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Abstract  Choosing the value of 0.5 for the fractional differencing operator can be helpful for the determination of the 

stationarity of a time series. A pole at frequency zero of the spectral density of the fractionally differenced time series may 

indicate nonstationarity of the original time series (underdifferencing) whereas a vanishing spectral density at frequency zero 

may indicate stationarity of the original time series (overdifferencing). In addition to this frequency-domain analysis, it is 

advantageous to check in the time domain whether the autocorrelation function of the fractionally differenced time series is 

positive and slowly decaying. Unfortunately, carrying out fractional differencing is not a simple task unless the time series is 

extremely long, which is rarely the case in practice. We therefore propose a simple approximation which is based on a 

parsimonious ARMA(1,1) model. The new method is applied to climatological and socioeconomic datasets. The hypothesis 

of stationarity is rejected for the global surface temperature, economic growth, and migration.  
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1. Introduction 

The problem of determining whether a time series has a 

deterministic trend, a stochastic trend, or no trend at all is 

extremely difficult. Even when we are prepared to settle for 

vague answers, we need large samples. Unfortunately,  

there are very few time series of at least annual frequency 

which span over a period of hundreds of years. In this paper, 

we investigate three interesting examples, namely the 

Earth’s global surface temperature from 1850 to 2021,    

the UK’s GDP per capita from 1252 to 2018, as well as 

Swedish migration data from 1851 to 2020. In principle, 

climatological and socioeconomic variables ideally lend 

themselves to a related analysis due to the fact that these 

variables can very well impact one another. For example, 

Drake (2017) argues that the periodic weakening of the 

North Atlantic Oscillation (NAO) may have negatively 

affected the climate in parts of Europe and caused (at least in 

part) waves of migration to Italy, which eventually led to the 

fall of the Western Roman Empire in 476. A more recent 

example would be the Syrian drought from 2007 to 2010, 

which sparked mass movements of migration from rural 

farming areas to urban centers. This, in turn, may have 

moreover contributed to the unrest in Syria which began in 
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2011 and ended in a war resulting in millions of refugees (see 

Kelley et al., 2015). Of course, there is never only one, 

singular trigger causing a major historical event. Reports 

about strong relationships between environmental shocks 

and conflicts or wars (see, e.g., Miguel et al., 2004; Burke  

et al., 2009; Hsiang et al., 2011) must therefore be interpreted 

with caution (as argued by Buhaug, 2010, Theisen et al., 

2011; see also Solow, 2013).  

Although the investigation of correlations and causations 

between global warming, national income, and mass 

migration is undoubtedly a feat worth pursuing, the present 

paper will treat the three datasets separately. Aside from the 

fact that the datasets stem from different regions, the nature 

of this paper does not call for a joint analysis, as it is 

primarily concerned with the demonstrations of statistical 

methodology rather than the implications of its findings. 

More precisely, the main goal of our paper is the 

development of a new procedure for assessing the 

stationarity of a time series, whereby the individual time 

series merely serve to illustrate the usefulness of our method. 

Separate analyses are therefore entirely justified. This new 

method will be introduced in the next section, before then 

being applied to our three datasets in Section 3. Section 4 

features a concluding discussion.  

2. Methods  

2.1. Checking Stationarity by Root Differencing  
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Rewriting a discrete-time stochastic process 𝑦 = (𝑦𝑡)𝑡∈ℤ 

which satisfies the difference equation  

 𝑦𝑡 − 𝜙𝑦𝑡−1 = 𝑢𝑡 ,              (1) 

where 𝑢 = (𝑢𝑡)𝑡∈ℤ is white noise with mean 0 and variance 

𝜎2, as 

𝑦𝑡 = 𝜙𝑦𝑡−1 + 𝑢𝑡 = 𝜙 𝜙𝑦𝑡−2 + 𝑢𝑡−1 + 𝑢𝑡  

= ⋯ =  𝜙𝑗 𝑢𝑡−𝑗
∞
𝑗 =0 ,         (2) 

we see that the effect of a past shock 𝑢𝑡−𝑗  on the current 

value 𝑦𝑡  is only temporary and vanishes as 𝑗 → ∞  if 
 𝜙 < 1. In contrast, if 𝜙 = 1, we have  

𝑦𝑡 =  𝑢𝑡−𝑗
∞
𝑗 =0                (3) 

and the effect of 𝑢𝑡−𝑗  on 𝑦𝑡  is therefore persistent. In the 

former case, 𝑦 is a stationary autoregressive (AR) process 

of order 1 with variance  

𝑣𝑎𝑟 𝑦𝑡 =   𝜙𝑗  2𝑣𝑎𝑟(𝑢𝑡−𝑗 ) = 𝜎2   𝜙2 𝑗∞
𝑗 =0

∞
𝑗 =0   

=
𝜎2

1−𝜙2 < ∞                (4) 

