
Software Engineering 2014, 4(1): 1-9
DOI: 10.5923/j.se.20140401.01

A Reuse Method of Large-scale Embedded Software
Based on Inter-module Relations

Hidetoshi Kambe1, Shinji Kitagami2, Shigeki Nankaku3, Jun Sawamoto4,*, Hiroyasu Mitsui5

1One Solutions, Inc., Tokyo, 161-0034, Japan
2Information Technology R&D Center, Mitsubishi Electric Corp., Kanagawa, 247-8501, Japan

3Department of Computer Sceience, Osaka Electro-Communication University, Osaka, 575-0063, Japan
4Faculty of Software and Information Science, Iwate Prefectural University, Takizawa, Iwate, 020-0193, Japan

5Department of Computers and Systems Engineering, Tokyo Denki University, Saitama, 350-0394, Japan

Abstract Embedded software is starting to play a key role in almost every modern consumer electronic device. As
demand for software is growing, the lines of code that must be developed tend to increase; moreover, much shorter
development time is required. Software installed in such electronic equipments used to be a simple micro-processor
firmware to control the hardware, but dedicated OSs, such as Linux are adopted and comes to realize high level processing.
It is also becoming increasingly inevitable that existing embedded software system will be reused. In this paper, we propose
a method to accomplish the effective composition of embedded software function by managing dependency information
among modules. The method analyses mutual relations among existing modules and visually presents not only inter-module
dependency but also a list of available reusable modules based on the developer’s demand. It also improves the development
process by maintaining the development management property information for each source file and using the property
information in the reuse process. We have developed a configuration management system that integrates proposed functions
to support large-scale embedded software development by efficient software reuse. We evaluated the method by applying it
to some actual developments.

Keywords Configuration management, Embedded software, Program visualization, Software reusability

1. Introduction
Embedded software is starting to play a key role in

almost every modern consumer electronic device such as
mobile telephones, vehicle controller, memory music
players, digital cameras, HDD recorders, etc.
Multi-functionality and high performance of such devices’
are progressing very rapidly [1, 2]. Software installed in
such electronic equipments was used at first as a
microcomputer firmware that was simply intended to
control the hardware. Recently, however, some kinds of
OSs are used combined with dedicated hardware to provide
even greater functionality than that of former PCs, e.g.,
sophisticated image processing and communication control
[3, 4].

Nowadays, as demand for software is growing, the lines
of code that must be developed tend to increase; moreover,
much shorter development time is required [5, 6]. These
trends indicate that the securing of embedded software
development capability is the key factor which determines

* Corresponding author:
sawamoto@iwate-pu.ac.jp (Jun Sawamoto)
Published online at http://journal.sapub.org/se
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved

the company's ability to develop products [1]. The reuse of
existing software is becoming unavoidable. For reuse,
software modules have to be well managed for developers’
better usability. Although many research reports are issued
on software reuse, we have recognized only a few reports
on the module dependency among reused software and
other related software [7-10]. If existing software to be
reused is not well managed in configuration, users would
not be able to know which modules might be affected when
some parts of software are modified. That would create
unwanted new program bugs [11].

We have been researching a method and the tool to
manage the existing software configuration with which
users can visualize the software module relations and we
have been seeking an innovative method to support the
effective reuse of existing software [7, 12]. The method
described herein allows visualization of all relations among
modules based on the source code file information, which is
the minimum unit of the software module. In this way, a
developer would select the right module among all
associated modules when he plans to reuse the existing
software by applying necessary changes to the original
specification. However, our past research work [12]
demonstrated that the software block diagram to the
developed software structure was incapable of handling all

2 Hidetoshi Kambe et al.: A Reuse Method of Large-scale Embedded Software Based on Inter-module Relations

levels of the structural hierarchy. For that reason, it was not
suitable for software reuse in large-scale software
development.

