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Abstract  One of the widely used approach for estimation of impact in experimental intervention is the Difference in 

Differences (DID) Regression which depends on assumptions that are often violated in real life. This study provides a 

Bayesian DID estimation alternative to the classical DID regression approach when the outcome variable is count. The 

performance of the two approaches was examined using simulated and real-life data. For the proposed Bayesian DID 

estimation approach, the distribution of the difference of differences of outcome among out those exposed to intervention 

(treatment group) and those not exposed (control group) before and after the intervention, was derived using the convolution 

process. The resulting distribution was a 4 parameter Skellam distribution. The likelihood of the Skellam distribution was 

combined with Gamma and Power priors independently to determine the posteriors. All the posterior distributions derived 

were intractable and parameter estimation was carried out using the Metropolis Hasting Algorithm. The impact estimates 

obtained from Bayesian DID estimation method using simulated data were closer to the true value and had lower Mean 

Squared Error than those obtained from classical DID regression approach. Result from Bayesian DID estimation approach 

with Power prior provided a realistic impact estimate with the lowest Mean Squared Error compared to other methods. This 

study revealed that impact estimated using classical DID regression overstate the reality. 
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1. Introduction 

In experimental interventions, decisions are made from 

analysis of panel data derived by collecting data from two or 

more time periods, before and within/after an intervention, 

from a group of individuals who were exposed to the 

intervention compared to a similar group of individuals  

that were not exposed to the intervention. Experimental 

intervention provides the approach for determining the 

“Average treatment effect” and the “Average effect of 

treatment on the treated”. The average treatment effect is  

the average impact of the program across all the subjects   

in the population of interest [1]. Estimation of the average 

treatment effect otherwise known as impact is often 

conducted using  classical approaches. One  of the widely  
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adopted approach is the Difference in Difference Regression.  

Bayesian estimation is similar to maximum likelihood in 

the ability of these two methods to estimate random and 

fixed variables [2]. However, it differs from maximum 

likelihood in that the posterior probability is maximized 

rather than likelihood function. This is given by the function 

of the likelihood multiplied by the prior distribution of    
the posterior probability. In this case, Bayesian estimate 

addresses the complexities of maximum likelihood. 

Bayesian estimate bypasses the need for the design of 

likelihood function and have computational tools that can 

essentially be used for simple statistical techniques. 

Bayesian largely depends on all useful information and 

utilizes prior information in its estimations. Therefore, this 

method is most ideal when prior information is available 

compared to maximum likelihood which ignores prior 

information in its parameters. 

Bayesian method is not commonly used in drawing 

inferences in experimental interventions due to two major 

reasons. First, except for the simplest applications, Bayesian 
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analyses are computationally difficult and were infeasible 

until fast computers and simulation-based methods were 

developed. Second, it can be difficult to settle on a prior  
that is widely accepted [3]. However, the advantages of 

Bayesian approach over classical approach are well 

documented in literatures [3-5]. A previous study has 

presented the procedure for estimating impact using the 

Bayesian Difference in Difference estimation alternative to 

the Bayesian regression and classical regression methods 

when the outcome variable is continuous and from normal 

distribution [6]. This paper describes the procedure for 

estimating impact using the Bayesian Difference in 

Difference estimation alternative to the Bayesian regression 

and classical regression methods when the outcome of 

interest is count and from Poisson distribution.  

2. Material and Method 

Suppose events are occurring randomly and uniformly in 

time. The events occur with a known average. Let Y be the 

number of events occurring in a fixed period. Then, Y will 

have a Poisson distribution with parameter 𝜃 such that, 

 𝑃 𝑦 =
𝜃𝑦 𝑒−𝜃

𝑌!
,     𝑦 = 0,1,2,3, … (1) 

The intensity parameter, 𝜃 , represents the expected 

number of occurrences in a fixed period i.e. 𝜃 = 𝐸[𝑌]. It is 

also the variance of the count: 𝜃 = 𝑉𝑎𝑟 𝑌 ⇒ 𝜃 > 0.  

2.1. Classical Difference in Differences Regression 

Approach  

Let 𝑦𝑖𝑗𝑡  be the count of events and follows Poisson 

distribution with parameter 𝜃. If we have two independent 

groups, treatment and control, before program 

implementation, denote count of events in the control group 

and the treatment group as 𝑦0𝑗0  and 𝑦1𝑗0 , with means 

𝑦 0𝑗0 = 𝑦 1𝑗0  respectively, and at the end of program 

implementation, we denote the count of events as 𝑦0𝑗1 and 

𝑦1𝑗1, with means 𝑦 0𝑗1 ≤ 𝑦 1𝑗1 respectively.  

If: 

𝑃 =  
1 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝

0 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝 
  

and  

𝑇 =  
1 𝐹𝑜𝑙𝑙𝑜𝑤 𝑢𝑝

0 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒  
  

𝑦𝑖𝑗𝑡 ∼ 𝑃𝑜𝑖𝑠(𝜃) 

From the generalized linear model 

𝑙𝑜𝑔𝑌𝑖𝑗𝑡 = 𝑊𝜃; ∀𝑃, 𝑇 ∈ 𝑊 

To determine the impact of the intervention, the model to 

estimate is:  

 log 𝑌𝑖𝑗𝑡 = 𝜃0 + 𝜃1𝑃𝑖𝑡 + 𝜃2𝑇𝑖𝑗 + 𝜃3𝑃𝑖𝑡𝑇𝑖𝑗 + 𝜁𝑖𝑗𝑡  (2) 

Where, P is the Program status, T is time, 𝜃0, 𝜃1, 𝜃2 and 

𝜃3  are model parameters and 𝜃3  is the coefficient of the 

interaction between Program status and Time, which is the 

impact parameter.  

