
Software Engineering 2023, 10(1): 1-6 

DOI: 10.5923/j.se.20231001.01 

 

Cost Effective Cloud ERP Integrations 

Mohd Iqbal Ashraf 

Architect, Giant Eagle Inc, Pittsburgh, PA, USA 

 

Abstract  Cloud integration platforms offered by leading cloud providers can sometimes be expensive, making it 

challenging for industries to maintain due to high operational costs. To address this issue, this document provides an 

overview of an alternate cloud integration approach using Python. This approach can help quickly develop and consume 

integration APIs and is highly cost-effective. The document discusses the use case of integrating with Oracle Cloud ERP 

using Python and how this approach can also be applied to other cloud ERPs. The document is organized into six sections: 1) 

Introduction, 2) Methodology, 3) Technical Details for Building the Integration, 4) Use-cases, 5) Tools, and 6) Conclusions. 

In the introduction and methodology section, the concept of cloud integration and its importance for businesses are discussed. 

The Technical Details for Building the Integration section explains the steps and considerations involved in building the 

integration using Python. The Use-Cases section discusses about different use cases. The Tools section provides an overview 

of the tools and technologies required for the integration process. Finally, the Conclusion section summarizes the key points 

covered in the document and the potential benefits of using Python for cloud integration. 

Keywords  Cloud integration, Python, Oracle Cloud ERP, APIs, Data mapping, Security measures, Libraries, 

Frameworks, Cost savings, Efficiency 

 

1. Introduction  

1.1. Background  

Cloud integration has become an increasingly important 

aspect of modern business operations, enabling 

organizations to streamline their processes, improve data 

sharing, and enhance collaboration between disparate 

systems. With the growing adoption of cloud-based 

enterprise resource planning (ERP) systems, such as Oracle 

Cloud ERP, the need for efficient and cost-effective 

integration solutions has become a critical concern for many 

organizations. 

Traditionally, cloud integration has been achieved through 

the use of cloud integration platforms offered by leading 

cloud providers, such as Oracle, Salesforce, and Microsoft. 

While these platforms offer a range of features and 

functionalities, they can sometimes prove to be expensive, 

making it challenging for organizations to maintain due to 

high operational costs. 

To address this issue, an alternate approach to cloud 

integration has emerged, leveraging the power and versatility 

of the Python programming language. Python is an 

open-source, high-level programming language known   

for its simplicity and  scalability, making it an ideal tool for 

 

* Corresponding author: 

iqbal7ashraf@gmail.com (Mohd Iqbal Ashraf) 

Received: Feb. 1, 2023; Accepted: Feb. 13, 2023; Published: Feb. 14, 2023 

Published online at http://journal.sapub.org/se 

 

 

developing and consuming integration APIs. 

Python provides a range of tools and libraries for building 

and consuming APIs, as well as powerful data processing 

and analytics capabilities, making it an attractive option for 

organizations seeking to achieve cloud integration in a 

cost-effective and efficient manner. 

1.2. Problem Statement 

The high operational costs associated with cloud 

integration platforms provided by leading cloud providers 

can hinder the ability of businesses to effectively integrate 

their systems with the cloud. This results in increased   

costs, decreased efficiency, and difficulty in achieving their 

integration goals. 

To address this challenge, this document proposes a 

cost-effective alternative solution by using Python for cloud 

integration. The document outlines the key elements of the 

cloud integration process, including design overview, 

technical details for implementation, and necessary tools  

and technologies. The aim of the document is to provide 

businesses with a step-by-step guide to using Python for 

cloud integration and to highlight the potential benefits of 

this approach, including cost savings and increased 

efficiency. The ultimate goal is to help businesses overcome 

the challenges posed by the high operational costs of cloud 

integration platforms and achieve seamless integration with 

the cloud. 