whereas in the latter case, y is a random walk with infinite 

variance. However, based on a finite sample 𝑦1, … , 𝑦𝑛  of 

size n, it is often extremely difficult to distinguish between 

the two cases. Indeed, there is hardly any difference between 

the two samples of size 𝑛 = 100  shown in Figure 1.a 

(𝜙 = 1) and Figure 1.c (𝜙 = 0.95), respectively. At first 

glance, both look nonstationary. The situation improves 

when the sample size is increased to 𝑛 = 1000. While the 

sample from the random walk still looks nonstationary (see 

Figure 1.b), the sample from the AR process now looks quite 

stationary (see Figure 1.d). In practice, the dataset is given 

and can usually not be increased arbitrarily. Only if we are 

lucky and the parameter 𝜙 of the data generating process is 

sufficiently smaller than 1 for the given sample size, the unit 

root hypothesis  

 𝐻0: 𝜙 = 1               (5) 

can be rejected with reasonable confidence either by a formal 

statistical test or by mere visual inspection of the time series 

plot (see, e.g., Figure 1.e). However, already when we move 

from the simple autoregressive scheme (1) to the slightly 

more general equation  

 𝑦𝑡 − 𝜙𝑦𝑡−1 = 𝑢𝑡 + 𝜃𝑢𝑡−1,         (6) 

we can no longer hope for luck. Regardless of the sample 

size 𝑛 , we can always choose a suitable value for the 

parameter 𝜃 so that the sample will look stationary even if 

𝜙 = 1 (see Figure 1.h). This is due to the fact that the terms 

in the numerator and denominator of the lag polynomial 

representation  

 𝑦𝑡 =
1+𝜃𝐿

1−𝜙𝐿
𝑢𝑡               (7) 

of (6) will nearly cancel out if 𝜃  is chosen only slighty 

greater than -1. Thus, we can never be sure whether a 

rejection of the unit root hypothesis is due to a small value of 

𝜙 or a value of 𝜃 close to -1 (for a more thorough line of 

reasoning see Pötscher, 2002).  

So in general, unit root testing is pointless and can only  

be justified under severe restrictions which are probably 

implausible in most applications. Where does that leave   

us when we still want to answer questions raised by 

climatologists, economists or social scientists? In light of the 

above considerations, it would be naïve to go for p-values 

which would only give us a false sense of security. Instead, 

we take a more pragmatic approach. Knowing that we will 

never be able to unmask a time series of the type shown in 

Figure 1.g as being nonstationary, we content ourselves with 

the construction of a tool which helps to determine whether 

trend patterns or long swings (like those shown in Figures 1.a 

and 1.c) are consistent with stationarity or not. In some 

simple cases, taking first differences already does the trick. 

No new method is required. Figure 2.a shows the first 

differences of the nonstationary time series displayed in 

Figure 1.a and Figure 2.e shows the first differences of the 

stationary time series displayed in Figure 1.c. Again, there is 

hardly any difference. However, with a great deal of good 

will, we may find that the second differenced series looks 

slightly “more stationary” than the first one. This is due to a 

negative autocorrelation caused by overdifferencing which 

tends to increase the number of crossings of the center line. A 

suitable way to make this negative correlation visible is to 

plot the sums  

𝑆𝑡(𝑘) =
1

𝑛−𝑘
 (𝑦𝑠 − 𝑦 )(𝑦𝑠−𝑘 − 𝑦 )𝑡

𝑠=𝑘+1 , t=2,…,n,  (8) 

against t. While the first-order sample autocovariance 𝑆𝑛(1) 

is negative in both cases (see Figures 2.b and 2.f), only the 

second cumulative plot shows a clear downward trend. 

However, this visual significance is somewhat put into 

perspective when higher-order lags are also considered (see 

Figures 2.c and 2.g). All computations are carried out with 

the free statistical software R (R Core Team, 2018). 

Unfortunately, overdifferencing can also occur in the case 

of a nonstationary time series. When we consider the general 

class of autoregressive fractionally integrated moving 

average (ARFIMA) processes  

𝑦𝑡 =  1 − 𝜙1𝐿 − ⋯ − 𝜙𝑝𝐿𝑝 
−1

 1 − 𝐿 −𝑑  

(1 + 𝜃1𝐿 + ⋯ + 𝜃𝑞𝐿𝑞)𝑢𝑡            (9) 

(see Granger and Joyeux, 1980; Hosking, 1981), there are 

not only I(1) processes, i.e., processes that are integrated of 

order one (𝑑 = 1), and I(0) processes, i.e., processes that are 

integrated of order zero (𝑑 = 0), but there are also processes 

that are fractionally integrated. For stationarity, it is required 

that 𝑑 < 0.5. Our goal is to distinguish stationary processes 

with 0 ≤ 𝑑 < 0.5, which include white noise processes as 

well as AR, MA and ARMA processes, from nonstationary 

processes with 0.5 ≤ 𝑑 ≤ 1, which include random walks  

as well as ARIMA processes. We have seen above that     

a negative autocorrelation can be an indication of 

overdifferencing. Taking first differences reduces the 

memory parameter 𝑑 by 1. In the case of an I(1) process,  

the memory parameter decreases from one to zero and is 

therefore still nonnegative whereas in the case of an I(0) 
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process, it decreases from 0 to -1. In contrast, both in the case 

of a fractionally integrated process with 𝑑 = 0.4 , which   

is stationary, and in the case of a fractionally integrated 

process with 𝑑 = 0.6, which is nonstationary, the memory 

parameter will become negative after differencing. Checking 

for negativity after differencing is therefore pointless. An 

obvious alternative is fractional differencing with the help of 

the fractional differencing operator, which is defined as a 

power series expansion in integer powers of 𝐿, i.e., 

∆𝑑= (1 − 𝐿)𝑑 = 1 − 𝑑𝐿 +
𝑑 𝑑−1 𝐿2

2
−

𝑑 𝑑−1  𝑑−2 𝐿3

3!
+ ⋯ (10) 