In treatment group  

𝑃𝑖 = 1 

𝑇𝑗 = 0 

- At Baseline:  

 log 𝑌1𝑗0 = 𝜃0 + 𝜃1 + 0 + 0 + 𝜁1𝑗0 (3) 

𝑇𝑗 = 1 

- At Follow-up:  

 log 𝑌1𝑗1 = 𝜃0 + 𝜃1 + 𝜃2 + 𝜃3 + 𝜁1𝑗1 (4) 

Taking the difference (4) and (3):  

  log 𝑌1𝑗1 − log 𝑌1𝑗0 = 𝜃2 + 𝜃3 +  𝜁1𝑗1 − 𝜁1𝑗0  (5) 

 𝐸 log 𝑌1𝑗1 − log 𝑌1𝑗0 = 𝜃2 + 𝜃3 (6) 

In control group  

𝑃𝑖 = 0 

𝑃𝑖 = 0 

- At Baseline:  

 log 𝑌0𝑗0 = 𝜃0 + 0 + 0 + 0 + 𝜁0𝑗0 (7) 

𝑇𝑗 = 1 

- At Follow-up:  

 log 𝑌0𝑗0 = 𝜃0 + 𝜃2 + 0 + 𝜁0𝑗1 (8) 

Taking the difference:  

  log 𝑌0𝑗1 − log 𝑌0𝑗0 = 𝜃2 +  𝜁0𝑗1 − 𝜁0𝑗0  (9) 

 𝐸 log 𝑌0𝑗1 − log 𝑌0𝑗0 = 𝜃2 (10) 

Now, the difference in differences is given by  

𝐸 log 𝑌1𝑗1 − log 𝑌1𝑗0|𝑃 = 1  

 −𝐸 log 𝑌0𝑗1 − log 𝑌0𝑗0 |𝑃 = 0 =  𝜃2 + 𝜃3 − 𝜃2 (11) 

𝐸 log 𝑌1𝑗1 − log 𝑌1𝑗0|𝑃 = 1  

 −𝐸 log 𝑌0𝑗1 − log 𝑌0𝑗0 |𝑃 = 0 =  𝜃2 + 𝜃3 − 𝜃2 = 𝜃3(12) 

𝐸 log 𝑌1𝑗1 − log 𝑌1𝑗0|𝑃 = 1  

 −𝐸 log 𝑌0𝑗1 − log 𝑌0𝑗0 |𝑃 = 0 = 𝜃3 (13) 

Therefore,  

 𝜃3 = 𝐸  log  
  𝑌1𝑗1−𝑌1𝑗0  𝑃=1 

  𝑌0𝑗1−𝑌0𝑗0  𝑃=0 
    (14) 

𝐸 𝜁1𝑗1 − 𝜁1𝑗0|𝑃 = 1 = 0 

And 

𝐸 𝜁0𝑗1 − 𝜁0𝑗0|𝑃 = 0 = 0 

The percentage transformation of the impact is obtained 

by 

 exp 𝜃3 − 1 (15) 

Thus, the difference in difference estimator 𝜃3  directly 

approximates the causal treatment effect where exp 𝜃3 − 1 

is the transformation from log points to percentage points 

[7].  
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2.2. Bayesian Difference in Differences Regression 

Approach  

The Bayesian equation provides a probability distribution 

of 𝜃 given observations of the data 𝑦𝑦. In this equation, 

𝑝(𝑦)  is the sum (or integral) of 𝑝 𝜃 𝑝 𝑦|𝜃  over all 

possible values of 𝜃. 

Therefore, 

 𝑝 𝜃|𝑦 =
𝑝 𝑦|𝜃 𝑝 𝜃 

𝑝 𝑦 
=

𝑝 𝑦|𝜃 𝑝 𝜃 

 𝑝 𝑦|𝜃 𝑝 𝜃 𝑑𝜃
 (16) 

Where:  

𝑝 𝜃|𝑦  denote the posterior distribution of the parameter 

𝑝 𝑦|𝜃 = 𝐿 𝜃  is the likelihood function 𝑝 𝜃  is the prior 

distribution of which express our beliefs about the 

parameters, before observing the data 

𝑝 𝑦  is called the marginal likelihood and plays the role 

of the normalizing constant of the density of the posterior 

distribution. 

