
Software Engineering 2023, 10(2): 21-27

DOI: 10.5923/j.se.20231002.01

Performance Metrics on Creating Data Via

Custom OData API in SAP

Srihariram Chendamarai Kannan

SAP ABAP Lead Analyst, Edison, New Jersey, USA

Abstract This article introduces the performance testing metrics for a proposed solution that aims to generate data in SAP

using a proprietary OData APIs method. The experimentation was conducted utilizing the SAP Gateway Client, specifically

the transaction code /IWFND/GW_CLIENT, to assess the performance implications associated with mass creation scenarios

when employing the SAP OData API. This scholarly article offers significant insights into the performance factors that

necessitate attention when utilizing the SAP OData API for mass creation scenarios. The testing outcomes indicated that the

suggested solution successfully satisfied the performance criteria and demonstrated its capacity to effectively manage

substantial quantities of data. This article serves as a valuable resource for experts aiming to enhance their SAP performance

optimization strategies.

Keywords SAP OData, SAP API, OData V4, SAP Restful-ABAP Programming Framework

1. Introduction

In today's data-driven business landscape, organizations

rely heavily on efficient and high-performing data integration

technologies to ensure smooth operations and optimal user

experiences. ODATA (Open Data Protocol) has gained

significant traction as a preferred protocol for building

RESTful APIs and facilitating data exchange. OData offers a

straightforward and standardized approach to creating and

accessing queryable and interoperable APIs. Its metadata,

which provides a machine-readable description of API

data models, empowers the development of versatile client

applications and tools. Numerous SAP applications and

services utilize OData APIs which have become the

preferred protocol for exposing data stored within SAP

applications, making it accessible for external use. OData

has a pivotal "connecting point" that streamlines interoperability

between SAP and non-SAP applications. Any application or

programming language that is capable of communicating via

HTTP can consume OData services because they adhere to

RESTful principles. For instance, you can create a Python,

Go, or Rust application or service that interacts directly with

an OData service, including integration with mobile applications.

This paper focuses on exploring the performance

capabilities of ODATA and sheds light on its potential to

deliver fast, scalable, and responsive data access within SAP

systems.

* Corresponding author:

srihariram@hotmail.com (Srihariram Chendamarai Kannan)

Received: Aug. 19, 2023; Accepted: Nov. 22, 2023; Published: Nov. 29, 2023

Published online at http://journal.sapub.org/se

In SAP, data is well organized and saved within a database.

Multiple layers of security are put in place to safeguard its

data. To engage with this data, specialized tools in the form

of modules, functions, or classes are crafted to enable precise

interactions with this data model, whether for reading or

writing. These tools are widely recognized as APIs (Application

Programming Interfaces). Modern applications and ERPs are

commonly equipped with APIs that streamline communication

with their internal data structures. Similarly, SAP Gateway

plays a crucial role in enabling the development and

deployment of RESTful APIs for SAP systems. It serves

as a central hub for integrating various SAP components,

business processes, and external systems. By utilizing SAP

Gateway, organizations can establish seamless communication

channels and expose SAP data and functionality through

standardized protocols, including OData.

SAP OData represents SAP's implementation of the

OData protocol within its software ecosystem. It offers a

comprehensive set of tools, frameworks, and services that

empower developers to build OData-compliant APIs and

leverage the capabilities of SAP systems.

OData V4 is the latest version of the OData protocol,

introducing several enhancements and advancements over

its predecessors. It provides improved support for complex

data models, expanded querying capabilities, and enhanced

security features.

2. Motivation and Goal

Performance plays a critical role in determining the

effectiveness of any data integration solution. With the rise

in data volumes and the increasing complexity of business

mailto:srihariram@hotmail.com

22 Srihariram Chendamarai Kannan: Performance Metrics on Creating Data Via Custom OData API in SAP

processes, organizations are seeking ways to optimize the

speed, throughput, and efficiency of their data exchange

mechanisms. ODATA, with its standardized approach and

extensive tooling support, presents an opportunity to address

these performance challenges and ensure smooth data access

and transfer between SAP systems and external applications.

This paper aims to delve into the various factors that

influence the performance of ODATA and examine best

practices for optimizing its capabilities. It will explore

techniques for efficient data creation and other performance-

enhancing measures specific to ODATA implementations.

By understanding these performance capabilities and

techniques, organizations can leverage ODATA to maximize

the speed and responsiveness of their data integration

processes, ultimately improving overall system performance

and user satisfaction.

3. Approach

The focus of this paper is to explore the slim and

lightweight protocol provided by the OData and SAP

gateway for efficient data consumption. While create

operations are typically performed for single entities,

there are valid scenarios where the creation of multiple

entities simultaneously becomes necessary. To evaluate the

performance and scalability of producing data in SAP

through custom OData APIs, a series of experiments were

conducted using SAP S4 HANA (2021 Version). The OData

V4 protocol was implemented in SAP HANA through

various approaches. Two commonly used methods for

creating OData V4 were explored:

1. Using the RAP (Restful-ABAP Programming and

CDS) Framework: The RAP Framework offers both

managed and unmanaged scenarios for creating OData

V4. The managed scenario provides a structured

and standardized approach for generating OData V4

entities, ensuring consistency and ease of maintenance.

