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Abstract  This article presents a simple and effective procedure for the construction of socioeconomic status indices using 

principal component analysis. The methodological approach consists of obtaining principal components of the correlation 

matrix from a sample of random variables. For the calculation of the index, a weighted average of selected principal 

components is used. The proposed method is sufficiently general and can be applied to obtain other types of composite 

indices. To illustrate the versatility of the method, we provide in this article the calculation of a social vulnerability index for 

the municipalities of an area of the São Francisco river basin, Brazil, based on data from the demographic census. 
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1. Introduction 

In this article we propose a simple and effective procedure 

for the construction of socioeconomic status indices using 

principal component analysis. This type of index has aroused 

great interest in recent years, mainly for use in public policy 

design. It allows ranking and spatializing the socioeconomic 

status of a given locality, municipality, state, region or even 

an entire country. Once the socioeconomic status is ranked 

and spatialized, policies can be designed to target specific 

groups of individuals. 

Although the method we propose can be used to build 

other types of composite indices, the focus of this article   

is on the construction of socioeconomic status indices. 

According to [1], “socioeconomic status is the social 

standing or class of an individual or group. It is often 

measured as a combination of education, income and 

occupation” and “examinations of socioeconomic status 

often reveal inequities in access to resources, plus issues 

related to privilege, power and control”. 

According to the above definition, the socioeconomic 

status of individuals involves multiple dimensions. This 

characteristic allows the creation of different socioeconomic 

status indices, with specific purposes, in addition to the 

possibility of using different methods to construct them. 

Regarding these indices, [2] discuss what they are, what they 

are for and how they are constructed. [3], in turn, review 

different methods used to build socioeconomic status 

indices. 
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Regardless of the method used to build composite indices, 

it is important to consider issues related to choosing 

variables, preparing data or problems such as data clustering. 

However, the methods used in the construction of these 

indices in which the choice of the weights of the variables or 

sub-indices is made subjectively are subject to strong 

criticism. The principal component analysis method is not 

subject to this type of criticism. In fact, when applying this 

method, the weights of the variables or sub-indices emerge 

naturally. This feature and the ease of working with multiple 

variables has contributed to the increasing use of principal 

component analysis in the construction of composite indices. 

Composite indices that are constructed using principal 

component analysis are based on principal components 

drawn from the sample of variables, with each principal 

component being a linear combination of the original 

variables. Most authors who use principal component 

analysis to build socioeconomic status indices consider only 

the first principal component and its relationship to the 

original variables as a composite index (see, for example,  

[4] or [5]). Others consider only the first two principal 

components, but interpret them as two distinct composite 

indices. This is the case, for example, of [6], who developed 

the Institut National de Santé Publique du Québec (INSPQ) 

index; in their work, the first principal component comprises 

the weights of a “material-based” deprivation index and the 

second principal component comprises the weights of a 

“social-based” deprivation index. 

The purpose of this article is twofold: first, to propose the 

construction of socioeconomic status indices using principal 

component analysis that consider not only the first principal 

component, but a weighted average of the first principal 

components. As mentioned earlier, current literature on 

socioeconomic status indices generally considers only the 
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first principal component as a composite index; and second, 

to illustrate the proposed method with the calculation of a 

social vulnerability index for the municipalities of an area of 

the São Francisco river basin, Brazil, using data from the 

demographic census. 

We give the following reasons to justify constructing a 

socioeconomic status index as a weighted average of more 

than one principal component: i) in general, the first 

principal component explains only a small part of the 

variance of the original data. A composite index with more 

than one principal component would explain a greater 

portion of the variance of the original data; ii) the 

socioeconomic status of individuals involves multiple 

dimensions and hardly a single principal component could 

capture all these multiple dimensions. 

2. Principal Components and 
Socioeconomic Status Indices 

Principal component analysis is a statistical method that 

transforms a set of correlated variables into another set of 

uncorrelated variables called principal components (for more 

details on this method, see, for example, [7], [8], or [9]). 

These principal components are linear combinations of the 

original variables and must satisfy certain properties. In this 

transformation, information on data variability is preserved 

and their complexity is reduced. To obtain the principal 

components, the variance-covariance matrix or correlation 

matrix of a sample of random variables is used.  

