
Software Engineering 2013, 3(2): 5-12
DOI: 10.5923/j.se.20130302.01

Change Operations and Their Consequences in AOP
Evolution

Sandra Casas*, Cecilia Fuentes Zamorano, Héctor Reinaga

Instituto de Tecnología Aplicada, Universidad Nacional de la Patagonia Austral, Río Gallegos, 9400, Argentina

Abstract Simple change operations to source code can cause unexpected behavior. In particular, two well-known
problemat ic situations, fragile pointcuts and aspect interactions, pose serious challenges for the evolution of software with
aspects. We believe that if developers are informed about the consequences of the change operations they are considering,
they will be able to avoid various errors. This work analyzes the effects of change operations in AO applications. It proposes
the Identification, Qualitative, and Quantity (IQQ) model as a conceptual approach to anticipating the consequences of
change operations, along with BaLaLu, a tool that supports the IQQ model.
Keywords Aspect-oriented Programming, Separation of Concern, Change Operations, Software Evolution, AspectJ

1. Introduction
A crosscutting concern (CCC) is program behavior that

cannot be adequately modularized with respect to the other
parts of a system[1]. AOP provides constructs for
modularizing CCCs[2] in order to decrease code scattering
and tangling. AOP proposes a new kind of modularization
called aspects. An aspect is a module that can localize the
implementation of a CCC. AOP adopts a specific
conception of CCCs: a CCC contains functionality that is
executed at different join points. A join point is a
well-defined point in a program’s control flow. The main
abstractions of AOP are pointcuts, which are predicates that
describe a set of join points, and advice, comprised of
blocks of functionality that can be bound to pointcuts. The
key to the AOP modularization technique lies in its
composition mechanis m. In traditional approaches such as
OO, subroutines explicitly invoke the behaviors
implemented by other subroutines. In contrast, aspects have
an implicit invocation mechanism, so that the behavior of
an aspect is implicitly invoked in the implementation of
other modules. Consequently, the implementation of these
other modules can be largely unaware of the CCC.

However, this structure (pointcuts and advice) makes it
difficult for developers to evaluate the behavior of a system.
In particular, the implicit invocation mechanis m introduces
an additional layer of complexity in the construction of a
system. This can make it d ifficu lt to understand how and
when the base system and the aspects interact , and

* Corresponding author:
scasas@unpa.edu.ar (Sandra Casas)
Published online at http://journal.sapub.org/se
Copyright © 2013 Scientific & Academic Publishing. All Rights Reserved

consequently, how the overall system will behave.
Moreover, seemingly innocuous and simple changes in

the source code may produce erroneous and unintended
behaviors. Since it is easy to lose track of the global
characteristics of how base code and aspects interact, it can
be difficult to identify the code that is responsible for such
unanticipated behavior. Similar consequences can occur
when a jo in point is reached by two or more pointcuts and
the developer is not aware of the situation and therefore
does not address it. These two problematic situations,
known as fragile pointcuts[3] and aspect interactions[4],
represent a real problem for the evolution of software using
aspects and can directly impact maintenance tasks, time,
effort, and costs.

Our proposal aims to answer the question, What will
happen if a change operation is performed? We believe that
if developers are aware o f the consequences of future
change operations, they can avoid various errors. The
central software artifact in this study is source code, and for
that reason we have focused on the AspectJ language[5].
However, our approach may be applied to any other AO
language.

The rest of this paper is organized as follows. In Section
2, we analyze the effects of change operations in AO
applications. In Section 3, we present the Identification,
Qualitative, and Quantity (IQQ) model as a conceptual
approach to anticipating the consequences of change
operations. In Section 4, we present the BaLaLu tool, which
supports the IQQ model, along with some tests. Finally, in
Sections 5 and 6, we discuss related work and p resent our
conclusions.

