
Software Engineering 2014, 4(1): 19-24
DOI: 10.5923/j.se.20140401.03

Automated Visual Software Inspection System:
Re-Making the Fagan Methodology

Oladipo Onaolapo Francisca*, Ugoh Geraldine Ebere

Computer Science Department, Nnamdi Azikiwe University, Awka, Nigeria

Abstract Software inspection is aimed at detecting error early during the software development process and improving
the skills of developers. There are several inspection models for both large and small scale software projects but this paper
recognised that they are mostly designed in and for developing countries; in addition it was observed that software inspection
in small student groups in Nigeria institutions are based on the traditional, meeting-oriented approach. This therefore
necessitated a need to formalize an inspection model suitable for small software projects executed by students in a typical
university computer science laboratory. Based on extensive research and analysis, a visual software inspection model is
proposed in this paper. This model matured into an inspection tool developed using the techniques of Structured Systems
Analysis and Design Methodology (SSADM) and scripting tools. An experimental evaluation of the tool using five study
criteria showed that the inspection model was a well-defined disciplined process for the analysis and monitoring of a software
development process for a systematic detection of any deviation from the pre-defined specifications of the software system.

Keywords Software inspection, Maintenance, Visual model, Inspection tools

1. Introduction
A software inspection methodology is considered efficient

if it meets the primary goal of detecting errors and defects
before the beginning of the testing phase in the software life
cycle. This way, it contributes in no small measure to
improving the overall quality of software corollary budget
and time benefits [1]. Reference [2] believed that despite the
widespread adoption and success of software inspection,
many software products continue to be released with large
numbers of flaws. They partly attributed this to the inherent
complexity of software systems. The complexity of the
software thwarts manual attempts to comprehend it.

It is observed that software design is a complex process
due to a number of reasons: the complexity of the problem
domain, difficulties in capturing the system’s requirements,
contradictory and changing requirements, difficulties in
managing the development process, difficulties in predicting
the final system behaviour or even the behaviour as the
system evolves, and so on [3].

As a result of my experiences in teaching software
construction and related courses to undergraduate and
graduate students in a Nigerian university, and mentoring
young software entrepreneurs, I observed that there were
basically no formal/automated inspecting tools being

* Corresponding author:
of.oladipo@unizik.edu.ng (Oladipo Onaolapo Francisca)
Published online at http://journal.sapub.org/se
Copyright © 2014 Scientific & Academic Publishing. All Rights Reserved

adopted even when pair programming approaches are
adopted. A great deal of time is spent on correcting errors
during the testing phase and most maintenance being done
are corrective not adaptive. Something a well structured
software inspection tool would have prevented if deployed as
errors would have been detected at early phases of
development.

The aim of this research is to propose a visual inspection
model suitable for small to medium size software projects
typically for pupil developers and young software
entrepreneurs. This inspection system is built on the
traditional Fagan inspection model and it was validated by
the development and evaluation of an inspection software
tool that will assist inspectors to improve on their skills and
productivity; making the inspection interesting and technical.
This research is significant because, software inspection and
its technical review detects error early in software
development cycle when the error is not much and
developers skills are improved as a result of the technical
review and software inspection participation.

2. Review of Related Research
A taxonomy on Life-Cycle Centric Software Inspection

models were carried out by [1]. The goal of the research was
to portray the status of research and practice as published in
available software inspection publications from a lifecycle
angle and present the facts as reported in the literature. The
authors in the work; performed an extensive literature survey
including a wide source of publications which included

20 Oladipo Onaolapo Francisca et al.: Automated Visual Software Inspection
System: Re-Making the Fagan Methodology

existing surveys at that time. Broadly speaking, they
summarized existing survey as follows: Survey by [5] which
presented a framework for software development; technical
reviews including software inspection [6, 7], and Yourdon’s
structured walkthrough [8]. The work found that the authors
segmented the framework according to aims and benefits of
reviews, human elements, review process, review outputs,
and other matters. The taxonomy by [1] however, was
centered on five primary dimensions: technical, managerial,
organizational, economics, and tools. These were used to
attempt to characterize the nature of software inspection.

Another review effort focusing on the software inspection
process in the light of Fagan's inspection was conducted by
[9]. The work summarized and reviewed other types of
software inspection processes that have emerged in the last
25 years and also addressed important issues related to the
inspection process and examined experimental studies and
their findings that are of interest with the purpose of
identifying future avenues of research in software inspection.