Formally, suppose the vector 𝑥 ′ =  𝑥1, 𝑥2, … , 𝑥𝑛   
represents a set of n random variables with mean 𝜇′ =

 𝜇1, 𝜇2, … , 𝜇𝑛   and variance-covariance matrix . Let 

𝑧′ =  𝑧1, 𝑧2, … , 𝑧𝑛   be the random vector of the 

corresponding standardized variables, that is, 

𝑧𝑗 =
𝑥𝑗−𝜇 𝑗

𝜎𝑗
, 𝑗 = 1, 2, … , 𝑛, 

where 𝜎𝑗
2 = 𝑣𝑎𝑟 𝑥𝑗   represents the variance of variable 𝑥𝑗 , 

𝑗 = 1, 2, … , 𝑛. Note that the covariance between variables 𝑧𝑘  

and 𝑧𝑗 , 𝑐𝑜𝑣 𝑧𝑘 , 𝑧𝑗  , is related to the covariance between 

variables 𝑥𝑘  and 𝑥𝑗 , 𝑐𝑜𝑣 𝑥𝑘 , 𝑥𝑗  , as follows 

𝑐𝑜𝑣 𝑧𝑘 , 𝑧𝑗  =
1

𝜎𝑘𝜎𝑗
𝑐𝑜𝑣 𝑥𝑘 , 𝑥𝑗  , 𝑘, 𝑗 = 1, 2, … , 𝑛, 

that is, the variance-covariance matrix of z corresponds to the 

correlation matrix of x. In this article, the correlation matrix 

of x will be denoted by C. 

Although the principal components can be obtained from 

the variance-covariance matrix of x or the correlation matrix 

of x, they are not necessarily the same. This implies that the 

interpretation of the results must take into account the choice 

of the matrix that will be used to extract the principal 

components. [10] recommend using the correlation matrix to 

extract principal components when the scales of variables 

vary widely or they have very different variances. In this 

article, the analysis will be carried out with the correlation 

matrix, since the variables generally used to obtain 

socioeconomic status indices are diverse and with very 

different variances. 

In this sense, the principal components 𝑝1, 𝑝2, … , 𝑝𝑛  are 

associated with the random vector z, such that 

𝑝𝑗 = 𝑎1𝑗 𝑧1 + 𝑎2𝑗𝑧2 + ⋯+ 𝑎𝑛𝑗 𝑧𝑛 , 𝑗 = 1, 2, … , 𝑛, 

where 𝑎𝑖𝑗 , 𝑖, 𝑗 = 1, 2, … , 𝑛, are constants that satisfy certain 

conditions. It can be shown that the mean of 𝑝𝑗  is equal to 

zero, 𝜇𝑝𝑗 = 0 , and its variance is given by 𝑣𝑎𝑟 𝑝𝑗  =

𝑎𝑗
′𝐶𝑎𝑗 , where 𝑎𝑗

′ =  𝑎1𝑗 , 𝑎2𝑗 , … , 𝑎𝑛𝑗  . 

The principal components are obtained sequentially: first, 

𝑝1  is selected to capture as much of the variation in the 

original data as possible amongst all linear combinations of z 

such that 𝑎1
′ 𝑎1 = 1. Then 𝑝2  is selected to account for a 

maximum proportion of the remaining variance subject to 

not being correlated with the first principal component, 

𝑎2
′ 𝑎1 = 0, and 𝑎2

′ 𝑎2 = 1. Subsequent principal components 

are obtained in a similar manner. Formally, the jth principal 

component is the linear combination 𝑝𝑗 = 𝑎𝑗
′𝑧 that has the 

greatest variance subject to the following conditions 

𝑎𝑗
′𝑎𝑗 = 1, 

𝑎𝑘
′ 𝑎𝑗 = 0 (𝑘 > 𝑗). 