For  

𝑌𝑖𝑗𝑡 ∼ 𝑃𝑜𝑖𝑠 𝜃  

If there exist a conjugate prior  

𝜃 ∼ 𝐺(𝑎, 𝑏) 

Given that the likelihood of y is 

 ℓ 𝑦 =
𝜃 𝑦 𝑒−𝑛𝜃

 𝑦!
 (17) 

If the prior distribution is given as 

 𝜋 𝑦 =
𝜃𝑎−1

𝑏𝑎 Γ 𝑎 
𝑒−

𝜃

𝑏  (18) 

Then the posterior distribution is derived as follows: 

 𝜋 𝜃|𝑦 =
𝜃 𝑦 𝑒−𝑛𝜃

 𝑦!
×

𝜃𝑎−1

𝑏𝑎 Γ 𝑎 
𝑒−

𝜃

𝑏  (19) 

 𝜋 𝜃|𝑦 =
𝜃𝑎+ 𝑦−1𝑒

−
𝜃 𝑛𝑏 +1 

𝑏

𝑏𝑎 Γ 𝑎  𝑦!
 (20) 

 𝜃|𝑦 = 𝐺  𝑎 +  𝑦 ,
𝑏

𝑛𝑏 +1
  (21) 

Therefore,  

 𝑎∗ = 𝑎 +  𝑦 (22) 

= 𝑎 + 𝑛𝑦  

 𝑏∗ =
𝑏

𝑛𝑏 +1
 (23) 

2.2.1. Choice of Prior 

In many observational and experimental studies with 

count response data, choice of prior is often subjective [8,9]. 

However, use of variants of normal distribution priors    

for Poisson response variable is very popular and widely 

adopted. [10,11]. This study explored power, gamma priors 

and Uniform prior to estimate average treatment effect in the 

Bayesian context. 

Using Power prior, suppose the information on number of 

months of breastfeeding from a past infant and young child 

feeding intervention is denoted by 𝑌0 and follows Poisson 

distribution with 𝑛0 such that: 

𝑌0 ∼ 𝑃𝑜𝑖𝑠 𝜃   

𝜃 ∼ 𝐺 𝑎∗, 𝑏∗   

𝜃|𝑦0 ∼ 𝐺  𝑛0𝑦 0 + 𝑎∗,
𝑏∗

𝑛0𝑏∗+1
   

𝑎 = 𝑛0𝑦 0 + 𝑎∗  

𝑏 =
𝑏∗

𝑛0𝑏∗+1
  

If a similar intervention is carried out recently and the 

number of months of breastfeeding denoted by 𝑌 , is 

observed to follow Poisson distribution, that is: 

𝑌 ∼ 𝑃𝑜𝑖𝑠 𝜃   

𝜃 ∼ 𝐺 𝑎, 𝑏   

𝜃|𝑦 ∼ 𝐺  𝑛𝑦 + 𝑎,
𝑏

𝑛𝑏 +1
   

From the Exponential family of distribution: 

log 𝑌 = 𝑊𝜃, where, 

𝜃 =  𝑊 ′𝑊 −1𝑊′ log 𝑌   

and W is a matrix of covariates.  

Let 𝑦𝑖𝑗𝑡  be from Poisson distribution 

 ℓ 𝑦 =
𝑒𝑦 ′ 𝑊𝜃 𝑒−𝑛𝑒𝑊𝜃

 𝑦!
 (24) 

and  

 𝜋 𝜃 =  2𝜋𝜎2 −
1

2𝑒
−

1

2𝜎2  𝜃−𝜇 2
 (25) 

 𝜋 𝜃|𝑦 =
𝑒𝑦 ′ 𝑊𝜃 𝑒−𝑛𝑒𝑊𝜃

 𝑦!
×  2𝜋𝜎2 −

1

2𝑒
−

1

2𝜎2  𝜃−𝜇 2
 (26) 

For a particular event outcome 𝛿1, Suppose we have an 

historical data 𝛿0 from that same event 

𝛿1 ∈  𝑌1, 𝑊1, 𝑛1  

𝛿0 ∈  𝑌0, 𝑊0, 𝑛0  

Suppose we apply Bayesian method in analyzing 𝛿0, 

 𝜋 𝜃|𝛿0 = 𝑙 𝛿0, 𝜃 × 𝜋 𝜃  (27) 

which is a power prior for 𝜃 

In analyzing the present data using the historical model in 

then,  

 𝜋 𝜃|𝛿1, 𝛿0 ∼ 𝑙 𝜃, 𝛿1 × 𝜋 𝜃|𝛿0  (28) 

 𝜋 𝜃|𝛿1, 𝛿0 ∼ 𝑙 𝜃, 𝛿1  𝑙 𝜃, 𝛿0 𝑎 × 𝜋 𝜃   (29) 

where 𝑎 is the weight of the historical data.  

If one historical data is used, then 𝑎 = 1 

𝑙 𝜃, 𝛿1 =  𝑓(𝑤)

𝑅𝑊

 

Note  

In this study, the historical data, 𝑌0 ∼ 𝑃𝑜𝑖𝑠(𝑊0𝜃), and 

𝜃 ∼ 𝑁(𝑏, 𝐵) 

𝑌0 ∼ 𝑃𝑜𝑖𝑠(𝑊0𝜃) 

𝐸 𝑌0|𝛿0 = 𝑒𝑊0𝜃  

 𝑓 𝑌0 =
1

𝑌0!
 𝑒 𝑊0𝜃 𝑦0 × 𝑒−𝑒𝑊 0𝜃

  (30) 

The likelihood is, 

 𝑙 𝑌0, 𝜃 =  
1

𝑌0!
 𝑒 𝑊0𝜃 𝑦0 × 𝑒−𝑒𝑊 0𝜃

 𝑝=0  (31) 
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And the prior is 

 𝜋 𝜃 = (2𝜋𝜎2)−1
2 × 𝑒

−
1

2𝜎2(𝜃−𝑏)2
  (32) 