2. AOP Evolution

6 Sandra Casas et al.: Change Operations and Their Consequences in AOP Evolution

Aspects are the central abstraction of AOP. Two modular
components comprise an aspect: pointcuts and advice.
Advice is a fragment of code, such as a method, that will be
executed with the base code (after, before, or around). A
pointcut is an expression that establishes the events and
conditions specifying when and where advice code will be
executed, typically as a method call. Po intcuts are the more
critical elements in AOP evolution, because a simple change
in the base code may alter the set of join points of any
pointcut and have consequences for advice execution.
Pointcuts can refer to events either exp licit ly or by using
defined pattern names with wildcards. The tight coupling
and dependence between pointcuts and base code are the
cause of fragile pointcuts and aspect interactions.

Change operations represent software evolution; they are
the actions that developers carry out when they modify
source code. Some examples include adding a class,
renaming a method, and applying a refactoring[6]. Change
operations are important because they can generate diverse
nonlocal consequences in AO applications. After a change
operation has been applied, a pointcut may either capture too
many jo in points (false positives) or fail to capture certain
join points that were intended to be captured (false
negatives). A simple example is presented in the following
listing code:

public aspect LogChangePosition {
 pointcut changePositionPoint(Point p):
 call(* Point.set*(int))&& target(p);
 after(Point p): changePositionPoint(p) {
 Logger.writeLog("Change position Point:”
 +p.toString()); }
 pointcut changePositionLine(Line l):
 call(* Line.set*(Point)) && target(l);
 after(Line l): changePositionLine(l) {
 Logger.writeLog("Change position Line:”
 +l.toString()); }
}
The LogChangePosition aspect implements a log

mechanis m to register the position changes of Point and Line
objects. Table 1 indicates consequences that very simple
changes in the domain (Point and Line classes) can have.

Table 1. Change Operations and Consequeces

Change Consequences

Rename type Point as MyPoint
The interception {call (void
Point.set*(int)} is empty and potential
false negatives result .

Change the signature void
setX(int) to void setX(double)

{call (void Point.set*(int)} is broken
and potential false negatives result.

Add a field to Point and Line
classes that is not related to
position, and add a setting method
for it .

LogChangePostition aspect will
intercept the calls to the new method
and potential false positives result .

The problems depicted are known as “fragile pointcuts”[3]
and are a real problem for the evolution of software with
aspects. Related issues are discussed in[7, 8, 9, 10].

Interaction, conflicts or interferences[4] comprise another
issue that may arise during software evolution in complex
systems with several CCCs and aspects. A new pointcut can
create one or more conflicts with existing pointcuts.
Somet imes conflicts among aspects require specific
treatment by the developer, such as defining an order of
execution. The problem arises because weavers of the AO
language do not report when aspects are in conflict, and they
are simply weaved (composed) as in any other case. If an
application developer is not aware of the conflicts among
aspects, the application behavior may be erratic and
unpredictable.

An elementary change in base code or a pointcut
specification can produce potential false positives/negatives
and interactions. When this happens, developers must
identify the problem and resolve it. However, the
identification of false positives/negatives and interactions
and their causes is not a trivial task in medium-scale
applications. This analysis is even more difficult when it is
performed after the source code has been modified, at which
point developers must perform several tasks such as
exhaustive code analysis and inspection and intensive
execution of test cases. All these tasks impact maintenance
time and effort, with increasing maintenance costs, and new
methods and tools are necessary to reduce the maintenance
time, effort, and costs.

3. IQQ Model
The goal of the IQQ model is to provide a model for

anticipating the consequences of changes in applications
with aspects. IQQ does this based on three premises:

1) Identify the consequences of change operations in AO
applications. This implies the possibility of detecting the
effects of change operations on source code.

2) Quantify the consequences of change operations in
metrics that facilitate the analysis for developers. This
implies the possibility of quantitatively measuring false
positives/negatives and conflicts that a change operation may
produce.

3) Qualify the consequences and relate them to the
quantified information. Th is implies the possibility of
delimiting the segments of source code that may be affected
by a change operation.

The main components of the IQQ model are a program
repository, change operations, and their consequences.