2 Mohd Iqbal Ashraf:  Cost Effective Cloud ERP Integrations  

 

 

2. Methodology 

2.1. Evaluation 

The use of Python offers several benefits, including being 

open source, scalable and easy to code, having in-memory 

processing capabilities, and having a rich set of open-source 

libraries for complex tasks, as well as having machine 

learning and AI capabilities and robotics process automation 

capabilities. 

By using Python, industries can easily consume SAAS 

APIs using the 'Requests' open-source library, and store data 

in Pandas Dataframes, which are highly efficient for data 

analysis and mass data manipulation. This allows for the 

efficient and cost-effective development and consumption of 

integration APIs. 

Furthermore, the approach discussed in the article can be 

applied to other cloud ERPs, not just Oracle Cloud ERP, 

making it a versatile and adaptable solution. In summary, the 

use of Python for cloud integration offers a cost-effective 

and versatile solution for industries, and the methodology 

outlined in the article provides a clear and detailed guide for 

successful cloud integration. 

2.2. Other Approaches 

Compared to other approaches, the use of Python for cloud 

integration has several advantages and benefits. For example, 

using proprietary cloud integration platforms offered by 

leading cloud providers can sometimes be expensive and 

challenging for industries to maintain due to high operational 

costs. This can be overcome by using Python, which is open 

source and free, making it a cost-effective solution for 

industries. 

In addition, Python is a highly scalable and easy to code 

language, with in-memory processing capabilities and a rich 

set of open-source libraries for complex tasks, as well as 

having machine learning and AI capabilities and robotics 

process automation capabilities. This makes Python a 

versatile and adaptable solution for cloud integration. 

Another advantage of using Python for cloud integration is 

its ability to easily consume SAAS APIs using the 'Requests' 

open-source library and store data in Pandas dataframes, 

which are highly efficient for data analysis and mass data 

manipulation. 

In contrast, other approaches may not offer the same level 

of versatility, scalability, and cost-effectiveness as Python. 

They may also require proprietary tools and technologies, 

making them less adaptable and potentially more expensive 

for industries. 

In conclusion, the use of Python for cloud integration 

offers a cost-effective and versatile solution for industries, 

setting it apart from other approaches.  

 

Figure 1.  Architecture Design 



 Software Engineering 2023, 10(1): 1-6 3 

 

 

2.3. Design Overview 

This document explores the use of Python for cloud 

integrations, offering a powerful and cost-effective solution 

for businesses. Let's first look at some of the advantages of 

using Python for cloud integrations: 

  Open-source and free to use 

  Scalable and easy to code 

  In-memory processing for high-speed data processing 

  Capabilities in machine learning and artificial 

intelligence 

  Access to open-source libraries for complex tasks 

  Robotics process automation support 

Cloud ERP systems rely on APIs, and Python can be a 

great choice for managing APIs efficiently. With the help  

of the open source 'Requests' library, Python can easily 

consume SAAS APIs, and data can be stored in Pandas 

Dataframes for efficient data massaging and analytics.   

The Python code can be reused, scaled, and leveraged for 

multiple business processes. 

The following flow diagram provides a quick overview of 

the import/export process, which will be discussed in further 

detail in the next section. 

3. Technical Details for Building the 
Integration 

3.1. Prerequisites 

  Technical Skills: The implementation of the approach 

outlined in the article requires a certain level of 

technical proficiency in Python programming, as well 

as experience with APIs and cloud technologies. 

  Cloud Environment: The approach requires access to a 

cloud environment, such as Oracle Cloud ERP or other 

cloud-based services, to implement the integration. 

  Integration Tools: The approach requires the use of 

various tools and technologies, such as Python libraries, 

frameworks, and data management tools, to develop 

and implement the integration. 

  Data Structure: The data structure of the systems being 

integrated must be considered and mapped to ensure 

efficient data transfer and processing. 

  Security Measures: The integration must consider 

security measures, such as data encryption, access 

controls, and network security, to ensure the 

confidentiality and privacy of sensitive data. 

  Business Processes: The integration must align with  

the existing business processes and requirements to 

ensure that it supports the goals and objectives of the 

organization. 