An inspection model that dispenses totally with the need
for the inspectors to be in the same place at the same time
was presented by [10]. The model was asynchronous as it
replaced the meeting with further individual inspections
combined with asynchronous communication between
inspectors. A prototype tool that used electronic mail for
communication was developed to implement this
asynchronous model. The use of electronic mail
differentiated this framework from a previously developed
asynchronous inspection tool. The inspection model was
evaluated in comparison with the traditional,
meeting-oriented approach on a number of criteria. The
authors made an initial attempt to gain quantitative data by
carrying out a small-scale experiment, and whilst
encouraging results being obtained, they believed that the
number of subjects was too low for any significant
conclusions to be drawn and planned for a larger scale
experiments are planned in the future in order to obtain more
data.

A peer review approach to software inspection was
presented by [11]. The paper discussed the software
inspection process as a particular type of peer review process
and elaborated the differences between software inspection,
walkthroughs, and other peer review processes. Reference
[12] presented a framework for formal technical reviews
(FTR) including objective, collaboration, roles,
synchronicity, technique, and entry/exit-criteria as
dimensions. The framework aimed at determining the
similarities and differences between the review process of
different FTR methods, as well as to identify potential
review success factors.

Reference [13] differentiated between personal reviews,
walkthroughs, and software inspections. She proposed the
Pair programming approach as an alternative inspection
approach to reviews because the work observed in the course
of the research that: Developers simply do not believe that
the reviews are worth their time because they have deadlines
to meet, or as a result of ego problems. Developers might not

want their mistakes being viewed by others or others simply
find inspection boring.

An evaluation of computer supported software inspection
was presented in a state of the art paper by [14]. The work
reviewed several models and issues surrounding software
inspection and concluded that software inspection is an
effective methodology for managing defects in software
development, and that the concept consists of a number of
basic steps that has been widely practiced and standardized.
The author revealed that the process emerged from project
management and product quality requirement perspectives
and that managing defects applies to not only source code
artefacts but also any other materials in the software
development life cycle. The paper also pointed out that
Inspections are team-effort activities that bring together a
variety of participants who engage as special roles.

3. Materials and Methods
The techniques of the Structured System Analysis and

Design Method (SSADM) [15] were deployed in this work
to analyse a baseline methodology, the Fagan inspection
method. The analysis revealed that the Fagan model is
focused on finding defects in the documentations of the
development process of software thereby necessitating our
proposing and developing a high-level model for a visual
inspection method that encourages a straight forward way to
establish a supporting system for visual meeting together
with the inspection tools.

The web pages were scripted using HTML tags and
JavaScript, while the server side programming was
developed using the PHP. The open source MySQL Server
Database was deployed as the DBMS and the specification
tables were tables to handle tasks, roles, projects, meeting
attendance, messages, settings, and log.

An experimental comparison of the system was carried out
using selected undergraduate students of software
engineering from the Computer Science Department of a
Nigerian university who had been using manual software
testing/inspection procedure. Questionnaires were
distributed to the participants and they were required to
detail their usability experiences with respect to the tool. A
total of 20 students who had used the tool and documented
their experiences participated in the evaluation which
involved comparing the manual procedure and the automated
tool.

Each student was given a questionnaire containing a total
of ten survey questions and were required to compare their
software construction experiences in five study areas of error
detection, time management, corrective maintenance, and
team work.

4. Results and Discussion
The motivation for this work was the need for a suitable

software inspection system for small to medium sized

 Software Engineering 2014, 4(1): 19-24 21

software project, typically for students of software
construction and for young entrepreneurs. Studies by [4]
showed that Nigeria’s software engineering industry is
currently experiencing a dearth of inspectors because the
process is views as an expensive one and the practitioners are
operating on a budget. In addition, due to time constraints,
most individual programmers find it difficult to inspect their
products.

The system developed in this work is a suite of tools that
exchange information with other tools through a number of
connection points. The tools enable the efficient running of
the software inspection process independent of time and
place, online recording of matters and data management

achieved through the network tool. The system provides a
flexible process that supports tolerable adoption and method
acceptance.

Considering traditional inspection; how large and time
consuming it is in arranging for team members that are
distributed geographically and are involved in other projects
at the same time, to overcome the problem of time and place
for inspection meeting to take place; a visual inspection tool
is required, where face to face meeting of inspectors are less
or not effective. This provides a justification for the model.