As it is an optimization problem with equality constraints, 

the Lagrange method can be used to obtain the solution (see, 

for example, [7]). The results of applying this method show 

that the vector of coefficients that defines the jth principal 

component, 𝑎𝑗 , is the eigenvector of the matrix C associated 

with its jth largest eigenvalue. Let 𝜆1, 𝜆2, … , 𝜆𝑛  be the n 

eigenvalues of C. It can be shown that 𝑣𝑎𝑟 𝑝𝑗  = 𝜆𝑗 , that is, 

the variance of the jth principal component is equal to the 

eigenvalue 𝜆𝑗 . It can also be shown that  𝑣𝑎𝑟 𝑝𝑗  =𝑛
𝑗=1

𝑗=1𝑛𝑣𝑎𝑟𝑧𝑗=𝑛. Thus, the proportion of the total variance of 

the standardized variables explained by the jth principal 

component is given by 

𝜆𝑗

𝑛
, 𝑗 = 1, 2, … , 𝑛, 

and the percentage of the total variance explained by the m 

first principal components, 1 < 𝑚 ≤ 𝑛, is given by 

𝜆1+𝜆2+⋯+𝜆𝑚

𝑛
× 100%. 

According to [11], “applied principal component analysis 

consists most often of a mere computation of eigenvectors 

and eigenvalues of a sample covariance matrix or correlation 

matrix” (p. 606). That’s largely what we are going to do in 

this article. To start, we summarize the main results of the 

principal component analysis related to eigenvalues and 

eigenvectors that will be useful for the construction of 

socioeconomic status indices in the following properties: 

(i) 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝑛 ; 

(ii)  𝜆𝑗 =  𝑣𝑎𝑟 𝑧𝑗  = 𝑛𝑛
𝑗=1

𝑛
𝑗=1 ; 

(iii) 𝑎𝑗
′𝑎𝑗 = 1, 𝑗 = 1, 2, … , 𝑛; 

(iv) 𝑎𝑘
′ 𝑎𝑗 = 0, 𝑗 ≠ 𝑘, 𝑘, 𝑗 = 1, 2, … , 𝑛. 
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As mentioned in the introduction, some authors consider 

only the first principal component, 𝑝1, as a socioeconomic 

status index and others consider the first two main 

components, 𝑝1 and 𝑝2, but as two distinct indices. In this 

article we propose the construction of a socioeconomic status 

index as a weighted average of the first m, 1 < 𝑚 ≤ 𝑛 , 

principal components. The idea behind this proposal is   

that the first few principal components will represent a 

substantial proportion of the variation in the original 

variables and can therefore be used to provide a convenient 

lower-dimensional summary of these variables. 

In this sense, we can construct a socioeconomic status 

index (SSI) as a linear combination of all the principal 

components as follows 

𝑆𝑆𝐼 = 𝑏1𝑝1 + 𝑏2𝑝2 + ⋯+ 𝑏𝑛𝑝𝑛 , 

where the weight vector, 𝑏′ =  𝑏1, 𝑏2, … , 𝑏𝑛  , with  𝑏𝑗 = 1, 

is given by 

𝑏(𝑛×1)
′ =  

𝑎𝑖𝑗

 𝑎𝑗
 

(𝑛×𝑛)

∙  
𝜆𝑗

 𝜆𝑗
 

(𝑛×1)

, 𝑖, 𝑗 = 1, 2, … , 𝑛.  (1) 

Note that the only information needed to construct the 

socioeconomic status index indicated above are the scores of 

the principal components and the values of the eigenvalues 

and eigenvectors obtained from the sample of random 

variables. From a practical point of view, it is usual to 

consider the first few principal components as long as they 

satisfy some criterion. In practical applications in the area of 

social sciences and humanities, [8] suggests choosing the 

first principal components until reaching at least 60% of the 

total variation of the original data. Assume that the first 𝑚∗, 

1 < 𝑚∗ < 𝑛, principal components satisfy the criterion of 

[8], then the socioeconomic status index is given by 

𝑆𝑆𝐼 = 𝑏1
∗𝑝1 + 𝑏2

∗𝑝2 + ⋯+ 𝑏𝑚∗
∗ 𝑝𝑚∗, 

where 𝑏∗′ =  𝑏1
∗, 𝑏2

∗, … , 𝑏𝑚∗
∗   represents the vector of 

corrected weights, such that  𝑏𝑗
∗ = 1𝑚∗

𝑗=1 . Note that if we 

were to use the original weights 𝑏1, 𝑏2, … , 𝑏𝑚∗ , we would 

have  𝑏𝑗 < 1𝑚∗

𝑗=1 , 1 < 𝑚∗ < 𝑛 , a result whose sum of 

weights is not equal to 1. To correct the weights, we use the 

following expression: 

𝑏𝑗
∗ =

1+ 𝑚∗−1 𝑏𝑗− 𝑏𝑞
𝑚∗

𝑞=1,𝑞≠𝑗

𝑚∗ , 𝑗 = 1, 2, … ,𝑚∗. 