Choosing 𝑑 = 0.5  in (10) will reduce the memory 

parameter by 0.5, hence we will observe overdifferencing 

exactly in the stationary case where the original order of 

integration is less than 0.5. Fractional differencing with 

𝑑 = 0.5  can also help to detect underdifferencing. For 

example, when a strong positive autocorrelation is not only 

present in the original, not differenced series (see, e.g., 

Figures 2.d and 2.h) but also after fractional differencing, 

albeit to a lesser extent.  

 
Figure 1.  Realizations of lengths 150 (first column) and 1000 (second column), respectively, of a random walk (first row), an AR(1) process with 

𝜙 = 0.95 (second row), an AR(1) process with 𝜙 = 0.5 (third row), and an ARMA(1,1) process with 𝜙 = 1 and 𝜃 = −0.99 (fourth row) 

 

Figure 2.  Random walk (first column) vs. AR(1) process with 𝜙 = 0.95 (second column): (a), (e): First differences, (b), (f): First-order sample 

autocovariance plotted cumulatively, (c), (g) Sample autocovariances, (d), (h): Sample autocovariances of original series 
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The only problem with fractional differencing is that a 

truncated version of (10) must be used in practice which 

makes the first part of the obtained series unusable because it 

takes some time until the asymptotics kicks in. Clearly, 

giving up on a part of the data is not an option in many 

applications. E.g., for the investigation of climate change we 

definitely need the whole set of available historical 

temperature measurements and not just a part of it. In order 

to rectify this serious shortcoming of approximating the root 

differencing operator √∆ = ∆0.5  by truncation, we will 

construct in Subsection 2.3 another approximation which is 

based on a parsimonious ARMA(1,1) model. But before that 

we will in the next subsection briefly leave the time domain 

and switch to the frequency domain where root differencing 

is a trivial exercise.  

2.2. Analysis in the Frequency-Domain 

The spectral density of an ARFIMA process is given by  

𝑓 𝜔 =
𝜎2

2𝜋
 1 − 𝑒−𝑖𝜔  

−2𝑑
 1 +  𝜃𝑗 𝑒

−𝑖𝜔𝑗𝑞
𝑗 =1  

2
  

 1 −  𝜙𝑗 𝑒
−𝑖𝜔𝑗𝑝

𝑗 =1  
−2

.               (11) 

In general, 𝑓 𝜔  either goes to infinity (if 𝑑 > 0) or to 

zero (if 𝑑 < 0) as 𝜔 → 0. Only in the case of a pure ARMA 

process (𝑑 = 0), it converges (horizontally) to a positive 

number. After root differencing, the spectral density goes to 

zero if and only if 𝑑 < 0.5 , i.e., exactly in the case of 

stationarity. In the frequency domain, root differencing can 

be accomplished simply by multiplying the spectral density 

by the factor  

𝐹(𝜔) =  1 − 𝑒−𝑖𝜔  ,             (12) 

hence we can easily assess the stationarity of a time series by 

estimating its spectral density, multiplying the estimate by 

the factor (12), and observing whether the transformed 

estimate decreases as 𝜔 → 0. Nonparametric estimates of 

the spectral density can be obtained by smoothing the 

periodogram 

𝐼 𝜔𝑗  =
1

2𝜋𝑛
  𝑦𝑡𝑒

−𝑖𝜔𝑗 𝑡𝑛
𝑡=1  

2
,         (13) 

which is the sample spectral density evaluated at the Fourier 

frequencies 𝜔𝑗 = 2𝜋𝑗/𝑛.  

A more elaborate method is the log periodogram 

regression which is based on the low-frequency 

approximation  

log 𝑓 𝜔 ≈ 𝐶 + log 1 − 𝑒−𝑖𝜔  
−2𝑑

 

= 𝐶 + 𝑑 −2 log 1 − 𝑒−𝑖𝜔   .           (14) 

To get an estimate of the memory parameter 𝑑, we must 

replace the spectral density in this approximation by the 

periodogram (see Geweke and Porter-Hudak, 1983) or a 

smoothed version of it (see Hassler, 1993, Peiris and Court, 

1993, and Reisen, 1994) and choose a suitable neighborhood 

𝜔1, … , 𝜔𝐾 of frequency zero. The parameter 𝐾 determines 

how many of the lowest Fourier frequencies are included in 

the regression (for a procedure involving non-Fourier 

frequencies, see Reschenhofer and Mangat, 2021). As 

always, there is a trade-off between bias and variance. A 

small value of 𝐾  increases the variance whereas a large 

value of 𝐾  may introduce a bias caused by short-term 

autocorrelation.  