In this paper, we aim at an improvement of the process in
software reuse development of large-scale embedded
software which reuses modules from multiple systems.
While holding development management property
information individually corresponding to source files,
modules and software blocks and using the information in
the reuse development flow, management and development
process is improved. By our method, a source file is
analysed first, then the dependency in the symbol level
between modules is extracted and the functional
hierarchical structure of software is made visible in the
form of a block diagram. Incidental information, including
development management information, bag information,
number of times of reuse, etc., is managed as properties
with the information acquired from the source files in this
block diagram. By using and updating information of the
block diagram, software reuse development of large-scale
embedded software is carried out in an efficient manner. In
our study, we evaluated this method for a development
system having as many as 6,000 source code files.

In Chapter 2, the problems and the measures to take for
the current software development project are summarized.
Chapter 3 describes Inter-module dependency visualization
method to support reuse. Structure of the proposed method
and its implementation is described in Chapter 4, and the
results of implementation and its evaluation are described in
Chapter 5.

2. Current Problems and Measures to
Take

2.1. Current Problems

When embedded software is developed for devices such as
mobile telephones and car navigation systems, which are
rapidly progressing with ever-increasing sophisticated
functions included, there are practically almost no such cases
in which the associated software is developed from scratch.
For them, either the existing framework is used or the
existing software asset with the associated platform is reused
to achieve cost reduction of the development under the
condition of shorter development time with great quality
improvement that must be accomplished. However, reusing
such software assets for development induces some
problems, as explained hereinafter.

(1) As the software development size grows, it becomes
necessary to split the development resources to allocate to
each functional unit. The number of functional units might
often extend to the hundreds or even thousands, in which
case no developer would be able to understand all
functionalities, nor to manage the versions of every piece of
software. Consequently, it would take quite a long time to
discover which software modules are newly added, modified,

or reused.
(2) A developer who worked on a specific part of the

software might not necessarily be available when the
software is to be developed for reuse. In such a case, it would
be difficult to obtain the right information merely from a
briefing by the associated staff members, when it is hard to
obtain sufficient knowledge on the software configuration or
inter-module relation from the documents.

(3) Using the function of an ordinary method of the
software configuration management, it would be possible to
manage a version of source code files, but it would not be
useful to determine inter-modular software relations on
specification changes or validation checking after
modifications.

(4) The developer, when the development size is large,
cannot normally know much about the software modules
except for the portion for which he or she is professionally
responsible. Concentrating only on the software modules
that the developer is responsible for, it would be hard to
identify and select the right reusable ones from among all
other numerous software modules.

2.2. Measures to Take

The following type of measures should be taken for
developers to reuse the existing software assets to perform
efficient development.

(1) Out of the existing software assets including the
reusable source code files, the right information of source
code files required for development, should be selected
automatically. This would significantly reduce the time
required to investigate assets before development starts.

(2) It would be useful to give information related to the
software configuration to the developers in a visible form
such as a block diagram that shows the inter-module
relations among the software modules that are planned to be
used for development or modification.

(3) Linking the block diagram information with the
associated source code files allows the developers to
expedite the work of coding while preventing unnecessary
information shortfalls and leaking.

(4) When developing new software modules, it would help
the developers arrange their work more efficiently to allow
them to add necessary functions on the block diagram and
simultaneously clarify the relation definitions among the
modules on the diagram as well.

(5) For the newly added block on the diagram, a template
for its associated source code file is created automatically;
thereby it is simplified to embed it into the software
environment.

3. Inter-module Dependency
Visualization Method to Support
Reuse

As one way to take measures described in Chapter 2 above,
we propose an inter-module dependency visualization

 Software Engineering 2014, 4(1): 1-9 3

method that is expected to facilitate reuse.

3.1. Block Diagram for Visualization of Software Groups

The embedded software is normally divided and
structured in a hierarchy trying to have the better work
sharing performance capability during development and in
consideration of the possibility of later reuse of the software.
In general, it might be divided by a large category such as
OS, driver, middleware, and application; if it is a complex
one, it might be split further by every sub-function into a
hierarchical level. Eventually, every source code file is the
smallest unit of a split.

However, as the split-level becomes increasingly detailed,
it would take the developer a significant amount of time to
understand such a hierarchical structure, thereby
engendering more errors and mistakes. That would certainly
degrade the efficiency level of the investigation for the

software reuse possibility.
The method we propose herein helps the developer

understand the structure of the software instantly by looking
at a block diagram that visualizes its hierarchical structure
by every function level or by any split-level determined at
the time of development planning.