3.1. Program Repository

Our approach represents programs as entities rather than
text files. Since we focus on AO applications, we consider
constructs such as packages, classes, methods, fields, aspects,
pointcuts, advice, and exception handlers. We also represent
different relationships among these entities that are relevant
for AO, such as inheritance, method calls, and aspects
weaving/compositions. Each entity has several properties

 Software Engineering 2013, 3(2): 5-12 7

and states such as identifier, type, and access modifier. These
properties and states identify and represent entities in the
repository and the relationships between them. Po intcuts are
represented in two ways, as expressions and as sets of join
points intercepted in specific instances.

Figure 1 represents the main entities and relat ionships in
the repository.

Figure 1. Entities and relationships in the repository

3.2. Change Operations

In the IQQ model, a change operation is a function whose
inputs produce specific outputs over a specific instance of
the repository. The IQQ model considers both atomic and
composite change operations.

Atomic Change Operations: These are indivisible
operations that cannot be separated into more than one task
or step; thus, they are very simple. An atomic change
operation contains all the necessary information to represent
a function that can be analyzed with the repository
informat ion. An atomic change operation can produce false
positives/negatives as well as conflicts during system
evolution. The following atomic change operations suffice
for the IQQ model:

- Add a package/class/method/field/handler/message
- Remove a package/class/method/field/handler/message
- Add/remove a pointcut
- Add/remove a declare parents
- Add/remove an advice.
Composite Change Operations: A composite change

operation is a sequence of atomic change operations.
Somet imes the order in which the atomic operations should
be done is mandatory. For instance, the operation “move a
class” may be split into “remove a class” and “add a class”
atomic change operations. The set of false negatives /
positives that a composite change operation can produce is
the union of the individual results of each component atomic
change operation. The following composite change
operations suffice for the IQQ model:

- Move a class/method/field/handler/message
- Rename a package/class/method/field
- Rename a pointcut
- Change a declare parents
- Change a pointcut
- Change an advice.
The change operation “change a pointcut” includes several

actions such as changing a primit ive pointcut designator (for
example, from “call” to “execution”) or changing a jo in point
expression (for example, from “Account.debit(..)” to
“Account.*(int))”.

In [11], we present a complete specificat ion of atomic and
composite change operations.

3.3. Consequences

In previous Section we show a basic example of how
simple change operations can generate potential false
positives/negatives. In[12], we analyzed in depth the
potential consequences of each change operation over
pointcut expressions of AspectJ. Usually, the “add” change
operations can generate potential false positives; the
“remove” change operations can generate potential false
negatives; the “move” and “rename” change operations can
generate potential false positives/negatives; and “change a
pointcut” can generate interactions and/or false positives
/negatives. For example, the change operation “remove class
X” impacts all designators of pointcuts that refer to class X.
That is, the jo in point expressions of a primit ive pointcut
designator include “call”, “execution”, “target”, “with in”,
and so on, and if X is referenced in any of these expressions,
then a potential false negative is present.

In general, we say
if (ChOp(x) && P(x)) then[C],
where ChOp is any change operation, P is any pointcut of

the application, x is a source code entity (package, class,
method, field, pointcut, advice, etc.), and C is the set of
consequences of ChOp (false positives/negatives and
interactions).

4. BaLaLu
BaLaLu is a tool that we have developed to support the

IQQ model. BaLaLu can analyze 31 change operations, 18 of
which are atomic operations and 13 of which are composite
change operations. Among these operations, 21 are change
operations over base code and 10 are change operations over
aspects code. BaLaLu supports both Java and AspectJ source
code.

4.1. Design and Implementation

The change operations comprise a hierarchy in which the
atomic and composite classifications are the main subclasses.
AddClass, AddPackage, AddMethod, AddField, AddAdvice,
AddMessage, RemoveClass, RemoveMethod, RemoveField,
RemoveMessage, RemoveAdvice, and so on are subclasses

8 Sandra Casas et al.: Change Operations and Their Consequences in AOP Evolution

of AtomicChange. MoveClass, MoveMethod, MoveField,
MoveMessage, RenameClass, RenameMethod, RenameFiel
d, and so on are subclasses of CompositeChange.