 
Figure 3.  For each frequency (first row: annual, second row: monthly, third row: daily), we first plot the log periodogram of the log S&P 500 from 1928 to 

2020 against −2 log 1 − 𝑒−𝑖𝜔 𝑗   and compare it to dashed lines of slope 1 and then we plot the root differenced periodogram against 𝜔𝑗 = 2𝜋𝑗/𝑛 
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In order to illustrate the frequency-domain approach 

outlined above, we consider a financial application where 𝑑 

is known a priori. Although stock price series cannot 

adequately be modeled by a random walk (and not even by a 

conditionally heteroskedastic random walk with drift), there 

is a broad agreement that they are integrated of order 1, 

hence 𝑑 = 1. A disadvantage of financial datasets is that 

they are usually very short. Stock prices are rarely available 

for hundred years or more. A large sample size is not helping 

in this regard. E.g., for the investigation of climate change, a 

long annual temperature series from 1850 to 2020 (𝑛 = 171) 

is certainly more appropriate than a short daily series from 

2001 to 2020 (𝑛 =  7305). Indeed, Figure 3 shows that 

simply increasing the resolution of a time series does not 

change the shape of the periodogram in the low-frequency 

range. For each frequency, annual (3.a), monthly (3.b), and 

daily (3.c), the scatter plot based on the low-frequency 

relationship approximation (14) corroborates our suspicion 

that 𝑑 = 1. Moreover, after multiplication by the factor (12), 

the periodograms still increase as 𝜔 → 0 (see 3.d-f), which 

is inconsistent with stationarity of the original series.  

2.3. Approximating the Root Differencing Operator 

Usually, we interpret an ARMA equation such as (6), 

which can in lag operator notation also be written as  

𝑦𝑡 =
1+𝜃𝐿

1−𝜙𝐿
𝑢𝑡 ,               (15) 

as a description of the transformation of a simple white noise 

𝑢 to a more complex process 𝑦. In the frequency domain, 

this transformation is accomplished by multiplying the 

constant spectral density 

𝑓 𝜔 =
𝜎2

2𝜋
                (16) 

by the factor 

 
1+𝜃𝑒−𝑖𝜔

1−𝜙𝑒−𝑖𝜔  
2

.               (17) 

However, in the case of differencing, we prefer to interpret 

the equation 

(1 − 𝐿)𝑦𝑡 = 𝑢𝑡 ,             (18) 

as a description of the transformation of a possibly 

nonstationary process 𝑦 to a possibly stationary process 𝑢. 

The spectral density of 𝑢  is obtained from the spectral 

density of 𝑦 by multiplication with the factor 

 1 − 𝑒−𝑖𝜔  
2
,               (19) 

which vanishes at frequency zero. The steep decline towards 

zero can be reduced either by replacing the unit root in (18) 

by a near unit root, i.e.,  

(1 − 𝜙𝐿)𝑦𝑡 = 𝑢𝑡 , 𝜙 = 1 − 𝜀,        (20) 

or more flexibly by introducing an almost cancelling root on 

the right hand side of (20), i.e.,  

(1 − 𝜙𝐿)𝑦𝑡 = (1 + 𝜃𝑢𝑡), 𝜙 = 1 − 𝜀, 𝜃 = −1 + 𝛿. (21) 

Clearly, 𝜀 must be smaller than 𝛿 or else the decline will 

vanish completely. The result of the dampened differencing 

is then given by 

𝑢𝑡 =
1−𝜙𝐿

1+𝜃𝐿
𝑦𝑡 .               (22) 

In the frequency domain, this transformation comes down 

to a multiplication of the original spectral density by the 

factor 

 1 − 𝜙𝑒−𝑖𝜔  
2
 1 + 𝜃𝑒−𝑖𝜔  

−2
.       (23) 

For an approximation of the root differencing operator 

∆0.5, we need to find suitable values of 𝜙 and 𝜃 so that a 

plot of the log of (23) against 2 log 1 − 𝑒−𝑖𝜔𝑗   has 

approximately a slope of 0.5 in the neighborhood of 

frequency zero.  

Table 1 gives pairs of values of 𝜙  and 𝜃  for various 

sample sizes which mimic the effect of root differencing. 

These values were found by minimization of  

 

  log   1 − 𝜙𝑒−𝑖𝜔𝑗  
2
 1 + 𝜃𝑒−𝑖𝜔𝑗  

−2
 −  log   1 − 𝑒−𝑖𝜔𝑗  

2∙0.5
 + 𝑐 

2
𝐾
𝑗 =1   

=   log    1 + 𝜃𝑒−𝑖𝜔𝑗  
2

  1 − 𝜙𝑒−𝑖𝜔𝑗  
−2

 − 0.5 −2 log  1 − 𝑒−𝑖𝜔𝑗    + 𝐶 
2

𝐾
𝑗 =1           (24) 

 

with respect to 𝜙, 𝜃, and 𝑐, where 𝐾 =   𝑛/2 . The values 

in Table 1 can also be used for the approximation of the root 

integration operator ∆−0.5, which is just the inverse operator 

of the root differencing operator ∆0.5 . Indeed, if 𝑢  is 

obtained from 𝑦 by approximate root differencing, i.e.,  

𝑢𝑡 = −𝜃𝑢𝑡−1 + 𝑦𝑡 − 𝜙𝑦𝑡 ,         (25) 

then 𝑦  can be obtained from 𝑢  by approximate root 

integrating, i.e.,  

𝑦𝑡 = 𝜙𝑦𝑡 + 𝑢𝑡 + 𝜃𝑢𝑡−1.          (26) 