On the other hand, the unmanaged scenario allows

more flexibility and customization but may require

additional effort for development and maintenance.

2. Code-Based Implementation for OData V4: This

approach involves writing custom code to implement

the OData V4 protocol. It provides greater flexibility

and control over the implementation, allowing for

fine-tuning and customization according to specific

requirements. However, it may also involve more

complex development and maintenance processes

compared to using the RAP Framework.

Since most of the requirements in SAP need custom

development, so will consider unmanaged RAP V4 API and

Code based V4 API. By creating these objects in SAP S4

HANA (2021 Version) and implementing OData V4 through

different approaches, the performance and scalability of

staging data in SAP can be thoroughly tested. This research

aims to provide insights into the effectiveness and efficiency

of custom OData APIs for managing and manipulating data

in SAP environments.

4. Technical Details

4.1. Prerequisite

 ABAP Programming: You should have a good

understanding of SAP ABAP programming, including

class and object-oriented programming (OOP) concepts.

Additionally, you should be familiar with OData

development and gateway configurations in SAP.

 CDS Development: You should have a fundamental

understanding of SAP Core Data Service SQL queries

and annotations.

 S4HANA: You should be familiar with SAP S4HANA

newer versions and Restful-ABAP programming concepts.

By mastering these prerequisites, you can start creating

your own OData objects in SAP.

4.2. Technical Design

In this document, it will be examined which approach is

better for creating or loading data using OData V4 service.

 Step 1: Create database tables and CDS views to load data.

Figure 1. Header Table

 Software Engineering 2023, 10(2): 21-27 23

Figure 2. Item Table

Figure 3. CDS View for Header

Figure 4. CDS View for the Item

 Step 2: Create a Restful-ABAP Unmanaged V4 OData API.

a. Create Unmanaged Restful-ABAP Objects

24 Srihariram Chendamarai Kannan: Performance Metrics on Creating Data Via Custom OData API in SAP

Figure 5. Unmanaged behavior definition

Figure 6. Unmanaged Service Definition

Figure 7. Unmanaged Service Binding

 Step 3: Create a Code based V4 ODATA classes using SAP provide interfaces /IWBEP/IF_V4_MP_BASIC and

/IWBEP/IF_V4_DP_ADVANCED.

 Software Engineering 2023, 10(2): 21-27 25

Figure 8. Model provider class for V4 OData

Figure 9. Data provider class for V4 OData

5. Testing and Performance Metrics

To evaluate the impact of different approaches, we

conducted tests with and without utilizing changesets in the

OData and SAP Gateway frameworks and tried to examine

the performance and efficiency of alternative methods.

To gauge the performance of the create process, the SAP

Gateway framework provides comprehensive performance

statistics in the HTTP response header. These statistics are

structured in the following format [3]:

 HTTP header name: sap-statistics

 HTTP header value as below,

a. total: Total processing time

b. fw: Framework

c. app: Application

d. gwtotal: Total processing time of the OData request.

e. gwhub: Processing time in SAP Gateway hub

system.

f. gwrfcoh: RFC and network overhead for

communication between the hub and backend system.

g. gwbe: Processing time in the SAP Gateway framework

in the backend system (without application time).

h. gwapp: Processing time in the application (data

provider).

i. gwnongw: Processing time of applications called

(referred to as non-SAP Gateway since this processing

time is not related to the SAP Gateway framework).

5.1. Testing RAP Unmanaged V4 OData API

I tried to create data in SAP using Restful ABAP

programming and an unmanaged OData API with multiple

sets of records.

26 Srihariram Chendamarai Kannan: Performance Metrics on Creating Data Via Custom OData API in SAP

Sample Payload

The below given JSON payload represents data for SAP

OData API request. It includes information about a header

and associated item details. Multiple items can be added in

the “_item” section. Used similar payloads for both RAP

OData and code based V4 OData APIs.

{

 "load_id" : "0001",

 "ernam" : "Test",

 "erdat" : "20230101",

 "_Item": [

 {

"load_id" : "0001",

"unique_id" : "0000000001",

"name_last" : "Configure",

"name_first" : "Test",

"nation" : "USA",

"state" : "NJ",

"birth_date" : "19900101",

"birth_plac" : "EDISON",

"marital_st" : 02,

"children" : 0,

 "ernam" : "Test",

 "erdat" : “20230101"

 }

]

 }

Figure 10. Evidence, Mutli Changeset approach calls multiple time to

commit

All operations within a change set must be treated as

a logical unit of work. This means all or nothing. Therefore,

a provider must not issue COMMIT WORK or ROLLBACK

WORK during change set processing. Otherwise, the

framework will abandon the change set processing. If the

change set contains only one operation, the check for commit

or rollback is deactivated [2]. The Multi Changeset option

for the create process will be considered the least favorable

due to the repeated invocation of the CREATE_ENTITY

method in the DPC Extension class and subsequent

multiple COMMIT WORK operations. The Multi Changeset

approach can result in performance degradation and increased

costs. However, to optimize data staging, it is beneficial to

commit multiple records simultaneously. Using the payload,

The OData API was executed from the transaction code

/IWFND/GW_CLIENT and measurements were taken using

transaction /IWFND/TRACES.