Figure 1 shows the relations among the source files in the
left hand side and its associated block diagram in the right
hand side. The developer might get the macroscopic view of
the block diagram if he or she wants to know and
understand the entire structure. If he or she wants to check
the functional structure in detail, for example, the developer
could do it by visualizing the detail level of the block
diagram. Therefore, by changing the level of the
visualization, the developer can grasp the structure
graphically.

Figure 1. Source files and its block diagram expression

Figure 2. Inter-modular dependency for the reuse process of modules

Application 1
Func 1

Sub-func 1

Func 2

Sub-func 2

xx..c

Application 2
Function 3

Sub-func 3

Sub-func 4

Middleware 1
Func A

Sub-func A

Sub-func C

Func B
Sub-func B

Sub-func D

Middleware 2
 Func C

Sub-func E

Sub-func G

Func D
Sub-func F

Sub-func H

c. This is affected by the
modification made to the first
specified module.

d. More affected blocks
found?

a. First specified
module to find out

b. Scope of impact
by tracing associations

Source Files:
C:\Project\ProjectA\Main\…..\Cart\Ctrl\Cstmr\dbs\accs.cpp
C:\Project\ProjectA\Main\…..\Cart\Ctrl\Cstmr\dbs\cdb.cpp
C:\Project\ProjectA\Main\…..\Cart\Ctrl\Cstmr\sec\Auth.cpp
C:\Project\ProjectA\Main\…..\Cart\Ctrl\Cstmr\sec\crtp.cpp
C:\Project\ProjectA\Main\…..\Cart\Ctrl\Rsv\rdb.cpp
C:\Project\ProjectA\Main\…..\Cart\DB\Cmn\Load\Blnc.cpp
C:\Project\ProjectA\Main\…..\Cart\DB\Cmn\Load\test.cpp
 ：

Block diagram display
Ctrl

Rsv Cstmr

dbs

sec

crpt auth rdb

cdb accs

DB

Cmm

load

test blnc

4 Hidetoshi Kambe et al.: A Reuse Method of Large-scale Embedded Software Based on Inter-module Relations

3.2. Visualization of Inter-modular Dependency

Figure 2 shows a case in which the developer, after any
modifications are applied, narrows down the functional
blocks and/or the source code files to reuse, thereby
learning what modules might be affected in terms of reuse.
The developer, on the block diagram, first specifies the
block that he or she is planning to reuse after the necessary
modifications (a in Figure 2). The developer then executes
the relation search on the block diagram by visualizing the
status of the associated blocks with which any function
level input/output is associated with the first block he
specified (b in Figure 2). The developer further checks,
one-by-one, all the blocks that are associated with the first
block he specified to see if anything might be affected when
the developer modifies the first block so that the affected
blocks might need modification in some way or another. If
such an associated module is selected for modification next,
he would display all the relations again (c in Figure 2) but
this time also display those around that block of the module
to find additional relations (d in Figure 2).

Therefore, starting from the originally specified module
and tracing its relations one by one, the developer could
proceed with the investigation in the scope of development
when he or she plans to reuse such software, and check with
the existence of any function-level relations in terms of its
input and output between associated modules during the
design phase of the development.

3.3. Reuse Process Flow by Inter-module Relation
Analysis and Visualizing Associated Information

Figure 3 shows the process flow of the proposed method
in which new software Product-B is developed by reusing
the existing application software, Product-A.
(1) Gathering Source Files

The developer first sets up the specifications of
Product-B to be developed.
(2) Relation analysis

The associated information of the symbols among the
files is analysed. Furthermore, the software structural data
and the software block diagram are produced for the group
of software.
(3) Investigation

The developer then investigates the reused software
modules by visualizing their software structure displayed in
a block diagram based on relation analysis information.

The information of all software modules associated with
the modified module to reuse is displayed in the block
diagram.
(4) Design

In the design phase, the developer performs two tasks:
modification of the existing software modules, and addition
of new software modules.

(5) Build
The developer builds the software through the compile

and link steps to produce the executable code of software
Product-B.