Figure 2. Diagram of classes of change operations

Each atomic change has consequences (potential false
positives/negatives and/or interactions). Composite change
objects are composed of sets of atomic change objects.
Consequence objects represent informat ion about false
positives/negatives or interactions (such as join points,
aspects, or pointcuts) that will be given to users. Figure 2 is a
simple schema of the design.

The repository manages the entity-relationships model
that represents program source code. The repository is
implemented as a relational database. Each change operation
class has a specific SQL query to execute. The parameters of
the query are fields of the particular change operation class.

Figure 3 presents a very simple scenario in which we need
to evaluate the consequences of removing the setBalance
method of the Account class.

Figure 3. Instance of atomic change operation

The Logging aspect is matching calls of all methods of the
Account class. The Pointcut table contains all join points
matched by each pointcut. An instance of the
RemoveMethod class is created with “setBalance” and
“Account” fields. Then a query is set up with these values.
The executeQuery method executes the query and maps the
results to Consequence objects.

A general template (form) with optional fields is used to
select change operations and configuration input parameters.
This makes it easy for a developer to define a change
operation. BaLaLu shows the results with a report. The
numbers of false positives/negatives and interactions are

shown in the upper part of the report panel, and a detailed
description of the source code elements (package, class,
method/field, aspect, pointcut, etc.) affected by the change
operation is shown in the lower part of the report.

The developer can define filters, which can be applied
over different entities (aspect, pointcut, or class), to limit
enclose the list of results.

4.2. SPACEWAR Example

Spacewar is an implementation of the classic video game.
The source code is distributed by Eclipse. Spacewar has
3053 lines of code, including 2 packages, 17 classes, 8
aspects, 127 methods, and 21 pointcuts.

We have used BaLaLu to analyze several Spacewar
change operations. First, we specify a set of new
requirements, in order to determine the necessary change
operations to implement them. For example, the requirement
“count the firings by game” requires two change operations:

a) add a new pointcut to intercept all calls of the fire
method of the “Ship” class

b) add new advice associated with the pointcut.
Next, we enter these change operations in BaLaLu, to

probe the following change operations:
ChOp#1.Remove “register” method from “Registry” class
ChOp#2. Remove “Player” class from “Spacewar” package
ChOp#3. Add “Boat” class to “Spacewar” package.
ChOp#4. Add “getActivate” method to “Ship” class
ChOp#5. Add “setSuccess” method to “Ship” class.
ChOp#6. Rename “Spacewar” package by “Armageddon”
ChOp#7. Move “bounce” message to Ship class.
ChOp#8. Move “Registry” class to “Coordinator” package
ChOp#9. Rename “Ship” class as “Boat”
ChOp#10. Rename “clockTick” method of “Game” class by

“seconds”
ChOp#11. Move “newShip” method to “Registry” class
ChOp#12. Add pointcut “fire” with expression “call(void

Ship.fire())” to Debug aspect.
ChOp#13. Add pointcut “minimum” with expression

“call(boolean Ship.expendEnergy(double amount)) && args(p)
&& if(p.getEnergy() < 0.10)” to Debug aspect

ChOp#14. Change pointcut (join point) “call(Ship
Game.newShip(Pilot)) && args(p)” of SpaceObjectPainting aspect
to “ call(Game.*(..))”.

ChOp#15.Remove pointcut “call(Game+.new(String)) from
DisplayAspect aspect.

ChOp#16. Change pointcut (designator) of Debug aspect to
“execution(* (spacewar.* && !(Debug+ || InfoWin+)).*(..))” .

ChOp#17. Change pointcut (designator) of Debug aspect to
“execution(void Ship.bounce(Ship, Ship)) && args(s, s1)”.

ChOp#18. Change pointcut (designator) of Debug aspect to
“target(r) && (call(void register(..)) || call(void unregister(..)))”.

ChOp#19. Add pointcut “call(Robot.*())” to Debug aspect.
ChOp#20. Add pointcut “preinitialization((spacewar.*

&& !(Debug+ || InfoWin+)).new(..))” to Debug aspect.
ChOp#21. Remove pointcut “call(Game+.new(String)) from

DisplayAspect aspect.