Therefore, the posterior distribution which is the power 

prior is given by: 

𝜋 𝜃|𝑌0 = 

 
1

𝑌0!
 𝑒 𝑊0𝜃 𝑦0 × 𝑒−𝑒𝑊 0𝜃

 𝑝=0 (2𝜋𝜎2)−1
2 × 𝑒

−
1

2𝜎2(𝜃−𝑏)2
(33) 

where 𝑎 = 1 

For the present data 𝛿1 also 𝑌1 ∼ 𝑝𝑜𝑖𝑠𝑠𝑜𝑛(𝑊𝜃) 

 𝑓 𝑌1, 𝜃 =
1

𝑌1!
 𝑒 𝑊𝜃 𝑦1 × 𝑒−𝑒  𝑊𝜃  

  (34) 

with likelihood 

 𝑙 𝑌1, 𝜃 =  
1

𝑌1!
 𝑒 𝑊𝜃 𝑦1 × 𝑒−𝑒𝑊𝜃

 𝑝=0  (35) 

The posterior distribution using power prior is given by: 

𝜋 𝜃|𝑌1, 𝑌0 =  
1

𝑌1!
 𝑒 𝑊𝜃 𝑦1 × 𝑒−𝑒𝑊𝜃

 ×𝑗 =1   

 
1

𝑌1!
 𝑒 𝑊0𝜃 𝑦0 × 𝑒−𝑒𝑊 0𝜃

 𝑝=0  2𝜋𝜎2 −1
2 ×  

 𝑒
−

1

2𝜎2(𝜃−𝑏)2
 (36) 

Note: 𝑝 = 1,2, … , 𝑛0, 𝑗 = 1,2, … , 𝑛 and 𝑝 ≠ 𝑗  

The posterior distribution is intractable since the prior is a 

non-conjugate prior. Estimation of the posterior distribution 

was carried out using Metropolis Hasting Algorithm. 

2.2.2. Posterior Distribution Using Gamma Prior 

The prior information 𝜋(𝜃) is from a Gamma with, 

𝜃 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

𝜋 𝜃 =
1

𝑏𝑎Γ 𝑎 
𝜃𝑏−1𝑒−

𝜃
𝑏  

The posterior distribution is: 

𝜋 𝜃 𝑦, 𝑊 ∝ 𝑝 𝑦 𝑊𝜃 × 𝜋 𝜃  

That is, 

𝜋 𝜃 𝑦, 𝑊 =  
1

𝑌1!
 𝑒 𝑊𝜃 𝑦1 × 𝑒−𝑒𝑊𝜃

 

𝑗 =1

×
1

𝑏𝑎Γ 𝑎 
𝜃𝑏−1𝑒−

𝜃
𝑏  

Therefore, the posterior distribution for 𝜃  using 

𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

𝜋 𝜃 𝑦, 𝑊 =
𝜃𝑏−1

𝑏𝑎Γ 𝑎 Γ 𝑌 + 1 
𝑒

− 
𝜃
𝑏

+𝑒𝑊𝜃 − 𝑊 ′ 𝜃 𝑛𝑦  
 

The posterior distribution derived is intractable. 

Estimation of the posterior distribution will be carried out 

using Metropolis Hasting Algorithm 

2.2.3. Posterior Distribution Using Uniform Prior      

(Non Informative Prior) 

Recall that:  

𝑌 ∼ 𝑃𝑜𝑖𝑠(𝜃)  

And 

𝐸 𝑦 = 𝑉 𝑦 = 𝜃  

So, the regression model is 

𝐸 𝑦 = 𝜃 = exp 𝑊𝜃   

 𝑝 𝑦|𝜃, 𝑊 =
𝑒  𝑊𝜃  𝑦 ×𝑒−𝑒𝑊𝜃

𝑦!
  (37) 

𝜃 ∼ 𝑈 𝑎, 𝑏  

𝑝 𝜃 =
1

𝑏 − 𝑎
 

The posterior distribution is, 

 𝑝 𝜃|𝑦 =
𝑒  𝑊𝜃  𝑦 ×𝑒−𝑒𝑊𝜃

𝑦!
×

1

𝑏−𝑎
 (38) 

Since 𝑈(0,1)  

 𝑝 𝜃|𝑦 =
𝑒  𝑊𝜃  𝑦 ×𝑒−𝑒𝑊𝜃

𝑦!
× 1 (39) 

which is the posterior distribution of the impact using 

uniform prior. 

2.2.4. Posterior Distribution Using Beta Prior         

(Non Informative Prior) 

Given that, 

𝜃 ∼ 𝐵𝑒𝑡𝑎 𝑎, 𝑏  

 𝜋 𝜃 =
1

𝐵 𝑎,𝑏 
𝜃𝑎−1 1 − 𝜃 𝑏−1 (40) 

The posterior distribution is, 

 𝜋 𝜃|𝑦 =
𝑒  𝑊𝜃  𝑦 ×𝑒−𝑒𝑊𝜃

𝑦!
×

1

𝐵 𝑎,𝑏 
𝜃𝑎−1 1 − 𝜃 𝑏−1 (41) 

Since 𝐵𝑒𝑡𝑎 1,1  and 𝑈𝑛𝑖𝑓(0,1) 

 𝜋 𝜃|𝑦 =
𝑒  𝑊𝜃  𝑦 ×𝑒−𝑒𝑊𝜃

𝑦!
× 1 (42) 

which is the posterior distribution of the impact using beta 

prior. 