Figure 3. Process flow of the proposed reuse method

4. Structure of the Proposed Method and
Its Implementation

Figure 4 shows the system configuration of method that
we proposed. The method comprises two parts: a relation
analysis part, and a relation visualization part.
(1) Relation analysis part

The relation analysis part consists of a parser and RCNA
(Relation CoNnection Analyser).

The parser generates cross-reference information from
the source code files. In the development we conducted, we
made RCNA which produces a cross-reference by first
categorizing the symbols used in every source code, putting
them in the database, and then creating the relations among
the database tables using its unique analytical engine.

RCNA generates a software block structure from the
project file. Then, using the cross-reference information that
the parser produced, the RCNA analyses the relation among
the software modules.
(2) Relation visualization part

The relation visualization part includes a database that
retains the configuration setup information and the relation
visualization software. The relation visualization software is
Java application software that visualizes the software
module that has been analysed by the relation analysis part
based on its configuration setup file information in the form
of a software block diagram. The relation visualization part
depicts the relation between every pair of software block
diagrams. We implemented these softwares on the
architecture based on the MVC model which is normally
used for developing a Web application. Figure 5 shows the

(1) Gathering Source Files

Start

(2) Relation Analysis

(3) Investigation

(4) Design

(5) Build

End

Additional
Source files

Product A

For Product B

Additional
Source files

output
Product B

 Software Engineering 2014, 4(1): 1-9 5

implementation structure for the relation visualization part
based on the MVC architecture as follows.

● Model: Mainly reads the associated analysis data
from the database, accesses the external files, and
executes creation of various instances. Basically, this
portion is activated by an event issued from the
Controller. Some events from the user operations are
invoked directly from the View.

● View: Organizes the screen structure and executes

display operations. It receives various events of user
operations, and passes them to Model through the
Controller or directly to it.

● Controller: Controls Model and View, and passes
the event coming from View over to the Controller when
necessary. Resource manages character labels,
parameters, and various properties.
Table 1 shows functions implemented in the relation

visualization part.

Figure 4. System configuration of the proposed method

Table 1. Relation visualization functions implemented in relation visualization part

Function Description

Software block structure display Display the block structure obtained by the relation analysis part using
a software block diagram.

Relationship display Display I/O relations among units (files, modules, etc.) by using
colours and arrow symbols.

Relationship data comparison

Display the differences that are used to determine whether the specific
block should be added or not. It can be accomplished by comparing
the relation analysis result for the block selected on the screen with
the analysis result of the original version software.

New block addition or deletion
Based on the relation display part the decision on whether to add new
software (functionality) or delete existing one can be made
straightforwardly in the development.

Relationship addition and /or deletion Relation information on addition or deletion can be edited on the
block diagram.

Source code viewer Opens the source code file of the specified block.

Skelton generation A source code skeleton is generated in the source code file when a
new block is added.

Reused
Software
Develop Env.

 Relation visualization part

プロジ
ェクト

 Project files

 ソース

Source files

RCNA

(Java application) Associated

 analysis
Data

 G
RCV

(Java application) Setting
Data

 Relation analysis part
Parser

(Cross
reference
generation)

Project
Database

Analytical
tool

C-program

6 Hidetoshi Kambe et al.: A Reuse Method of Large-scale Embedded Software Based on Inter-module Relations

5. Evaluation Results
In this chapter, we describe the result of the

implementation and the evaluation based on the process
flow shown in Figure 5.

Figure 5. Extended MVC structure of the relation display part

5.1. Preparation of Software Resources for Reuse

We prepared a software package consisting of 6,900
source code files, 2,000 object code files, and 520 project
files as for Product-A, which is to be reused. Reusing this
Product-A while modifying the part of its application logic,
and adding some of the new application functionalities, we
used it as an example of developing Product-B and to
evaluate the proposed method.

5.2. Relation Analysis

We first applied the relation analysis to software
Product-B, which we prepared first and to which
modifications were going to be made (so that it is identical
to Product-A at this stage). In the relation analysis, the point
of evaluation is stressed on how the expected analysis
functionalities are fulfilled, and how well the analysis is
performed in terms of its processing time.
Followings are the results of the relation analysis applied to
Product-B before modifications.