 Software Engineering 2013, 3(2): 5-12 9

Figure 4 presents the consequences calculated by BaLaLu.
In the graph, we also contrast the quantity of join points
affected by these change operations with the current join
points matched by the original pointcuts (violet bar).

All change operations have potential consequences,
because the Debug aspect matches all jo in points (method
and constructor calls) of the Spaceware package.

The Spaceware package contains most of the functionality
of the application, so that any change causes potential
consequences. As we said earlier, in general, “add” change
operations can cause potential false positives (ChOp#3,
ChOp#4, ChOp#5, ChOp#12, ChOp#13, ChOp#19, and
ChOp#20); “remove” change operations can cause potential
false negatives (ChOp#1, ChOp#2, ChOp#15, and
ChOp#21); and composite change operations can cause all
types of consequences (ChOp#6, ChOp#7, ChOp#8,
ChOp#9, ChOp#10, ChOp#11, ChOp#14, ChOp#15,
ChOp#16, ChOp#17, and ChOp#18).

Figure 4. Consequences of change operations in Spaceware

4. Related Works
SpyWare[13, 14, 15, 16] and EclipseEye[17] are IDEs that

embody the change-based software evolution (CBSE)
approach. CBSE arose in opposition to the typical
configuration version systems to overcome their d ifficu lties.
CBSE treats changes as first-class entities. One difference
between the CBSE model and our proposal lies in the
purpose of the CBSE model, which defines the history of a
program as the sequence of changes that the program has
undergone. Based on the history of changes, a developer can
reconstruct each successive state of a program’s source code.
In addition to this difference, which we consider substantial,

CBSE t reats change operations as first-class entities while
the IQQ model defines them as functions, and the success of
the CBSE model requires that it be implemented in these
IDEs or development tools, while the IQQ model can be
incorporated into these IDEs or in other specific tools such as
BaLaLu. Finally, CBSE applies only to OO applications
(Java and Squeak) and does not consider AO applicat ions,
although we assume that it is possible to extend the CBSE
model to AOP.

Automated tools as AJDT[18] and PointcutDoctor[19] in
the face of pointcut expression show the effectively
intercepted join points and also the “almost” intercepted ones,
which is useful when a change operation occurs in the
aspects but is insufficient for change operations that occur in
the domain.

AspectMaps[20] is a tool that uses software visualizat ion
to aid in the understanding of AO software systems. It
provides a scalable visualizat ion of implicit invocations,
selected join point shadows, and, if multiple aspects are to
execute, the order in which they are specified to run. Another
tool that uses software visualization is ITDVisualizer[21], an
analysis toolkit for assessing how static and structural
declarations impact the method lookup of the base program
and for identifying how inter-type declarations shadow
particular base code entities. The main differences between
these tools and our approach are: a) BaLaLu outputs are
textual reports rather than graphical; b) BaLaLu analyzes
dynamic CCCs (pointcuts and advice) but not static CCCs
(inter-type); and c) while AspectMaps and ITDVisualizer
can provide visualizat ions of the current state of source code,
they do not provide visualizat ions of the effects of future
changes.

Several tools such as PCDiff[3], Celadon[22], and
Souyoul[23] and an unnamed tool in[24] have been proposed
to analyze change impacts for AO programs. In general,
these tools analyze and compare two or more versions of
source code programs. The observed differences are used to
derive a group of atomic change operations. These tools
work with abstract representations of programs such as
syntax trees, call graphs, and dependence graphs, and they
also include test cases. An important difference between
these tools and BaLaLu is that BaLaLu is not a tool for
analyzing the impacts of changes. But we can also
summarize the other main differences between these tools
and BaLaLu:

a) These tools outline methods based entirely on
comparing program versions; thus, they detect and analyze
the impact of changes “after” the changes occur. BaLaLu
aims to identify the consequences of changes “before” they
occur.

b) Because these tools work with program versions, they
only can find d ifferences in terms of “atomic” change
operations. BaLaLu can also analyze composite change
operations. When a composite change operation is analyzed
as a set of independent and dissociated atomic change
operations, the results lose semantics and integrity.

c) The analysis and assessment of source code program

10 Sandra Casas et al.: Change Operations and Their Consequences in AOP Evolution

versions arose from using CVN or Subversion systems for
software evolution and maintenance. The limitations and
shortcomings of these tools for improv ing evolution and
maintenance tasks are clearly identified in[25].