This correction of the weights is fundamental to obtain a 

socioeconomic status index as a weighted average of the first 

principal components. To illustrate this correction of weights, 

suppose that the first three principal components were 

selected to construct a socioeconomic status index and   

that the original weights are 𝑏1, 𝑏2  and 𝑏3 . Applying the 

correction formula, knowing that 𝑚∗ = 3, we have 

𝑏1
∗ =

1+2𝑏1−𝑏2−𝑏3

3
; 

𝑏2
∗ =

1+2𝑏2−𝑏1−𝑏3

3
; 

𝑏3
∗ =

1+2𝑏3−𝑏1−𝑏2

3
. 

Note that, after correction, we have  𝑏𝑗
∗ = 13

𝑗=1 . It is 

important to keep in mind that this procedure for 

constructing a socioeconomic status index must take into 

account all variables and all observations of each variable. 

Suppose you want to build a socioeconomic status index 

from a sample of 10 variables (𝑗 = 1, 2, … , 10) and each 

variable contains 100 observations (𝑙 = 1, 2, … , 100). In this 

case, the principal components of each observation are 

calculated, that is, 

𝑝𝑗 ,𝑙 = 𝑎1𝑗𝑧1,𝑙 + 𝑎2𝑗𝑧2,𝑙 + ⋯+ 𝑎10𝑗𝑧10,𝑙 ,  

𝑗 = 1, 2, … , 10; 𝑙 = 1, 2, … , 100, 

where 𝑝𝑗 ,𝑙  represents the jth principal component of the lth 

observation. After calculating the 10 principal components 

associated with each to the 100 observations, the weights 

𝑏1, 𝑏2, … , 𝑏10 corresponding to the sample of variables can 

be obtained (see expression for determining the vector of 

weights b above). Suppose further that three principal 

components were selected to build the socioeconomic status 

index. In this case, this index is constructed for each 

observation of the sample of variables as follows: 

𝑆𝑆𝐼𝑙 = 𝑏1
∗𝑝1,𝑙 + 𝑏2

∗𝑝2,𝑙 + 𝑏3
∗𝑝3,𝑙 , 𝑙 = 1, 2, … , 100, 

where 𝑏𝑗
∗, 𝑗 = 1, 2, 3, represents the corrected weight, and 

𝑝𝑗 ,𝑙  denotes the principal component j associated with 

observation l of the sample of variables. After carrying out 

all the calculations, one obtains, as a result, an interval 

composed of 100 socioeconomic status indices (one index 

for each observation of the sample of variables) that can 

divided equally or using some other criterion to form the 

socioeconomic status classes (levels). This number of classes 

is defined according to the purpose of the study or to meet 

public policy interests. Commonly used arbitrary cut-off 

points classify the lowest 40% of individuals as 'poor', the 

highest 20% as 'rich' and the remainder as the 'average' group 

(see, for example, [12]).  

To avoid an eventual negative component in the weight 

vector, b, another possibility to define weights is to use the 

expression (2) given in the following proposition 

Proposition. If the 𝑛 × 𝑛 correlation matrix 𝐶 =  𝑐𝑖𝑗   is 

positive definite and the eigenvectors associated with C   

are such that 𝑎𝑗
′𝑎𝑗 = 1 , 𝑎𝑖𝑎𝑖

′ = 1  and 𝑎𝑖𝑎𝑗
′ = 0 , 𝑖 ≠ 𝑗 , 

𝑖, 𝑗 = 1, 2, … , 𝑛, then the weight vector b given by 

𝑏(𝑛×1)
′ =  

 𝑎𝑖𝑗  
2

𝑎𝑗
′ ∙𝑎𝑗

 
(𝑛×𝑛)

∙  
𝜆𝑗

𝑛
 

(𝑛×1)
, 𝑖, 𝑗 = 1, 2, … , 𝑛.  (2) 

satisfies the properties  𝑏𝑗 = 1𝑛
𝑗=1 , 𝑏𝑗 > 1, 𝑗 = 1, 2, … , 𝑛, 

and 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑛 = 1/𝑛. 