•The analysis was accomplished in about 60 minutes
(32 minutes for cross-reference creation and 28 minutes
for relation data creation).
•The number of symbols and the number of block

diagrams for which the analysis was made were 677,405,
and 9,800, respectively, with the total data size of 1.7
MB. Furthermore, relation analysis data of about 140 MB
were created.

•The number of symbols analysed and the number of
software blocks created are far too large for a developer
to look over and check one by one manually. Therefore,
we confirmed the necessity to visualize them on the
relation visualization part.

5.3. Usage of Relation Information of Modules

Having extracted the software modules to be modified,
the developer considers other associated software modules
next. That is depicted in Figure 6. The associated relation is
displayed around the source code file, EcrioPocLib
Signaling, which is planned for modification.

The diagram shows the relation information around the
specified source code file, EcrioPocLib Signaling. With the
arrows as shown in the diagram, it is easier for the
developer to get the right image about which function
blocks are associated in what direction. Additionally, it is
possible to display the associated blocks for check only
shown in Figure 6(b) by hiding unnecessary blocks. This
enables checking much easier when numerous relations
pertain.

When the inter-module relation is depicted on the block
diagram with the least unit of the source code file, it enables
checking on file-level implementation. In our example, the
relation among five source code files was apparent. When
the input and output relations are displayed by every
function call level, they are displayed as shown in Figure 7.
The list of the functions of the specified block is given at
the center of the diagram. Selecting one function causes a
display of the input-associated function blocks with their
source code file information on the left-hand side and the
list of the blocks that use the output results on the
right-hand side. In our example, five interrelated source
code files were affected each other and each of them was
necessary to modify accordingly. Overall, the evaluation
results showed that the checking of every relation was
accomplished efficiently.

Here, we describe the results of the evaluation of the
work performance of associated information visualization.

Starting from the function specified at first, and locating
the source code file in which the function is defined, the
work of investigation to find its associated modules was
compared in the code of 17 functions between the two
methods: an ordinary manual level investigation, and the
method to use the diagram we are proposing.

In the ordinal method, a developer extracts all files that
contain the specified function name, which are searched
under the directories that stores all the associated software
modules by using the original function name as a key. The
developer checks every file among them to locate the
source code file that defines the specified function. This
process was repeated for all functions that must be checked.
It took 7 minutes. Therefore, a 119 min (= 7 min × 17,
which is about 2 h) workload was needed to check all 17
functions.

Next, using the relation visualization that we have
proposed, the developer first performed the relation analysis.
The developer then used the result from the analysis. And it
took one and a half minutes to search the files for each
function name obtained from the relation analysis data, and

View

GRCV main class

DB FILE Display

Model

Controller

Resource

 Software Engineering 2014, 4(1): 1-9 7

to get the block diagram for it displayed. To check all 17
functions, it took approximately 26 minutes. In this
comparison between two methods, two medium-skilled
programmers of C++ with five years’ experience were
assigned. These results are illustrative that the more
functions that must be checked, the more efficient this
method becomes in reducing the investigation workload for
a developer having to look into the relation files.

5.4. Design Phase

Regarding the design phase using the relation
information available, we evaluated the case where we

modified the source code files. Then, we confirmed the
function to check the difference between the old modules
and the new modules at the time of modification.
(1) Linkage to source code file

With the block diagram used for module modification,
we confirmed that we were able to check and edit the right
program by reaching the associated source code file. Figure
8 shows an example of calling to edit the source code file of
the block specified on the relation diagram. This function
was useful to save much time and effort to seek the source
code.

Figure 6. Usage of relation information of modules

Figure 7. Display of input/output relations

Functions to refer the
selected Block

Functions in the
selected Block

Functions to be referred
from the selected Block

Output Input

End

(a) (b)

8 Hidetoshi Kambe et al.: A Reuse Method of Large-scale Embedded Software Based on Inter-module Relations

Figure 8. Linkage to source code files

Figure 9. Difference block diagram display

Marking Red as
Added blocks

Marking Black as
Deleted blocks

select

Display all Relations
Display call from
Display call to
No relation Display
Display Func.
Display Source file

 Software Engineering 2014, 4(1): 1-9 9

(2) Difference checking
Keeping the associated information among the blocks

that are designed using a block diagram, any possible
differences between the old modules and new modules
under development can be displayed. Using this function,
we were easily able to locate the portion in which changes
were made. Because it allows the developer to extract any
changes made automatically, it is an effective way of
avoiding unwanted checking failure or leaking during the
source code review or when the developer is checking for
any errors caused. Figure 9 shows a screen display that was
used when we checked the differences among the associated
software modules for which addition or deletion was
applied during the library modification process. On the
diagram, the added blocks are marked in red, whereas the
deleted blocks are marked in black. Consequently, the
differences made are visually recognizable.