Vidock[26] is a tool for analyzing the impact of aspect
weaving in test cases. It performs a static analysis that
identifies the subset of test cases that are impacted by the
aspect weaving. This tool works after the changes in source
code have been made. However, Vidock is complementary
to our proposal since it can corroborate the results calculated
by BaLaLu.

A method to analyze the change impacts of woven aspects
is proposed in[27], but the method is not supported by a tool.
This work analyzes how aspects can change the control flow,
input/output parameters, values of data members, and

inheritance dependencies of the base code. It also describes
the influences and possible effects of pointcut declarations
on inheritance and overriding dependencies and how the
ripple effects can be computed.

Table 2 summarizes all of these tools, comparing a) the
source code programming language(s) that the tool covers; b)
the main objectives of the tool; c) the main approach,
technique, or strategy used by the tool; d) the informat ion or
results produced by the tool; and e) how the tool is
implemented. This table of analysis tools for the
maintenance and evolution of software with aspects is not
complete, but to date we know of no other tools that analyze
software in advance of its implementation or that include
composite change operations for AO software.

Table 2. Comparison of Tools

Tool Language
(s) Objective Approach – Strategy What is revealed Imple-

mentation

PCDiff[3] AspectJ Change impact analysis. Comparison of program versions.
Call graphs. Test cases.

Atomic change operations over
classes and aspects.
Interferences between aspects.

Eclipse
plugin

SpyWare
[13-16] Squeak Replace software configuration

systems such as CVN and
Subversion.

CBSE: change operation as
first-class entity, program as AST
where each node has its history.
Repository of changes.

Atomic change operations and
refactoring. IDE

EclipseEye[17] Java

AJDT[18] AspectJ Develop programs. Editing and
compilation. Software visualization. Pointcut expressions.

Tool suite
in Eclipse
IDE

PointcutDoctor
[19] AspectJ Help developer write correct

pointcuts.
Heuristic rules, relaxation process.
Recursive explanation.

Join points matched and not
matched by pointcut.

AJDT
plugin

AspectMap[20] Java
AspectJ

Provide aspects understanding.
Visualization that shows how
aspects crosscut the base code,
as well as how they interact at
each join point.

Software visualization.

Implicit invocations.
Join point shadows.
Order of execution of aspect
interactions.

AJDT
plugin

ITDVisuali-zer
[21]

Java
AspectJ

Assess the impact of structural
modifications made through
AspectJ inter-type declarations
on the behavior of the system.

Analyzes structural information
about a program before and after
weaving. Uses a modified
AspectBench compiler (abc).

Interaction patterns bet-ween
the static crosscutting construct
of AspectJ and base programs:
lookup impact, shadowing
impact, orthogonal.

IDE
Eclipse

Celadon[22] AspectJ Understand the impact of
program changes.

Comparison of program versions.
Abstract syntax tree and static call
graphs. Dynamic programming
algorithm and RTA algorithm.

Atomic changes together with
relationships. Subset of
regression tests that are
impacted by those changes.

Not
mentioned

Souyoul[23] AspectJ Change impact analysis.
Comparison of AspectJ program
versions. Dependency graphs.
Program slicing.

Atomic change operations over
aspects.

Not
mentioned

[24] AspectJ Change impact analysis.

Comparison of program versions.
Control flow graphs. Analysis of
syntactic and semantic differences.
Test cases.

Atomic change operations over
aspects and classes.

Top abc
compiler

Vidock[26] AspectJ Calculate test cases impacted by
aspects.

Static analysis of program and test
cases. Abstract syntax tree. Static
call graphs.

Impacted test cases. IDE
Eclipse

Balalu AspectJ

Anticipate the consequences of
atomic and composite change
operations over classes and
aspects.

Repository of program structures.
Change operations are SQL queries.