  Maintenance and Support: The approach requires 

ongoing maintenance and support to ensure that it 

continues to meet the evolving needs and requirements 

of the organization. 

3.2. Technical Design 

In this document, we will examine the use case of 

integrating with Oracle Cloud ERP and explain how this 

approach can be applied to other SAAS-based ERP systems. 

3.2.1. Import - On-Premises Data Integration to Cloud 

A use case of XML file General Ledger data Integration to 

Oracle ERP Cloud. Same approach can be used for CSV/flat 

files integration. Below table has logical steps and exact 

python code: 

 

Table 1.  Outbound Integration 

Logical Steps Python Code 

Step1 - Import Python Libraries. This is used 

to invoke REST/SOAP call 
import requests 

Step2 - Create Message body. Message has 

actual data to be imported on cloud. 

soapBodyRequest="""<soap:Envelope 

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/"> 

<soap:Body> 

<ns1:importJournalsAsync 

xmlns:ns1="http://xmlns.oracle.com/apps/financials/generalLedger 

/journals/desktopEntry/journalImportService/types/"> 

<ns1:interfaceRows 

xmlns:ns2="http://xmlns.oracle.com/apps/financials/generalLedger 

/journals 

/desktopEntry/journalImportService/"> 

<ns2:BatchName>ORACLEGLBATCH</ns2:BatchName> 

<ns2:BatchDescription></ns2:BatchDescription> 

<ns2:LedgerId>10000000123456789</ns2:LedgerId> 

<ns2:AccountingPeriodName></ns2:AccountingPeriodName> 

<ns2:AccountingDate>2022-05-05</ns2:AccountingDate> 

<ns2:UserSourceName>JournalSource</ns2:UserSourceName> 

<ns2:UserCategoryName>External 

System</ns2:UserCategoryName>..””” 



4 Mohd Iqbal Ashraf:  Cost Effective Cloud ERP Integrations  

 

 

Step3 - Connection details – POD is ERP 

instance URL. 

url="https://<POD>/fscmService/JournalImportService?wsdl" 

Headers= {'content-type': 'text/xml','SOAPAction': ''} 

Step4 - Initiate SOAP call to post message on 

Cloud and try to catch exceptions for bad 

responses or failures. This is final step in data 

import process. 

try: 

response = requests.post(url,data=soapBodyRequest,headers=Headers, 

auth=(' user_id','password')) 

except requests.exceptions.HTTPError as errh: 

print ("Http Error:",errh) 

except requests.exceptions.ConnectionError as errc: 

print ("Error Connecting:",errc) 

except requests.exceptions.Timeout as errt: 

print ("Timeout Error:",errt) 

except requests.exceptions.RequestException as err: 

print ("Some other error",err) 

 

3.2.2. Export - Cloud Data Extraction for AI/ML/RPA 

A use case of extracting real-time data from Oracle Cloud 

ERP and storing it in Python Data Frames. Once the cloud 

data is stored in Pandas Dataframes then it can be utilized 

for:  

  Data Analytics – via Scikit-learn. 

  Boomerang Integrations of importing back massaged 

cloud data. 

  Robotics Process Automation of any manual steps for 

same data set – via selenium, browser, keyboard etc. 

Below table has logical steps and exact python code: 

Table 2.  Inbound Integration 

Logical Steps Python Code 

Step1 - Import Python 

Libraries. This is used to 

invoke REST/SOAP call, 

xml parsing, base64 

conversion. 

import pandas as pd 

import xml.etree.ElementTree as ET 

import requests 

import base64 

import pandasql 

import os 

Step2 - Connection 

details – POD is ERP 

instance URL. 

url="https://<POD>/fscmService/JournalImportService?wsdl" 

Headers= {'content-type': 'text/xml','SOAPAction': ''} 

Step3 - SQL Query to  

be executed on cloud, 

converted to base64. In 

following example, we 

are trying to extract all 

Journal sources on cloud. 