Using the values in Table 1, we plotted spectral densities 

of the form  

 𝑓 𝜔 ∝  1 + 𝜃𝑒−𝑖𝜔  
2
 1 − 𝜙𝑒−𝑖𝜔  

−2
      (27) 

against the transformed Fourier frequencies −2 log  1 −

𝑒−𝑖𝜔𝑗     in Figures 4.b, e, h. Of special interest is the low 

frequency range (see Figures 4.a, d, g), where the graphs are 

approximately linear with slope 0.5. In this frequency range, 

the fit obtained by truncated series approximations is 

generally worse (see Figures 4.c, f, i). In the following, we 

will therefore change our setting slightly to make up for the 

shortcomings of the latter approximation. Firstly, we will 

introduce an initial settling period of length 𝑤 = [2√𝑛] and 

thereby reduce the analysis period from 𝑛  to 𝑛 − 𝑤 . 

Secondly, we will use an expanding cut-off lag instead of a 

fixed one.  
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Figure 4.  For sample sizes 𝑛 = 100 (first row), 250 (second row), and 1000 (third row), selected log ARMA(1,1) spectral densities are plotted against 

−2 log  1 − 𝑒−𝑖𝜔 𝑗    for 𝑗 = 1, … ,  √𝑛/2  (first column) and 𝑗 = 1, … ,  (𝑛 − 1)/2  (second column), respectively, and are then compared to dashed base 

lines with slope 0.5. Note that the low frequencies appear on the right side! The spectral shapes in the third column were obtained by truncated series 

approximations of the root differencing operator with cut-off lags 20 (blue) and 50 (red), respectively 

 
Figure 5.  Analysis of fractional series with 𝑑 = −0.3 (1st), 𝑑 = 0.3 (2nd), 𝑑 = 0.8 (3rd column): 1st row: Realizations with initial settling period (red, 

n=30) and analysis period (black, n=220); 2nd row: Root differenced series obtained with ARMA(1,1) approximation; 3rd row: Root differenced series 

obtained with truncated series (expanding cut-off lag); Rows 4-6: Sample autocorrelations of the original series and the two root differenced versions; Rows 

7-9: Log periodogram plots (𝐾 = 13) for the root differenced series; (7: root differencing in the frequency domain, 8: ARMA(1,1), 9: truncated series) 
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Table 1.  Approximating root differencing 𝑢𝑡 = (1 − 𝐿)0.5𝑦𝑡  by 𝑢𝑡 = −𝜃𝑢𝑡−1 + 𝑦𝑡 − 𝜙𝑦𝑡  (sample size, number of lowest Fourier Frequencies used for 

fitting, 𝜙, 𝜃) 