Potential false
positives/negatives. Aspect
interactions.

Stand-alone

 Software Engineering 2013, 3(2): 5-12 11

5. Conclusions
In this work, we have analyzed a repertory of change

operations that can have unintended consequences in AO
applications during software evolution. The main reasons for
these problems are fragile pointcuts and aspect interactions.
We have proposed strategies to anticipate these
consequences before the source code is changed. The main
contributions of this work are: showing how change
operations over source code can produce undesired effects
(ripple effects); identifying several of these change
operations; identifying their consequences, quantifying them,
and locating them in source code; and performing these
analyses with an automatic process before the change
operations are implemented. Although tests and code
inspections cannot be eliminated, the IQQ model and
BaLaLu tool can be used to reduce the need for these. This
decreases the time and effort necessary for detecting the
ripple effects produced by change operations in the context
of AO applications.

However, open problems still remain. In software
applications with aspects, join points may be activated or
disabled for the sake of change operations, and perhaps for
other purposes. In general, developers change source code
with some goal in mind, and the changes may have any
mean ing. Isolated atomic change operations are less frequent
than composite change operations when new requirements
need to be implemented. Nevertheless, the identificat ion of
composite operations is strongly tied to atomic operations.
The set of atomic operations is large, but we can confine
them to those that can be affected by an aspect. For example,
“remove a local variab le” is an atomic change operation, but
it is not relevant for AOP because local variables cannot be
intercepted by pointcuts. The universe of composite change
operations is anticipated to grow as a result of the recent
introduction of “refactorings”. Refactoring is more complex
than “moving” or “renaming” an entity. Our future work will
address the possibility of anticipating the consequences of
refactoring in software with aspects. It will also investigate
passing BaLaLu to IDE-based tools for Eclipse.

ACKNOWLEDGEMENTS
This work was partially supported by the Universidad

Nacional de la Patagonia Austral, Santa Cruz, Argentina.

REFERENCES
[1] W. Hürsch and C. Lopes, “Separation of Concerns”,

Northeastern University Technical Report NU-CCS-95-03,
Boston, 1995.

[2] G. Kiczales, G. Lamping, J. Mendhekar, A. Maeda, C. Lopes,
C. Loingtier and J. Irwin, “Aspect-oriented Programming”,
Proceedings of the European Conference on Object-Oriented
Programming (ECOOP), LNCS 1241, Springer-Verlag, 1997.

[3] C. Koppen and M. Stoerzer, “Pcdiff: Attacking the Fragile
Pointcut Problem”, European Interactive Workshop on
Aspects in Software, Berlin, Germany, 2004.

[4] S. Casas, J. García Perez-Schofield and C. Marcos,
“Conflictos en AspectJ: Restricciones y Soluciones” Revista
IEEE América Latina. Vol. 8 – N 3, 2010, pp 280-286.

[5] G. Kiczales, “Tutorial on Aspect-Oriented Programming with
AspectJ”, FSE , 2000.

[6] M. Fowler, “Refactoring: Improving the Design of Existing
Code”. Addison-Wesley, 1999.

[7] R. Coelho, A. Rashid, A. Garcia, F.Ferrari, N. Cacho, U.
Kulesza, A. Staa and C. Lucena, “Assessing the Impact of
Aspects on Exception Owns: An Exploratory Study”,
European Conference on Object-Oriented Programming
(ECOOP), 2008, pp. 207-234.

[8] S. Soares, P. Borba and E. Laureano, “Distribution and
Persistence as Aspects”, Software: Practice&Experience.,
Vol. 36 (7), 2006, pp. 711-759.

[9] E. Figueiredo, N., Cacho, C. Sant’Anna, M. Monteiro, U.
Kulesza, U., A. Garcia, S. Soares, F. Ferrari, S. Khan, F. Filho
and F. Dantas, “Evolving Software Product Lines with
Aspects: an Empirical Study on Design Stability”, ICSE 08:
Proceedings of the 30th International Conference on Software
Engineering, USA, 2008, pp. 261-270.