Below is the High Level Model (HLM) of the proposed
system (Fig 1).

Figure 1. The HLM of the proposed system

Welcome Page

Login

My Project Administration View User Logout

Add projects

Copy projects

Projects

Company

Edit Company

Add Contact

Inspectors

Add Inspector

Projects

Configurations

Plug-in

Tools

Mass mailer

Upgrade

Time

Edit Profile

Edit Password

Edit Permission

Exit

22 Oladipo Onaolapo Francisca et al.: Automated Visual Software Inspection
System: Re-Making the Fagan Methodology

System design is an important stage that requires
considerable creativity to make the necessary changes in the
existing system with view of coming up with a new system
that is acceptable to user and easy to manipulate. The HLM is
decomposed into four modules, each of which is subdivided
into activities to be performed during the inspection activity.

The design was implemented in an inspection software
that served the following purposes.

i. Assisting developers in improving their skills and
productivity thereby reducing the time spent on testing
and debugging.

ii. The system enabled developers exploit all the emerging
inspection of technical review opportunities around.
This in turn will enhance the creation of standard to
control high quality of software.

iii. Making inspection attractive to young developers

thereby promoting entrepreneurship.
The implementation of the HLM in a GUI-based

application is discussed below.
The users can access the system by logging in through the

login page (Fig. 2). This prevents unauthorised users from
gaining access to the system.

In addition, the user administration form enables the
system administrator to monitor the activities of users of the
system. The administrator manages the schema and
sub-schema through this page (Fig 3).

The system also involves a software project management
toolset (Fig. 4). The page contains all the tools and
commands required to manage all the available human and
material resources available to properly complete the
software project on time and within budget.

Figure 2. Login page

Figure 3. Administration page for monitoring system progress

 Software Engineering 2014, 4(1): 19-24 23

Figure 4. Project Management page –Add Project

The user interface consists of controls, forms, sub-menus
and menus that make navigation through the program easy.
Each operation on the menu is activated by the click events
of the main option that bears it.

The parallel changeover procedure is advocated in the
adoption of the new system such that the whole new system
would be run simultaneously with the old system over a
period of time. This is suggested in order to compare the
output performances and effect manual adjustment where
necessary. The advantage is that, if the real system fails, less
harm are done to the organization, its disadvantages are the
high cost of running both systems and lack of hardware
experiences.

4.1. System Evaluation

An analysis of the responses of the 20 users based on the
five study criteria are presented below:
a. Early detection of errors

One question was asked on error detection and this was
designed to test the ability of tool support to aid faster error
detection than manual inspection. All the respondents
answered this question and Table 1 showed that 70% of the
respondents agreed that tool support enabled them detects
errors faster than the manual inspection.

Table 1. Error Detection

Response Options Statistical analysis % analysis

Strongly Disagree 0 0%

Disagree 0 00%

Neutral 6 30%

Agree 0 0%

Strongly Agree 14 70%

Total 20 100%

Question: Tool support assisted me in detecting errors
faster than manually searching for errors
b. Time management

Because the research was aimed at promoting faster
software construction, there were a total of three questions
on time management.

Table 2 showed than 60% of the students strongly agreed
that they were able to produce faster applications using the
system.

Table 2. Time management

Response Options Statistical analysis % analysis

Strongly Disagree 0 0%

Disagree 2 10%

Neutral 6 20%

Agree 0 10%

Strongly Agree 12 60%

Total 20 100%

c. Corrective Maintenance
Two questions on corrective maintenance were asked in

the questionnaire to test the ability of automated removal of
residual errors.72% of the students agreed that corrective
maintenance is greatly enhanced by automated software
construction tools. Further 88% indicated that they would
consider using tool support in their future software
construction projects.
d. Collaboration and Team Work

Since the application was designed to help young
programmers and entrepreneurs in their software
construction projects and our students carry out their projects
in pairs, a great deal of attention was paid to the system’s

24 Oladipo Onaolapo Francisca et al.: Automated Visual Software Inspection
System: Re-Making the Fagan Methodology

ability to provide team support. A total of four questions
were posed to users on to test the system’s ability to foster
team spirits in the students. Specifically, the questions tested
collaborative thinking support, overall time taken to
complete the project, group support and progress monitoring.
90% of the student admitted using the Project Administration
tool of the system to monitor the progress of their software
projects; the remaining 10% did not use the tool. 60% of
those who used the tool agreed that it actually shortened the
overall project time but were unable to say by how much
while 70% felt that tool support assisted them in building
collaborative spirit. The progress monitoring validation was
tied to the time questions and 10% of the respondents were
neutral as they did not use the administrative tool of the
system.
e. Remote Inspection

This section tested the ability of the students to remotely
inspect their partners’ contribution to the project and monitor
the progress of the implementation remotely. As the system
had not been hosted on the net as at the time of conducting
the survey, 100% of the respondents were neutral on the
ability of the tool to provide support for remote inspection.