90 4 0.926 -0.767 180 6 0.956 -0.846 630 12 0.983 -0.929 

91 4 0.927 -0.770 185 6 0.957 -0.850 635 12 0.983 -0.929 

92 4 0.928 -0.773 190 6 0.958 -0.853 640 12 0.983 -0.930 

93 4 0.928 -0.773 195 6 0.960 -0.859 645 12 0.983 -0.930 

94 4 0.929 -0.775 200 7 0.958 -0.849 650 12 0.983 -0.930 

95 4 0.930 -0.778 205 7 0.959 -0.852 655 12 0.983 -0.930 

96 4 0.931 -0.781 210 7 0.960 -0.856 660 12 0.984 -0.933 

97 4 0.931 -0.781 215 7 0.961 -0.859 665 12 0.984 -0.933 

98 4 0.932 -0.784 220 7 0.962 -0.862 670 12 0.984 -0.933 

99 4 0.933 -0.787 225 7 0.963 -0.866 675 12 0.984 -0.933 

100 5 0.928 -0.765 230 7 0.963 -0.866 680 13 0.983 -0.929 

101 5 0.928 -0.765 235 7 0.964 -0.869 685 13 0.983 -0.929 

102 5 0.929 -0.768 240 7 0.965 -0.873 690 13 0.984 -0.932 

103 5 0.930 -0.771 245 7 0.966 -0.876 695 13 0.984 -0.932 

104 5 0.930 -0.771 250 7 0.966 -0.876 700 13 0.984 -0.932 

105 5 0.931 -0.774 255 7 0.967 -0.880 705 13 0.984 -0.932 

106 5 0.932 -0.777 260 8 0.966 -0.873 710 13 0.984 -0.933 

107 5 0.932 -0.777 265 8 0.966 -0.873 715 13 0.984 -0.933 

108 5 0.933 -0.780 270 8 0.967 -0.877 720 13 0.984 -0.933 

109 5 0.934 -0.783 275 8 0.968 -0.880 725 13 0.984 -0.933 

110 5 0.934 -0.783 280 8 0.968 -0.880 730 13 0.984 -0.933 

111 5 0.935 -0.786 285 8 0.969 -0.884 735 13 0.985 -0.936 

112 5 0.935 -0.786 290 8 0.969 -0.884 740 13 0.985 -0.936 

113 5 0.936 -0.789 295 8 0.970 -0.887 745 13 0.985 -0.936 

114 5 0.936 -0.789 300 8 0.970 -0.887 750 13 0.985 -0.937 

115 5 0.937 -0.792 305 8 0.971 -0.891 755 13 0.985 -0.937 

116 5 0.937 -0.792 310 8 0.971 -0.891 760 13 0.985 -0.937 

117 5 0.938 -0.795 315 8 0.972 -0.894 765 13 0.985 -0.937 

118 5 0.938 -0.795 320 8 0.972 -0.895 770 13 0.985 -0.937 

119 5 0.939 -0.798 325 9 0.971 -0.889 775 13 0.985 -0.937 

120 5 0.939 -0.798 330 9 0.971 -0.889 780 13 0.985 -0.937 

121 5 0.940 -0.801 335 9 0.972 -0.892 785 14 0.985 -0.936 

122 5 0.940 -0.801 340 9 0.972 -0.892 790 14 0.985 -0.936 

123 5 0.941 -0.804 345 9 0.973 -0.896 795 14 0.985 -0.936 

124 5 0.941 -0.804 350 9 0.973 -0.896 800 14 0.985 -0.936 

125 5 0.942 -0.807 355 9 0.973 -0.896 805 14 0.985 -0.936 

126 5 0.942 -0.807 360 9 0.974 -0.899 810 14 0.985 -0.936 

127 5 0.943 -0.810 365 9 0.974 -0.900 815 14 0.986 -0.939 

128 5 0.943 -0.810 370 9 0.974 -0.900 820 14 0.986 -0.939 

129 5 0.944 -0.813 375 9 0.975 -0.903 825 14 0.986 -0.940 

130 5 0.944 -0.813 380 9 0.975 -0.903 830 14 0.986 -0.940 

131 5 0.944 -0.813 385 9 0.975 -0.904 835 14 0.986 -0.940 

132 5 0.945 -0.816 390 9 0.976 -0.907 840 14 0.986 -0.940 

133 5 0.945 -0.816 395 9 0.976 -0.907 845 14 0.986 -0.940 

134 5 0.946 -0.819 400 10 0.975 -0.901 850 14 0.986 -0.940 

135 5 0.946 -0.819 405 10 0.976 -0.905 855 14 0.986 -0.940 

136 5 0.946 -0.819 410 10 0.976 -0.905 860 14 0.986 -0.940 

137 5 0.947 -0.822 415 10 0.976 -0.905 865 14 0.986 -0.940 
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138 5 0.947 -0.823 420 10 0.976 -0.905 870 14 0.986 -0.940 