6. Conclusions
In this paper, we proposed a method of visualizing

inter-module relations. The method was designed to support
software reuse. We constructed a system based on the
proposed software reuse process. Then, we clarified the
following facts as a result of evaluation of the system we
constructed.

(1) By visualizing the hierarchical module structure of
the reused software in block diagrams, all modules which
have any dependency with reused software modules are
extracted.

(2) By applying and evaluating the proposed method to
the software configuration of about 6,900 modules, we
confirmed its usefulness.
In the future, we intend to carry out the evaluation of the

method by applying it to much larger and multiple software
configurations, and also we improve the performance of the
relation analysis part of the tool implementation.

REFERENCES
[1] K. Inoue, Y. Ikawa, A framework for embedded software

sourcing: Another strategic sourcing in the electronics
industry. In Technology Management in the IT-Driven

Services (PICMET), 2013 Proceedings of PICMET'13: pp.
2735-2743 IEEE 2013.

[2] C. Ebert, C. Jones, Embedded software: Facts, figures, and
future. Computer, 42(4), pp. 42-52, 2009.

[3] SUZUKI, Yasufumi; OGAWA, Hideto. An aspect-oriented
CPU resource reservation framework integrated in MDE tools.
In: Proceedings of the 8th international workshop on
Advanced modularization techniques. ACM, 2013. p. 1-4.

[4] KUMURA, Yusuke, et al. A Low-Power Link Speed Control
Method on Distributed Real-time Systems. In: Embedded
Multicore Socs (MCSoC), 2013 IEEE 7th International
Symposium on. IEEE, 2013. p. 49-54.

[5] YANG, Kai-Chao, et al. Application-oriented teaching of
embedded systems. In: Microelectronic Systems Education
(MSE), 2011 IEEE International Conference on. IEEE, 2011.
p. 118-121.

[6] EKLUND, Ulrik; BOSCH, Jan. Archetypical Approaches of
Fast Software Development and Slow Embedded Projects.
In: Software Engineering and Advanced Applications
(SEAA), 2013 39th EUROMICRO Conference on. IEEE,
2013. p. 276-283.

[7] H. Washizawa, H. Kambe, H. Koizumi, Reuse of software
based on structure management, 2006 Kansai-Section Joint
Convention of Institutes of Electrical and Information
Engineers, Japan, G12-4，G289, 2006.

[8] CHANG, Chih-Hung, et al. XML-based reusable component
repository for embedded software. In: Computer Software
and Applications Conference Workshops (COMPSACW),
2011 IEEE 35th Annual. IEEE, 2011. p. 345-350.

[9] WANG, Xichen; WANG, Luzi. Software Reuse and
Distributed Object Technology. In: Computational Sciences
and Optimization (CSO), 2011 Fourth International Joint
Conference on. IEEE, 2011. p. 804-807.

[10] Y. Shinyashiki, T. Mise, Y. Eura, H. Hatanaka, M.
Hashimoto, N. Ubayashi, K. Katamine, T. Nakatani,
Conceptual model of unexpected obstacles in embedded
software, Researching report of Information Processing
Society, 145, pp.105-112, 2004.

[11] “Software Reliability Enhancement” [Online]. Available:
http://www.ipa.go.jp/english/sec/index.html

[12] H. Kambe, H. Nagamatsu, H. Mitsui, H. Koizumi, J.
Sawamoto, A Method of Visualizing Inter-Module Relations
to Support Reuse-Based Embedded Software Development.
In Advanced Information Networking and Applications, 2008.
AINA 2008. 22nd International Conference on (pp. 598-605).
IEEE, 2008.