2.3. The Bayesian Difference in Differences Estimation 

Approach  

Define: 

𝑌 – Count variable from Poisson distribution describing 

the outcome of interest,  

Such that:  

𝑌 =  𝑌10 , 𝑌11 , 𝑌00 , 𝑌01  

where: 

𝑌10 – outcome of interest before intervention among those 

exposed to intervention (baseline) 

𝑌11 – outcome of interest after intervention among those 

exposed to intervention (follow-up) 

𝑌00  – outcome of interest before intervention among those 

not exposed to intervention (baseline) 

𝑌01  – outcome of interest after intervention among those 

not exposed to intervention (follow-up 

The difference in difference denoted by d is given by [1] 

(Lance et al., 2014): 
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𝑑 =   𝑌11 − 𝑌10 −  𝑌01 − 𝑌00   

where, 

𝑑 – Difference in Difference 

Recall that 𝑌  – count random variable from Poisson 

distribution describing the outcome of interest and 𝜃 is the 

impact parameter. 

Among those exposed to intervention:  

 𝑃 𝑌𝑖𝑡 =
𝜃

𝑖

𝑦 𝑖𝑡

𝑦𝑖 !
𝑒−𝜃𝑖 ;  𝑖 = 0,1 (43) 

where  

𝑖 =  
1 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑔𝑟𝑜𝑢𝑝
0 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 𝑔𝑟𝑜𝑢𝑝 

  

At baseline, 

 𝑃 𝑌𝑖0 =
𝜃

𝑖0

𝑦 𝑖0

𝑦𝑖0!
𝑒−𝜃𝑖0 ;  𝑦𝑖0 = 0,1,2, …  (44) 

At endline,  

 𝑃 𝑌𝑖1 =
𝜃

𝑖1

𝑦 𝑖1

𝑦𝑖1!
𝑒−𝜃𝑖1 ;  𝑦𝑖1 = 0,1,2, …  (45) 

The joint distribution is given as: 

 𝑃 𝑌𝑖1, 𝑌𝑖0 =   
𝜃

𝑖1

𝑦 𝑖1

𝑦𝑖1!
𝑒−𝜃𝑖1

𝜃
𝑖0

𝑦 𝑖0

𝑦𝑖0!
𝑒−𝜃𝑖0∞

𝑦𝑖1=0
∞
𝑦𝑖0=0  (46) 

Let 𝛿1 = 𝑌11 − 𝑌10  

such that: 𝛿1 + 𝑌10 = 𝑌11 

Therefore, 

 𝑃 𝑌11 − 𝑌10 =    
𝜃11

𝑦11

𝑦11 !
𝑒−𝜃11𝛿1+𝑌10

𝑦11 =0  
𝜃10

𝑦10

𝑦10 !
𝑒−𝜃10∞

𝑦10 =0 (47) 

Substitute 𝛿1 + 𝑌10 for 𝑌11 

 𝑃 𝑌10 =  
𝜃1

𝛿1+𝑦10

 𝛿1+𝑦10 !
𝑒−𝜃11 .

𝜃10
𝑦10

𝑦10 !
𝑒−𝜃10∞

𝑦10 =0
 (48) 

i.e.  

 𝑃 𝑌10 = 𝑒−𝜃11−𝜃10  𝜃11
𝛿1 𝜃10

𝑦10 𝜃11
𝑌10

 𝛿1+𝑦10 !𝑦10 !
∞
𝑦10 =0  (49) 

which is a modification of the Bessel function, 

 𝐽𝑛 𝑥 =  
𝑥2𝑟+𝑛

22𝑟+𝑛  𝑛+𝑟 !𝑟!
∞
𝑥=0  (50) 

Hence, 

 
𝜃11

𝜃10
 

𝛿1
2

𝐽𝛿1
 2 𝜃11𝜃10 =   𝜃11 𝛿1

 𝜃11𝜃10 𝑦10

 𝑦10 +𝑑1 !𝑦10 !
𝑑𝑦10

∞
𝑦10 =0

 

(51) 

Therefore, the distribution of the difference in outcome 

before and after intervention among the intervention group 

is: 

 𝑃 𝛿1 = 𝑒−𝜃11−𝜃10  
𝜃11

𝜃10
 

𝛿1
2

𝐽𝛿1
 2 𝜃11𝜃10 ; 𝛿1

 (52) 

which is a Skellam distribution, where, 

𝐽𝛿1
 2 𝜃11𝜃10 =  

  𝜃11𝜃10 
𝛿1+2𝑦10

 𝛿1 + 𝑦10 ! 𝑦10!

∞

𝛿1=0

 

Let 𝛿0, denote the difference in outcome before and after 

intervention among the comparison group. It follows from 

(51) that:  

 𝑃 𝛿0 = 𝑒−𝜃01−𝜃00  
𝜃01

𝜃00
 

𝛿0
2

𝐽𝛿0
 2 𝜃01𝜃00  (53) 

where, 

𝐽𝛿0
 2 𝜃01𝜃00 =  

  𝜃01𝜃00 
𝛿0+2𝑦00

 𝛿0 + 𝑦00 ! 𝑦00!