139 5 0.947 -0.823 425 10 0.977 -0.909 875 14 0.987 -0.944 

140 5 0.948 -0.826 430 10 0.977 -0.909 880 14 0.987 -0.944 

141 5 0.948 -0.826 435 10 0.977 -0.909 885 14 0.987 -0.944 

142 5 0.949 -0.829 440 10 0.977 -0.909 890 14 0.987 -0.944 

143 5 0.949 -0.829 445 10 0.978 -0.912 895 14 0.987 -0.944 

144 6 0.946 -0.814 450 10 0.978 -0.913 900 15 0.986 -0.940 

145 6 0.946 -0.814 455 10 0.978 -0.913 905 15 0.987 -0.943 

146 6 0.946 -0.814 460 10 0.978 -0.913 910 15 0.987 -0.943 

147 6 0.947 -0.817 465 10 0.979 -0.916 915 15 0.987 -0.943 

148 6 0.947 -0.817 470 10 0.979 -0.916 920 15 0.987 -0.943 

149 6 0.947 -0.817 475 10 0.979 -0.917 925 15 0.987 -0.943 

150 6 0.948 -0.820 480 10 0.979 -0.917 930 15 0.987 -0.943 

151 6 0.948 -0.820 485 11 0.979 -0.915 935 15 0.987 -0.943 

152 6 0.948 -0.820 490 11 0.979 -0.915 940 15 0.987 -0.943 

153 6 0.949 -0.823 495 11 0.979 -0.915 945 15 0.987 -0.943 

154 6 0.949 -0.824 500 11 0.979 -0.915 950 15 0.987 -0.943 

155 6 0.949 -0.824 505 11 0.979 -0.915 955 15 0.987 -0.944 

156 6 0.950 -0.827 510 11 0.980 -0.919 960 15 0.987 -0.944 

157 6 0.950 -0.827 515 11 0.980 -0.919 965 15 0.987 -0.944 

158 6 0.950 -0.827 520 11 0.980 -0.919 970 15 0.987 -0.944 

159 6 0.951 -0.830 525 11 0.980 -0.919 975 15 0.987 -0.944 

160 6 0.951 -0.830 530 11 0.980 -0.919 980 15 0.988 -0.947 

161 6 0.951 -0.830 535 11 0.981 -0.922 985 15 0.988 -0.947 

162 6 0.952 -0.833 540 11 0.981 -0.923 990 15 0.988 -0.947 

163 6 0.952 -0.833 545 11 0.981 -0.923 995 15 0.988 -0.947 

164 6 0.952 -0.833 550 11 0.981 -0.923 1000 15 0.988 -0.947 

165 6 0.952 -0.833 555 11 0.981 -0.923 1005 15 0.988 -0.947 

166 6 0.953 -0.836 560 11 0.981 -0.923 1010 15 0.988 -0.947 

167 6 0.953 -0.836 565 11 0.982 -0.926 1015 15 0.988 -0.948 

168 6 0.953 -0.837 570 11 0.982 -0.927 1020 15 0.988 -0.948 

169 6 0.953 -0.837 575 11 0.982 -0.927 1025 16 0.988 -0.946 

170 6 0.954 -0.840 580 12 0.981 -0.922 1030 16 0.988 -0.947 

171 6 0.954 -0.840 585 12 0.981 -0.922 1035 16 0.988 -0.947 

172 6 0.954 -0.840 590 12 0.982 -0.925 1040 16 0.988 -0.947 

173 6 0.955 -0.843 595 12 0.982 -0.925 1045 16 0.988 -0.947 

174 6 0.955 -0.843 600 12 0.982 -0.925 1050 16 0.988 -0.947 

175 6 0.955 -0.843 605 12 0.982 -0.926 1055 16 0.988 -0.947 

176 6 0.955 -0.843 610 12 0.982 -0.926 1060 16 0.988 -0.947 

177 6 0.956 -0.846 615 12 0.982 -0.926 1065 16 0.988 -0.947 

178 6 0.956 -0.846 620 12 0.982 -0.926 1070 16 0.988 -0.947 

179 6 0.956 -0.846 625 12 0.983 -0.929 1075 16 0.988 -0.947 

 

Figure 5 shows that these measures are quite effective. 

There are no major discrepancies between the two 

approximation methods. Both agree that the root differenced 

fractional series with 𝑑 = −0.3 and 𝑑 = 0.3, respectively, 

are overdifferenced as indicated by a log periodogram that 

decreases as the frequency decreases (see Figures 5.8, 9,   

17, 18), and that a root differenced fractional series with 

𝑑 = 0.8  is underdifferenced as indicated by a log 

periodogram that still increases as the frequency decreases 

(see Figures 5.25, 26). These findings are also in line with the 

results obtained by root differencing in the frequency domain 

(see Figures 5.7, 16, 25). Moreover, there is also agreement 

that the strong positive autocorrelation, which is present in 

the fractional series with 𝑑 = 0.8 (see Figure 5.22), is (to a 

lesser extent) still present after root differencing (see Figures 

5.23, 24). In contrast, the analogous plots for the stationary 
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series are inconclusive (see Figures 5.4-6, 13-15). However, 

the truncated series approximation has at least managed to 

produce a negative first-order autocorrelation in each case 

(Figure 5.6, 15). In general, this method appears to remove a 

possible (stochastic) trend slightly more aggressively than 

the ARMA(1,1) approximation (see Figures 5.1-3, 20-12, 

19-21).  

3. Empirical Results 

3.1. Global Warming 

There has been a broad and often controversial discussion 

about the true nature of the apparent upward trend in global 

surface temperature (see, e.g., Stern and Kaufmann, 1999; 

Fomby and Vogelsang, 2002; Kaufmann and Stern, 2002; 

Kaufmann et al., 2006; Kaufmann et al., 2010; Reschenhofer, 

2013; Estrada et al., 2013; Estrada et al., 2017; Estrada   

and Perron, 2019; Lai and Yoon, 2018; Mangat and 

Reschenhofer, 2020; Chang et al., 2020). We add to this 

debate with an empirical study based on root differencing. 

Following the recommendation of the Climatic Research 

Unit (CRU) of the University of East Anglia (UEA), we use 

the HadCRUT5 dataset (Morice et al., 2021) for our 

investigation of the change of the global temperature since 

1850. This dataset contains the global annual means from 

1850 to 2020 of the combined land and marine temperature 

anomalies. Temperature anomalies are defined relative to the 

1961–1990 temperature mean. The dataset is available at  

the website https://sites.uea.ac.uk/cru/data of the CRU. 

Although the observation period is not very long, we will 

again introduce an initial settling period of length [2√𝑛]. 
The resulting reduction of the analysis period from 171 to 

145 years can to some extent be justified by the fact that the 

global means of the first years are based on a significantly 

smaller number of measurements. In particular, this is   

true for the years before 1880. Note that a similar surface 

temperature dataset, namely the GISTEMP v4 (see 

GISTEMP Team, 2021; Lenssen, 2019) provided by     

the NASA (https://data.giss.nasa.gov/gistemp/), is only 

available from 1880. 

The central question is whether the recent rise in 

temperature is just a transient phenomenon or an indication 

of nonstationarity. Applying the methods used for the 

production of Figure 5 to our global surface temperature 

series, we find that all indications point to nonstationarity. 

Firstly, the root differenced series (obtained from the 

mean-corrected original series) still exhibit some kind of an 

upward trend (see Figures 6.d, g). Secondly, there is also 

strong positive autocorrelation left after root differencing 

(see Figures 6.e, h). Thirdly, the log periodogram of the  

root differenced series always increases as the frequency 

decreases, regardless whether root differencing is carried out 

in the frequency domain (see Figure 6.c) or in the time 

domain (see Figures 6.f, i).  