Proof. From the expression 𝐶𝑎𝑗 = 𝜆𝑗𝑎𝑗 , we have 

𝑎𝑖𝑗 +  𝑐𝑖𝑘𝑎𝑘𝑗 = 𝜆𝑗𝑎𝑖𝑗
𝑛
𝑘=1,𝑘≠𝑖 , 𝑖, 𝑗 = 1, 2,… , 𝑛 , and the 

eigenvalues are given by 𝜆𝑗 =  𝑎𝑖𝑗 +  𝑐𝑖𝑘𝑎𝑘𝑗
𝑛
𝑘=1,𝑘≠𝑖  /𝑎𝑖𝑗 , 

𝑖, 𝑗 = 1, 2, … , 𝑛. Substituting the expression for 𝜆𝑗  in (2), we 

have 𝑏𝑗 =
 𝑐𝑗𝑖  𝑎𝑖𝑎𝑖

′  𝑛
𝑖=1

𝑛
=

1

𝑛
. Since  𝑗 = 1, 2, … , 𝑛 is arbitrary, 

the proof is complete. 

If we use expression (2) to define the weight vector b, no 

correction is needed if 1 < 𝑚∗ < 𝑛 , where 𝑚∗  is the 

number of principal components used to build the composite 

index. In this case, 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑚∗ = 1/𝑚∗. 

Standard statistical software (such as STATA or SPSS) 

can be used to perform the necessary calculations and build 
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composite indices. In the illustration of the use of the 

proposed method in the next section, the statistical analysis 

was performed with the R software ([13]) and ArcGis®  ([14]) 

was used to spatialize the results (vulnerability classes) of 

the study area.  

3. Results: Social Vulnerability Index 

This section presents the calculation of a social 

vulnerability index for the municipalities of an area of the 

São Francisco River Basin as un illustration of the method 

proposed in this article. This basin has a drainage area of 

about 630 thousand square kilometers and includes 521 

municipalities belonging to six different states (Minas Gerais, 

Goiás, Bahia, Pernambuco, Alagoas e Sergipe) plus the 

Federal District. The basin has a population of over 16 

million inhabitants, with a large part of it, around 77% of the 

total, inhabiting urban areas. The São Francisco River is 

often called the “river of national integration” because it 

unites different physiographic regions of the country, 

especially the Southeast and Northeast.  

Due to its large extension and diversity, the São Francisco 

River Basin is divided into Upper, Middle, Sub-medium  

and Lower São Francisco. According to [15], taking 2014 as    

a reference, the shares of these regions in the Gross  

Domestic Product (GDP) of the basin are as follows: Upper 

São Francisco (86.6%), Middle São Francisco (4.9%), 

Sub-medium São Francisco (5.4%) and Lower São Francisco 

(3.1%). This distribution of GDP in the basin highlights the 

economic discrepancy between these regions, showing that 

most of the wealth is generated in the Upper São Francisco.  

To calculate the social vulnerability index, we considered 

only part of the Upper São Francisco region. This study area 

is equal to 58,204.65 square kilometers and comprises 105 

municipalities. Figure1 locates the São Francisco River basin 

in Brazil and also shows this study area. The São Francisco 

River originates in this selected area, more specifically in 

Serra da Canastra, in the central-western part of the state of 

Minas Gerais. This is a predominantly urban area and is 

home to various economic activities, such as steel production, 

mining, textile industry, chemical industry and industrial 

equipment. 

To calculate the social vulnerability index, we selected  

12 variables from the last demographic census ([16]). This 

selection of variables took into account the international 

literature and, in the Brazilian context, the work of [17]. 

These variables were classified into three categories: human 

capital, urban infrastructure and occupation/income and are 

listed below. 