∞

𝛿1=0

 

Therefore, if 𝐼 denote difference in difference such that: 

𝐼 = 𝛿1 − 𝛿0 and substitute 𝛿1 = 𝐼 + 𝛿0 in (52) 

Then,  

𝑃 𝐼 =  
 𝑒−𝜃11−𝜃10  

𝜃11

𝜃10
 

𝛿1
2

𝐽𝛿1
 2 𝜃11𝜃10 

𝐼+𝛿0
𝛿1=0

𝑒−𝜃01−𝜃00  
𝜃01

𝜃00
 

𝛿0
2

𝐽𝛿0
 2 𝜃01𝜃00 

∞
𝛿0=−∞ (54) 

𝑃 𝐼 =  
𝑒−𝜃11−𝜃10  

𝜃11

𝜃10
 

𝐼+𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 

𝑒−𝜃01−𝜃00  
𝜃01

𝜃00
 

𝛿0
2

𝐽𝛿0
 2 𝜃01𝜃00 

∞
𝛿0=−∞  (55) 

𝑃 𝐼 =  
𝑒−𝜃11−𝜃10−𝜃01−𝜃00  

𝜃11

𝜃10
 

𝐼+𝛿0
2

 
𝜃01

𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 

∞
𝛿0=−∞  (56) 

Therefore, the distribution of the difference of differences 

is given by 

𝑃 𝐼 = 𝑒−𝜃11−𝜃10−𝜃01−𝜃00  
𝜃11

𝜃10
 

𝐼
2

 

   
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞

 (57) 

where: 

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 =  

  𝜃01𝜃00 
𝐼+𝛿0+2𝑦10

 𝐼 + 𝛿0 + 𝑦10 ! 𝑦10!

∞

𝛿1=0
 

and 

𝐽𝛿0
 2 𝜃01𝜃00 =  

  𝜃01𝜃00 
𝛿0+2𝑦00

 𝛿0 + 𝑦00 ! 𝑦00!

∞

𝛿0=0
 

Hence, the distribution of the difference in difference for 

count outcome from Poisson distribution is a 4-Parameter 

Skellam distribution with mean 

𝐸 𝐼 = 𝜃11 − 𝜃10 − 𝜃01 + 𝜃00 

And variance  

𝑉 𝐼 = 𝜃11 + 𝜃10 + 𝜃01 + 𝜃00 

The likelihood of 𝐼 

 𝐿 𝐼 =  𝐼𝑖𝑗𝑡
𝑛
𝑗 =1  (58) 

 

𝐿 𝐼 =    
𝜃11

𝜃10
 

 𝐼

2
𝑒−𝜃11−𝜃10−𝜃01−𝜃00   𝑛

𝑗 =1

×    
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞  

(59) 
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𝐿 𝐼 =  
𝜃11

𝜃10
 

 𝐼

2
𝑒−𝜃11−𝜃10−𝜃01−𝜃00  

ln    
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00  ∞
𝛿0=−∞

(60) 

For  

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 =  

  𝜃01𝜃00 
𝐼+𝛿0+2𝑦10

 𝐼 + 𝛿0 + 𝑦10 ! 𝑦10!

∞

𝛿1=0
 

and  

𝐽𝛿0
 2 𝜃01𝜃00 =  

  𝜃01𝜃00 
𝛿0+2𝑦00

 𝛿0 + 𝑦00 ! 𝑦00!

∞

𝛿0=0
 

Therefore, 

𝐿 𝐼 =  
𝜃11

𝜃10
 

 𝐼

2
𝑒−𝜃11−𝜃10−𝜃01−𝜃00   

𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2∞

𝛿0=−∞   

𝐿 𝐼 =  
𝜃11

𝜃10
 

 𝐼

2
𝑒−𝜃11−𝜃10−𝜃01−𝜃00   

𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2∞

𝛿0=−∞   

 
  𝜃01𝜃00 

𝐼+𝛿0+2𝑦10

 𝐼+𝛿0+𝑦10 !𝑦10 !

∞
𝛿1=0 ×  

  𝜃01𝜃00 
𝛿0+2𝑦00

 𝛿0+𝑦00 !𝑦00 !

∞
𝛿0=0   

2.3.1. Posterior distribution using Gamma Prior  

The prior distribution for the 𝜃 ∼ 𝐺𝑎𝑚𝑚𝑎(𝑎𝑖𝑡 , 𝑏𝑖𝑡 ) 

 𝜋 𝜃𝑖𝑡 =
𝜃𝑖𝑡

𝑏
𝑖𝑡

𝑎 𝑖𝑡 Γ 𝑎𝑖𝑡  
𝑒

−
𝜃𝑖𝑡
𝑏𝑖𝑡  (61) 

and, these are: 

 𝜋 𝜃11 =
𝜃11

𝑏11
𝑎11 Γ 𝑎11 

𝑒
−

𝜃11
𝑏11  (62) 

 𝜋 𝜃10 =
𝜃10

𝑏10
𝑎10 Γ 𝑎10 

𝑒
−

𝜃10
𝑏10  (63) 

 𝜋 𝜃01 =
𝜃01

𝑏01
𝑎01 Γ 𝑎01 

𝑒
−

𝜃01
𝑏01  (64) 

 𝜋 𝜃00 =
𝜃00

𝑏00
𝑎00 Γ 𝑎00 

𝑒
−

𝜃00
𝑏00  (65) 