 

 

Figure 6.  Analysis of global surface temperature from 1850 to 2020 (HadCRUT5): 1st column: Plots of original (a) and two root differenced series (d: 

ARMA, g: truncated); 2nd column: Sample autocorrelations of original and root differenced series; 3rd column: Log periodogram plots after root differencing 

(c: frequency domain differencing)  
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3.2. Economic Growth 

We downloaded the real UK GDP per capita since 1252 

(in 2011$) from the Maddison Project Database (see Bolt 

and van Zanden, 2020; Scheidel and Friesen, 2009; Stohr, 

2016), which is maintained by the Groningen Growth and 

Development Centre at the University of Groningen. The 

2020 version of this database covers the period up to 2018. In 

contrast to the previous section, we take the logarithm of the 

data before we carry out the analysis. Again, the empirical 

results are in favor of nonstationarity, only much stronger. 

There is stunning evidence of underdifferencing (see Figure 

7). Of course, this does not come as a surprise. In the case of 

economic growth, it is a priori clear that there is an upward 

trend. The only question is whether this trend is deterministic 

or stochastic. In the latter case, it is safe to assume that 

𝑑 ≥ 1, hence root differencing is definitely not enough.  

 

Figure 7.  Analysis of log UK GDP per capita from 1252 to 2018 (Maddison Project Database): 1st column: Plots of original (a) and two root differenced 

series (d: ARMA, g: truncated); 2nd column: Sample autocorrelations of original and root differenced series; 3rd column: Log periodogram plots after root 

differencing (c: frequency domain differencing) 

 

Figure 8.  Analysis of log Swedish immigration numbers from 1875 to 2020: 1st column: Plots of original (a) and two root differenced series (d: ARMA, g: 

truncated); 2nd column: Sample autocorrelations of original and root differenced series; 3rd column: Log periodogram plots after root differencing (c: 

frequency domain differencing) 
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Figure 9.  Analysis of log Swedish emigration numbers from 1851 to 2020: 1st column: Plots of original (a) and two root differenced series (d: ARMA, g: 

truncated); 2nd column: Sample autocorrelations of original and root differenced series; 3rd column: Log periodogram plots after root differencing (c: 

frequency domain differencing) 

3.3. Migration 

We obtained Swedish migration data from 1851 until 1969 

from Mitchell (2003) and from 1970 until 2020 from the 

website of Statistics Sweden (https://www.scb.se/). The 

main reasons for selecting Sweden in our analysis of 

migration dynamics included the existing availability of  

long historical time series as well as the recent upsurge in 

academic interest in the subject of migration and flight by 

Swedish scholars and organizations (Lindfors and 

Alfonsdotter, 2016, see also Warnqvist, 2018). Furthermore, 

compared to other European countries, Sweden is known to 

have had generous asylum laws until 2016. Much earlier 

already, Sweden became an immigrant country in the 1930s, 

after initial mass migratory movements toward the United 

States. This mass migration unfolded throughout different 

waves between the 1840s and the late 1920s.  

Applying the same methods as in the previous subsections, 

we again find evidence of nonstationarity, albeit somewhat 

weaker than before. The empirical findings are shown in 

Figure 8 for the immigration data and in Figure 9 for the 

emigration data. In both cases, it is safe to assume that the 

observed nonstationarity is mainly due to structural breaks 

which separate different waves of migration.  

4. Discussion 

Carrying out fractional differencing with the help of a 

truncated version of the power series expansion of the 

fractional differencing operator is only meaningful when  

the sample size is very large. For more realistic sample sizes 

occurring in practice, we therefore propose a simple 

approximation which is based on a simple ARMA(1,1) 

model. We focus on the important special case where the 

fractional differencing parameter is equal to 0.5 (root 

differencing). This choice allows the use of the new method 

to distinguish between stationarity and nonstationarity of a 

given time series. For this purpose, we look at the time series 

plot, the sample autocorrelations, and the periodogram of the 

root differenced time series. A trend or long cycles in the plot, 

positive and slowly decaying sample autocorrelations, and a 

peak of the periodogram at frequency zero are interpreted as 

indications of nonstationarity. The new method is applied to 

long annual time series, the global surface temperature from 

1850 to 2020 (HadCRUT5), the UK GDP per capita from 

1252 to 2018 (Maddison Project Database), Swedish 

immigration numbers from 1875 to 2020 and Swedish 

emigration numbers from 1851 to 2020 (Mitchell, 2003; 

Statistics Sweden). In each case, we expect a priori that the 

hypothesis of stationarity is rejected. The temperature series 

and the GDP series have an upward trend because of global 

warming and long-term economic growth, respectively. The 

nonstationarity of the migration series is due to structural 

breaks which separate different waves of migration. It is 

reassuring that our empirical analysis of these series indeed 

produces evidence in favor of nonstationarity. However, this 

evidence is not always as strong as anticipated, which is 

particularly sobering in view of the fact that most historical 

time series are much shorter than the examples investigated 

in this paper. For example, studies of the long-term 

properties of macroeconomic time are usually based only on 

post-war data (see, e.g., Christiano and Eichenbaum, 1990; 

Hauser et al., 1999). Not helping in this matter would be to 

increase the frequency from annual to quarterly or monthly, 

which increases only the number of observations but not the 

length of the observation period. We conclude that even after 
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refraining from carrying out a formal statistical test (because 

of inherent theoretical issues; see Pötscher, 2002) and 

turning to a more informal approach as described in this 

paper, it may still be hard to find reliable evidence in favor or 

against stationarity unless the observation period is 

extremely long.  
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