Human capital 

  % of illiterate children from five to 14 years old 

  % of illiterate female heads of households 

  % of people aged 15 and above 

  Infant mortality (per 1,000 live births) 

 

 

Figure 1.  São Francisco River basin and study area 
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Urban infrastructure 

  % of dwellings with inadequate sewage disposal 

systems 

  % of dwellings without access to the general supply 

water network 

  % of families with an income of less than one minimum 

wage and with inadequate housing conditions 

  % of dwellings without access to the general electricity 

grid 

Occupation/income 

  % of people earning up to minimum wage 

  % of responsible people with no monthly nominal 

income 

  % of people without incomes of their own 

  % of families that depend on the income of older adults 

All variables are in percentages, except infant mortality. 

The percentages were obtained by dividing the value of  

each variable in the municipality by the population of the 

respective municipality. Note that for the calculation of the 

social vulnerability index we have 12 variables and 105 

observations for each variable. After preparing the data, the 

principal component analysis was carried out, first obtaining 

the correlation matrix of the variables. From the principal 

components extracted from the correlation matrix, we 

selected the first four that explain 70.89% of the variance of 

the original data and we used expression (2) to define     

the vector of weights in the construction of the social 

vulnerability index. 

The values of the social vulnerability index obtained from 

the sample of variables ranged from a minimum of 0.05244 

(Belo Horizonte) to a maximum of 0.313853 (Piedade dos 

Gerais). We divided the range of variation of this social 

vulnerability index equally into three classes, with break 

values equal to 0.140, 0.227 and 0.314. These vulnerability 

classes (or levels) were called “low” (variation from 0.052  

to 0.140), “moderate” (variation from 0.141 to 0.227), and 

“high” (0.228 to 0.314). The vulnerability results obtained 

for these different classes were spatialized for better 

visualization (see Figure 2). 

The municipalities classified as less socially vulnerable, 

according to our classification, are Belo Horizonte, Itaúna, 

Contagem, Nova Serrana, Pará de Minas and Sete Lagoas. 

On the other hand, the municipalities classified as the most 

vulnerable in the study area are Piedade dos Gerais, 

Itaverava, Rio Manso, Esmeraldas, Moeda, Desterro de 

Entre Rios, Felixlândia, Jeceaba, Quartel Geral and Serra da 

Saudade. The other municipalities in the study area belong to 

the moderate class of social vulnerability. Note that only ten 

municipalities out of the 105 considered in our study (9.52%) 

were classified as the most socially vulnerable. This result is 

consistent with the socioeconomic information available for 

the São Francisco River basin, especially those for the Upper 

São Francisco region.  

Once the social vulnerability of a given area or region is 

ranked and spatialized, public policies can be designed to 

target (directly or indirectly) specific groups of individuals. 

Another alternative way of using this type of information is 

to design differentiated policies considering simultaneously 

different groups of individuals. In this case, considering 

more than three classes of social vulnerability would allow a 

more detailed and accurate ranking. 

 

Figure 2.  Social vulnerability for the municipalities of an area of the São Francisco River basin 
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4. Conclusions  

In this article we present a simple and effective method for 

building socioeconomic status indices based on principal 

component analysis. The index is calculated as a weighted 

average of principal components selected from among those 

extracted from the correlation matrix of a sample of random 

variables. The calculation of a social vulnerability index for 

municipalities in an area of the São Francisco river basin, 

Brazil, using data from the demographic census was used to 

illustrate the method. 

The proposed method is sufficiently general and can be 

applied to obtain other types of composite indices and not 

just socioeconomic status indices. As the index obtained   

by the principal components analysis is based on a set     

of random variables, the choice of these variables is 

fundamental to obtain a reliable and useful index to meet the 

objectives that motivated its construction. In this sense, the 

set of selected variables must be sufficient to represent with 

some accuracy the indicator being measured, such as the 

socioeconomic status of individuals. In most cases, it is  

also necessary to prepare the data or do some transformation 

of variables before obtaining the correlation matrix.      

[18] discuss these and other issues associated with the 

construction of indices using principal component analysis. 

Finally, although the presentation of the proposed method 

was based on the correlation matrix to extract the principal 

components, the same procedure can be done considering the 

covariance-variance matrix of the original data. In this case, 

it is convenient that the variances of the original variables are 

close to each other. It is also possible to use other criteria  

for the selection of the first principal components in the 

construction of the composite index and not just the criterion 

presented in this article. 
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