[10] A. Kellens, K. Mens, J. Brichau and K. Gybels, “Managing
the Evolution of Aspect-Oriented Software with
Model-Based Pointcuts”, European Conference on
Object-Oriented Programming (ECOOP), LNCS N 4067 in
LNCS, 2006, pp. 501-525.

[11] S. Casas, H. Reinaga and C. Fuentes Zamorano, “AspectJ
bajo la Lupa”, IX WIS – XVIII CACIC – ISBN
978-987-1648-34-4, Argentina, 2012, pp. 714-723

[12] S. Casas, H. Reinaga and C. Fuentes Zamorano “Aplicaciones
con Aspectos: de Cambios y sus Consecuencias” 13° ASSE
– 41° JAIIO - 2012 - ISSN 1850-2792 – Argentina

[13] R. Robbes and M. Lanza, “An Approach to Software
Evolution Based on Semantic Change”, Proceedings of Fase
2007, 2007, pp. 27-41.

[14] R. Robbes and M. Lanza, “Change-Based Software
Evolution”, EVOL 2006, 2006, pp. 159- 164.

[15] R. Robbes and M. Lanza, “A Change-Based Approach to
Software Evolution”, ENTCS, Vol 166, issue 1, 2007, pp.
93-109.

[16] R. Robbes and M. Lanza, “Towards Change-Aware
Development Tools”. Technical Report at USI, 25 pages,
2007.

[17] Y. Sharon, “Eclipseye — spying on eclipse”, Bachelor’s
thesis, University of Lugano, 2007.

[18] AJDT: AspectJ Development Tools, http://www.eclipse.org/
ajdt/

[19] L. Ye and K. De Volder, “Tool support for understanding
and diagnosing pointcut expressions”, International
Conference Aspect-Oriented Software Development, 2008.

[20] J. Fabry, A. Kellens and S. Ducasse “AspectMaps: A Scalable
Visualization of Join Point Shadws”. AOSD 2010 – France.

12 Sandra Casas et al.: Change Operations and Their Consequences in AOP Evolution

[21] D. Zhang, E. Duala-Ekoko and L. Hendren “Impact analysis
and visualization toolkit for statict crosscutting in AspectJ”,
In 17th International Conference on Program Comprehension
(ICPC) 2009. Canada.

[22] S. Zhang and J. Zhao, “Change Impact Analysis for
Aspect-Oriented Programs”. Technical Report
SJTU-CSE-TR-07-01, Center for Software Engineering,
Shanghai Jiao Tong University, 2007.

[23] I. Bouteraa and N. Bounour, “Towards The Use of Program
Slicing In the Change Impact Analysis of Aspect Oriented
Programs”, ACIT'2011 Proceedings International Arab
Conference on Information Technology – Arabia Saudita,
2011.

[24] L. Cavallero & M. Monga, “Unweaving the Impact of Aspect
Changes in AspectJ”. FOAL 09 – USA.

[25] R. Robbes and M. Lanza, “Versioning systems for evolution
research”. In Proceedings of IWPSE 2005 (8th International
Workshop on Principles of Software Evolution), IEEE
Computer Society, 2005, pp 155– 164.

[26] R. Delamare, F. Muñoz, B. Baudry and Y. Le Traon “Vidock:
a Tool for Impact Analysis of Asect Weaving on Test Cases”.
ICTSS'10 Proceedings of the 22nd IFIP WG 6.1 international
conference on Testing software and systems -
Springer-Verlag Berlin, Heidelberg ©2010. Pp 250-265.

[27] Ch. Liu, S. Chen and W. Jhu, “Change Impact Analisys for
Objetc-oriented Programs Evolved to aspect-Oriented
programs”, SAC 2011. Taiwan.S. M. Metev and V. P. Veiko,
Laser Assisted Microtechnology, 2nd ed., R. M. Osgood, Jr.,
Ed. Berlin, Germany: Springer-Verlag, 1998.

	1. Introduction
	2. AOP Evolution
	3. IQQ Model
	4. BaLaLu
	4. Related Works
	5. Conclusions
	ACKNOWLEDGEMENTS