The joint prior distribution is: 

 𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00 = 𝜋 𝜃11 𝜋 𝜃10 𝜋 𝜃01 𝜋 𝜃00  (66) 

Given that, 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 

 𝐿 𝐼|𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  (67) 

Such that  

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00 =
𝜃11𝜃10𝜃01𝜃00

𝑏11
𝑎11 𝑏10

𝑎10 𝑏01
𝑎01 𝑏00

𝑎00      (68) 

×
𝑒

−
𝜃11
𝑏11 𝑒

−
𝜃10
𝑏10 𝑒

−
𝜃01
𝑏01 𝑒

−
𝜃00
𝑏00

Γ 𝑎11 Γ 𝑎10 Γ 𝑎01 Γ 𝑎00 
  

and the posterior distribution is:  

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 = 𝑛  
𝜃11

𝜃10
 

 𝐼

2
𝑒−𝑛 𝜃11 +𝜃10 +𝜃01 +𝜃00   

×   
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞

  

× 𝜃11𝜃10𝜃01𝜃00𝑒
− 

𝜃11
𝑏11

+
𝜃10
𝑏10

+
𝜃01
𝑏01

+
𝜃00
𝑏00

   

 × 𝜃11𝜃10𝜃01𝜃00𝑒
− 

𝜃11
𝑏11

+
𝜃10
𝑏10

+
𝜃01
𝑏01

+
𝜃00
𝑏00

  (69) 

The posterior distribution derived is intractable. 

Estimation of the posterior distribution will be carried out 

using Metropolis Hasting Algorithm.  

2.3.2. Posterior Distribution Using Normal Prior  

Given that: 

 𝜃𝑖𝑡 ∼ 𝑁(𝜃 𝑖𝑡 , 𝜏𝑖𝑡 ) (70) 

The prior distribution: 

 𝜋 𝜃𝑖𝑡 =  2𝜋𝜏𝑖𝑡
2  −

1

2𝑒
−

1

2𝜏𝑖𝑡
2  𝜃𝑖𝑡 −𝜃 𝑖𝑡  

2

 (71) 

is given by: 

 𝜋 𝜃11 =  2𝜋𝜏11
2  −

1

2𝑒
−

1

2𝜏11
2  𝜃11−𝜃 11 

2

 (72) 

 𝜋 𝜃10 =  2𝜋𝜏10
2  −

1

2𝑒
−

1

2𝜏10
2  𝜃10−𝜃 10 

2

 (73) 

 𝜋 𝜃01 =  2𝜋𝜏01
2  −

1

2𝑒
−

1

2𝜏01
2  𝜃01−𝜃 01 

2

 (74) 

 𝜋 𝜃00 =  2𝜋𝜏00
2  −

1

2𝑒
−

1

2𝜏00
2  𝜃00−𝜃 00 

2

 (75) 

The joint prior distribution is 

 𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00 = 𝜋 𝜃11 𝜋 𝜃10 𝜋 𝜃01 𝜋 𝜃00  (76) 

Given that, 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00 =  24𝜋4𝜏11
2 𝜏10

2 𝜏01
2 𝜏00

2  −
1
2 

 
𝑒

−
1

2
  

𝜃11−𝜃 11
𝜏11

 
2

+ 
𝜃10−𝜃 10

𝜏10
 

2

+ 
𝜃01−𝜃 01

𝜏01
 

2

+ 
𝜃00−𝜃 00

𝜏00
 

2

  (77) 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 

 𝐿 𝐼|𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  (78) 

Such that: 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 𝑛  
𝜃11

𝜃10
 

 𝐼
2

 

× 𝑒
−𝑛 𝜃11 +𝜃10 +𝜃01 +𝜃00 +

1
2  

𝜃11−𝜃 11
𝜏11

 

2

+ 
𝜃10−𝜃 10

𝜏10
 

2

+ 
𝜃01−𝜃 01

𝜏01
 

2

+ 
𝜃00−𝜃 00

𝜏00
 

2

  

×   
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞

 (79) 

The posterior distribution derived is intractable. 

Estimation of the posterior distribution was carried out using 

Metropolis Hasting Algorithm. 

2.3.3. Posterior Distribution Using Power Prior 

In this case, the historical data information 𝐼0  with 

likelihood, 𝐿 𝐼0|𝜃11 , 𝜃10 , 𝜃01 , 𝜃00 . Therefore, the prior 

distribution for the multiple of likelihood of the historical 

data  𝐼0|𝜃𝑖𝑡  
𝑎  where 𝑎 is the weights of the historical data 

which may be determined by different number of data 

historical data available and 𝜋(𝜃𝑖𝑡 ) prior information of the 

parameter [12]. If the historical data is from the same 

distribution as current data and the prior information of the 
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parameter follows: 

𝜃𝑖𝑡 ∼ 𝑁(𝜃 𝑖𝑡 , 𝜏𝑖𝑡 ) 

𝐿 𝜃𝑖𝑡 |𝐼0 ∝  
𝜃11

𝜃10

 

 𝐼0
2

× 

   
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞    

 𝜋 𝜃𝑖𝑡 =  2𝜋𝜏𝑖𝑡
2  −

1

2𝑒
−

1

2𝜏𝑖𝑡
2  𝜃𝑖𝑡 −𝜃 𝑖𝑡  

2

 (80) 

and, these are: 