5. Conclusions
Software inspection is an essential means of software

quality assurance. This paper briefly presented the results of
building a software inspection system from a re-make of the
Fagan inspection process suitable for small to medium-sized
software projects. The GUI-based visual inspection tool
assisted in monitoring the development process through a
systematic detection of any deviation from its pre-defined
specifications when used for projects of its intended size.
Overall responses from the evaluation showed that tool
support significantly shortened the testing time, promoted
team spirits in students and young entrepreneurs and
completely eliminated corrective maintenance in addition to
improving the developers’ skills as a result of the technical
review and software inspection participation.

REFERENCES
[1] Laitenberger O, DeBaud J. An Encompassing Life-Cycle

Centric Survey of Software Inspection (ISERN-98-32). J.
Systems and Software Archive. 2000; 50(1): 5-31. Elsevier
Science Inc. New York, NY, USA.

[2] Anderson P, Teitelbaum T. Software Inspection Using
CodeSurfer. In: Inspection in Software Engineering, 2001.

Proceedings First Workshop on, Paris: 1-9.

[3] Zhiming L. Object-Oriented Software Development with
UML. UNU/IIST Report No. 259, 2002. Accessed January
2013. Available: http://www.scribd.com/doc/51693789/UM
L.

[4] Ugoh G. Design and Implementation of a Visual Software
Inspection Model for Distributed Software Engineering
Projects. Unpublished Thesis in PGD Computer Science.
Nnamdi Azikiwe University, Nigeria. Thesis defended,
November 2012.

[5] Kim LPW, Sauer C, Jeffery R. A framework for software
development technical reviews. Software Quality and
Productivity: Theory, Practice, Education and Training. In:
Lee M, Barta B, Juliff P, editors. Chapman and Hall, 294-299,
IFIP, 1995.

[6] Fagan ME. Design and Code Inspections to Reduce Errors in
Program Development. IBM Systems Journal, 1976;
15(3):182–211.

[7] Weinberg GM, Freedman DP. Reviews, Walkthroughs, and
Inspections. IEEE Transactions on Software Engineering,
1984; 12(1):68–72.

[8] Yourdon, E. Structured Walkthroughs. 4th ed. N.Y.: Prentice
Hal; 1989.

[9] Aurum A, Petersson, H and Wohlin C. State-of-the-Art:
Software Inspections after 25 Years. Software Testing
Verification and Reliability, 2002;12(3):133-154.

[10] Murphy P, Mille J. A Process for asynchronous software
inspection. In: Software Technology and Engineering
Practice, 1997. Proceedings, Eighth IEEE International
Workshop on [incorporating Computer Aided Software
Engineering]. IEEE Computer Society. Pages: 96 – 104.

[11] Wheeler DA, Brykczynski B, Jr RNM. Software Peer
Reviews. In: Thayer RH, editor. Software Engineering
Project Management. 2nd ed. Los Alamitos: IEEE Computer
Society Press; 1997, 454-469.

[12] Tjahjono D. Exploring the effectiveness of formal technical
review factor with CSRS, a collaborative software review
system. PhD thesis, Department of Information and Computer
Science, University of Hawaii; 1996.

[13] Williams L. A (Partial) Introduction to Software Engineering
Practices and Methods. NCSU CSC326 Course Pack, 5th ed.
2008-2009s.

[14] Bordin S. Software Inspection and Computer Support. State
of the Art Paper from the PhD Thesis, Department of
Information Science and Telecommunications, School of
Information Sciences, University of Pittsburgh, 1999.

[15] PAŞCU, P. (2010). The Stages of Implementation of the
SSADM System in the Government Institutions. Journal of
Applied Computer Science & Mathematics, no. 8 (4),
Suceava.

	1. Introduction
	2. Review of Related Research
	3. Materials and Methods
	4. Results and Discussion
	5. Conclusions

