defects, and damages assessments 
[23]. experimentally, speckle pattern exposure of the object 
is taken in one position. Then the object is deformed, and 
another exposure is taken. We exploit in this part the speckle 
fringe correlation of fiber carbon given by 4d technology 
society®. Figure (5a) and figure (5b) present the recorded 
speckle patterns after and before deformation, these two 
speckle patterns are subtracted, and their difference is 
squared in order to obtain speckle correlation fringes 
corresponding to the object's deformation as shown by a 
figure (5c). 

Fringes correlation are characterized by a strong speckle 
noise defined as a granular structure resulting from 
self-interference of coherent waves randomly scattered from 
a rough surface, making it capable of giving the 
measurement of displacements with an accuracy of the order 
of wavelength used. The proposed technique is very 
sensitive to speckle noise, for this reason, speckle fringes 
correlation undergo to a denoising step to reduce this noise. 
After denoising step, we apply the proposed technique; we 
give the horizontal and vertical phase gradient illustrated 
respectively in figure (6a) and figure (6b). A 
two-dimensional numerical integration of the two phase 
gradient in the two directions provides the continuous optical 
phase distribution presented in figure (6c). 

  

                           (a)                                 (b)                                (c) 

Figure 5.  The recorded speckle pattern. (a) After deformation, (b) before deformation, (c) speckle fringe correlation 

   

                           (a)                                 (b)                               (c) 

Figure 6.  The estimated features after filtering step, (a) horizontal phase derivative, (b) vertical phase derivative, (c) phase distribution obtained by 
numerical integration 
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5. Conclusions 
The aim of this paper was to extract phase gradient 

distribution from a single fringe pattern with a spatial carrier 
using the 2-CWT algorithm. This study has shown that we 
can use only a single fringe pattern and generate its 
quadrature by spiral phase transform SPT, and this makes us 
to introduced digitally the spatial carrier. The performance of 
the proposed algorithm has been evaluated with the good 
accuracy by using generated fringes pattern by computer 
simulation. In an experimental context, we have applied the 
2-CWT algorithm to a speckle fringe correlation after a 
speckle noise removing step.   
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