Table 1. Performance metric (msec) for RAP Unmanaged Multi changeset

Records gwtotal gwhub gwbe gwapp Gwrfcoh

1 139 20 18 46 52

10 368 111 19 159 76

100 2503 1010 39 1406 44

1000 25061 10442 197 14062 359

5,000 143568 50248 1824 90862 634

10,000 317927 106322 5787 204565 1225

Prepared the similar payloads for the single changeset and

executed in transaction code /IWFND/GW_CLIENT, and

the processing time was reduced by approximately 50%.

Table 2. Performance metric (msec) for RAP Unmanaged single
changeset

Records gwtotal gwhub gwbe gwapp Gwrfcoh

1 212 31 24 71 86

10 349 112 29 95 92

100 1873 975 31 151 713

1000 11432 10024 203 1035 157

5,000 59567 51967 1823 5127 638

10,000 127300 110473 5753 10052 1058

Although the change set approach offers advantages in

terms of committing data, it is not without its limitations.

One significant drawback is its potential slowness, as each

changeset requires its own set of processing steps. This can

create a bottleneck in the overall data staging process,

impacting performance.

Another approach is testing the payload with single

create requests and no changeset in the RAP unmanaged V4

ODATA API.

Table 3. Performance metric (msec) for RAP Unmanaged V4 OData API

Records gwtotal gwhub gwbe gwapp gwrfcoh

1 230 15 21 98 96

10 161 19 11 71 60

100 322 48 33 201 40

1000 1458 349 13 1062 34

5,000 7336 1695 44 5465 132

10,000 14129 3359 48 10515 207

 Software Engineering 2023, 10(2): 21-27 27

5.2. Testing Code Based V4 OData API

Executed the payload of data with deep create request on

V4 OData code based implemented API too. And it was

much faster than the RAP Framework.

Table 4. Performance metric (msec) for code based V4 OData API

Records gwtotal gwhub gwbe gwapp gwrfcoh

1 218 35 59 39 85

10 150 36 17 26 71

100 119 52 5 27 35

1000 495 266 28 135 66

5,000 1893 1232 28 552 81

10,000 3786 2443 86 1117 140

5.3. Comparison

Performance improvement with Code Based Implementation

as compared to RAP API is 75%.

Figure 11. Performance comparison between Code based and Unmanaged

RAP API

By deferring the changeset process and adapting the deep

create approach in code-based development (Figures 10 and

11) helped to improve the performance. Also, OData V4

has more advantages, like supporting both XML and JSON

formats, metadata query on service level only. It can be used

to query both root and expanded entities and supports deep

expand and query options in expanded entities.

6. Conclusions

The findings of this study highlight the significant

advantages of a code based approach in achieving superior

performance results. Therefore, if project timelines permit,

transitioning to a code based implementation should be given

a higher priority. By doing so, organizations can maximize

the efficiency and responsiveness of their data staging

processes, resulting in improved overall performance.

It is essential to acknowledge that the suitability of this

approach may vary based on specific use cases. Different

scenarios and requirements might influence the decision-

making process. As such, a careful assessment of individual

project needs is recommended before finalizing the choice of

implementation.

In summary, our research underscores the importance of

selecting the most appropriate approach for data staging,

considering both without ChangeSet and with ChangeSet

options. Additionally, it emphasizes the significance of

adopting a code-based strategy for optimizing performance

whenever feasible. With this knowledge, organizations can

make well-informed decisions to enhance data staging operations

and achieve higher levels of efficiency and productivity.

REFERENCES

[1] https://community.sap.com/topics/abap/rap.

[2] https://help.sap.com/doc/saphelp_nw74/7.4.16/en-us/94/a12
6519eff236ee10000000a445394/content.htm?no_cache=true

[3] SAP Performance Statistics. (n.d.). https://help.sap.com/doc/
saphelp_nw75/7.5.5/de-DE/40/93b81292194d6a926e105c10
d5048d/content.htm?no_cache=true.

Copyright © 2023 The Author(s). Published by Scientific & Academic Publishing

This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

https://community.sap.com/topics/abap/rap
https://help.sap.com/doc/saphelp_nw74/7.4.16/en-us/94/a126519eff236ee10000000a445394/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw74/7.4.16/en-us/94/a126519eff236ee10000000a445394/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw75/7.5.5/de-DE/40/93b81292194d6a926e105c10d5048d/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw75/7.5.5/de-DE/40/93b81292194d6a926e105c10d5048d/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw75/7.5.5/de-DE/40/93b81292194d6a926e105c10d5048d/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw75/7.5.5/de-DE/40/93b81292194d6a926e105c10d5048d/content.htm?no_cache=true
https://help.sap.com/doc/saphelp_nw75/7.5.5/de-DE/40/93b81292194d6a926e105c10d5048d/content.htm?no_cache=true