soapQuerySQL = """ select * from gl_je_sources """ 

soapQuerySQL_bytes = soapQuerySQL.encode('ascii') 

soapQuerySQLbase64_bytes = base64.b64encode(soapQuerySQL_bytes) 

soapQuerySQLbase64_message = soapQuerySQLbase64_bytes.decode('ascii') 

Step4 - Create Message 

body. Message has actual 

query to be run on cloud. 

soapQueryRequest="""<soapenv:Envelope 

xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" 

xmlns:pub="http://xmlns.oracle.com/oxp/service/PublicReportService" 

xmlns:pub1="http://xmlns.oracle.com/oxp/service/PublicReportService"> 

<soapenv:Header/> 

<soapenv:Body> 

<pub:runReport> 

<pub:reportRequest> 

<pub:attributeFormat>xml</pub:attributeFormat> 

<pub:attributeLocale>en-US</pub:attributeLocale> 

<pub:reportAbsolutePath>/Custom/GEI 

Custom/Integrations/ClientCloudQueryOnly/ClientCloudQueryOnlyReport.xdo 

</pub:reportAbsolutePath> 

<pub:parameterNameValues> 

<pub:item> 

<pub:name>query1</pub:name> 

<pub:values> 

<pub:item>{soapQuerySQLbase64_messageBody}</pub:item> 

</pub:values> 

</pub:item> 



 Software Engineering 2023, 10(1): 1-6 5 

 

 

</pub:parameterNameValues> 

</pub:reportRequest> 

<pub:userID>user_id</pub:userID> 

<pub:password>password</pub:password> 

</pub:runReport> 

</soapenv:Body> 

</soapenv:Envelope>""" 

Step5 - Initiate SOAP  

call to post message on 

Cloud and try to catch 

exceptions for bad 

responses or failures. 

try: 

response = requests.post(url,data=soapQueryRequest.format 

(soapQuerySQLbase64_messageBody=soapQuerySQLbase64_message),headers=Headers) 

except requests.exceptions.HTTPError as errh: 

print ("Http Error:",errh) 

except requests.exceptions.ConnectionError as errc: 

print ("Error Connecting:",errc) 

except requests.exceptions.Timeout as errt: 

print ("Timeout Error:",errt) 

except requests.exceptions.RequestException as err: 

print ("Some other error",err) 

st=(response.content) 

outputXML = open("output.xml", "w") 

str=st.decode('utf-8') 

outputXML.write(str) 

outputXML.close() 

print("-----XML File Content--------") 

readXML=open("output.xml","r") 

Step6 - Parse response 

xml data and store data in 

pandas Dataframes. This 

is final step in data export 

process. From this step 

data can be utilized for 

AI/ML/RPA/Other 

Integrations. 

for line in readXML.readlines(): 

#print (line) 

if 'reportBytes' in line: 

x = line.split('reportBytes')[1] 

x = x.replace('>','') 

x = x.replace('</','') 

# print('ReportOutput--' + x + '\n') 

finalOutput=base64.b64decode(x) 

finalOutput=finalOutput.decode('utf-8') 

outputNewXML = open("finalOutput.xml", "w") 

outputNewXML.write(finalOutput) 

dff = pd.read_xml(finalOutput) 

dff.drop("QUERY1", axis=1, inplace=True) 

CloudDataFrame = dff.drop(0) 

 

4. Use-Cases 

The methodology outlined in the article can be applied to 

various use cases beyond cloud ERP integration, such as: 

  Data Integration: Python can be used to integrate data 

from multiple sources, such as databases, web services, 

and file systems, into a central repository for analysis 

and reporting. 

  Application Integration: Python can be used to integrate 

multiple applications, such as accounting, customer 

relationship management, and enterprise resource 

planning systems, to streamline processes and improve 

data accuracy. 

  IoT Integration: Python can be used to integrate Internet 

of Things (IoT) devices and sensors, such as wearable 

devices, smart home systems, and industrial machinery, 

to collect and analyze data in real-time. 

  Big Data Integration: Python can be used to integrate 

large data sets, such as log files, social media data, and 

sensor data, for analysis and reporting purposes. 

  Cloud Services Integration: Python can be used to 

integrate cloud-based services, such as Amazon Web 

Services, Google Cloud, and Microsoft Azure, to build 

and deploy cloud-based applications and services. 

In each of these use cases, Python can provide a 

cost-effective and scalable solution for integration, 

leveraging its open-source libraries, APIs, and in-memory 

processing capabilities. 

5. Tools 

  Python: Python is a high-level, interpreted 

programming language that is widely used for data 

analysis and web development. It is open-source, easy 



6 Mohd Iqbal Ashraf:  Cost Effective Cloud ERP Integrations  

 

 

to learn, and offers a wide range of libraries and 

frameworks for various tasks, including API 

development and data processing. 

  Requests Library: Requests is a popular Python library 

for making HTTP requests to APIs. It is used for 

consuming APIs in the cloud integration process. 

  Pandas: Pandas is an open-source library for data 

analysis and manipulation. It is used to store and 

manipulate data obtained from APIs in the cloud 

integration process. 

  Flask: Flask is a lightweight Python framework for web 

development. It is used to build and host REST APIs in 

the cloud integration process. 

  Django: Django is a high-level Python web framework 

for full-stack web development. It is used for building 

complex cloud integration solutions in the integration 

process. 

  Oracle Cloud ERP: Oracle Cloud ERP is a cloud-based 

enterprise resource planning system offered by Oracle 

Corporation. It is used as a use case for the integration 

process in the journal. 

  Other Cloud ERPs: The approach discussed in the 

journal can be applied to other cloud-based ERP 

systems, such as SAP, Workday, and Microsoft 

Dynamics, among others. 

6. Conclusions 

In summary, cloud integration platforms provided by 

leading cloud providers can present a considerable 

challenge due to their high operational costs. However, this 

document proposes a cost-effective alternative solution by 

using Python for cloud integration. The document outlines 

the use case of integrating with Oracle Cloud ERP using 

Python, but the same approach can be applied to other cloud 

ERPs. 

The document delves into the key elements of the   

cloud integration process, such as the design overview, 

technical details for implementation, and necessary tools 

and technologies. The design overview showcases the 

advantages of cloud integration, while the technical details 

section offers a comprehensive guide to building the 

integration, including API usage, data mapping, and 

security measures. The tools section explains the necessary 

tools and technologies. 

In conclusion, this document highlights the potential 

benefits of using Python for cloud integration, including 

cost savings and improved efficiency. With the use of 

Python, businesses can accomplish seamless cloud 

integration and reach their objectives with greater efficiency 

and effectiveness. 

 

REFERENCES 

[1] "Python for Data Analysis" by Wes McKinney. 

[2] "Flask Web Development with Python Tutorial" by Corey 
Schafer (YouTube). 

[3] "Django for Beginners" by William S. Vincent. 

[4] "Integrating Oracle Cloud ERP with External Systems Using 
REST API" by Oracle. 

[5] "Using Python for API Integration" by Nitin Padalia on 
Medium. 

[6] "Integrating Cloud ERP Systems with External Applications: 
A Guide" by OpenMind Solutions. 

[7] "A Beginner's Guide to API Integration" by RapidAPI. 

[8] "Cloud Integration for Dummies" by Oracle. 

[9] "Python for Finance: Apply powerful finance models and 
quantitative analysis with Python" by Yves Hilpisch. 

[10] "Mastering Python for Finance" by James Ma Weiming. 

[11] https://pandas.pydata.org/ 

[12] https://www.python.org/ 

[13] https://pypi.org/project/requests/ 

[14] https://www.oracle.com/erp/financials/ 

 

 
Copyright ©  2023 The Author(s). Published by Scientific & Academic Publishing 

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ 

 

 

 

 

https://pandas.pydata.org/
https://www.python.org/
https://pypi.org/project/requests/
https://www.oracle.com/erp/financials/