 𝜋 𝜃11 =  2𝜋𝜏11
2  −

1

2𝑒
−

1

2𝜏11
2  𝜃11−𝜃 11 

2

 (81) 

 𝜋 𝜃10 =  2𝜋𝜏10
2  −

1

2𝑒
−

1

2𝜏10
2  𝜃10−𝜃 10 

2

 (82) 

 𝜋 𝜃01 =  2𝜋𝜏01
2  −

1

2𝑒
−

1

2𝜏01
2  𝜃01−𝜃 01 

2

 (83) 

 𝜋 𝜃00 =  2𝜋𝜏00
2  −

1

2𝑒
−

1

2𝜏00
2  𝜃00−𝜃 00 

2

 (84) 

The joint prior distribution is 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 

 𝐿 𝐼 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00 𝜋 𝜃11 𝜋 𝜃10 𝜋 𝜃01 𝜋 𝜃00  (85) 

For 𝑎 = 1, that is using only one historical data, we have 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 

 𝐿 𝐼 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  (86) 

and therefore, the power prior is as follows:  

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝  
𝜃11

𝜃10
 

 𝐼0
2   

×    
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞    

×  24𝜋4𝜏11
2 𝜏10

2 𝜏01
2 𝜏00

2  −
1
2 

𝑒
−

1

2
  

𝜃11−𝜃 11
𝜏11

 
2

+ 
𝜃10−𝜃 10

𝜏10
 

2

+ 
𝜃01−𝜃 01

𝜏01
 

2

+ 
𝜃00−𝜃 00

𝜏00
 

2

    (87) 

and the posterior distribution using the power prior (230) is 

as follows: 

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 

𝐿 𝐼 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  

Where  

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 

𝐿 𝐼 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  

So,  

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝ 𝐿 𝐼 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  

×  𝐿 𝐼 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00  𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00   

The posterior for the impact for count using the power 

prior is:  

𝜋 𝜃11 , 𝜃10 , 𝜃01 , 𝜃00|𝐼 ∝  
𝜃11

𝜃10
 

 𝐼
2   

×    
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞    

×  
𝜃11

𝜃10
 

 𝐼0
2   

×    
𝜃11𝜃01

𝜃10𝜃00
 

𝛿0
2

𝐽𝐼+𝛿0
 2 𝜃11𝜃10 𝐽𝛿0

 2 𝜃01𝜃00 ∞
𝛿0=−∞  (88) 

The posterior distribution derived is intractable. 

Estimation of the posterior distribution was carried out using 

Metropolis Hasting Algorithm. 

2.4. Data and Prior Information 

Simulated and real-life data were used in this study. Prior 

information was determined based on literature search. 

Using simulated data, the outcome variable (𝑌)  was 

simulated as a count outcome data type from Poisson 

distribution, with sample size of 40. The Bayesian estimation 

was carried out using Metropolis-Hastings algorithm. The 

posterior distributions considered are based on Gamma prior. 

Using 10000 iterations, the posterior mean, bias and Mean 

Squared Error (MSE) are reported. The report was recorded 

at various prior parameters (𝑎, 𝑏), where;  

𝑎 = 0.001, 0.01, 0.1 𝑎𝑛𝑑 1 and b=  0.01, 0.1 𝑎𝑛𝑑 1. The 

parameters used for the simulations of count data are from 

Poisson distribution with parameter 𝜃 = 10  for program 

group at follow-up, Poisson distribution with parameter 

𝜃 = 4.5 for program group at baseline, Poisson distribution 

with parameter 𝜃 = 5.5 for comparison group at follow-up 

and Poisson distribution with parameter 𝜃 = 4  for 

comparison group baseline. 

Using real life data, the posterior distribution for Poisson 

distributed count response data was estimated using data 

from an Infant and Young Child Feeding and Nutrition 

intervention in North East Nigeria. Data was available 

number of months of breastfeeding from initiation to 

termination. The response variable is the number of months 

of breastfeeding among those who participated in a 

Breastfeeding Support Group Program (BFSG) and those 

who did not. Mothers were followed up for at least two years 

from delivery of the reference child. Breastfeeding was 

defined as Breast milk (including milk expressed or from a 

wet nurse given to a child on demand [13]. Controls were 

selected among mothers in different communities who did 

not participate in the breastfeeding support program. The 

objective of the study was to determine the impact of 

breastfeeding support program on duration of breastfeeding 

among mothers who participated in breastfeeding support 

groups and those who did not.  

2.5. Prior Information on Breastfeeding Interventions  

The WHO recommended breastfeeding from age 0 to 23 

months as part of the Infant and Young Child Feeding Policy. 

However, several challenges prevent breastfeeding in 

Nigeria. Hence, several interventions are being carried out to 

increase the duration of breastfeeding. Many of these 

programs often were only able to improve overall duration of 

breastfeeding by a small percentage. In a systematic review 

to determine effective approaches to Social and Behavior 

Change programs for reducing stunting and Anemia [14]. 
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From this review, the following studies were analyzed and 

formed basis for determining the hyperparameter for the 

prior distribution [14]. A study was conducted among 

breastfeeding mothers in Vietnam on impact of Counseling 

in homes and group education in communities on number of 

months of breastfeeding [15]. The study revealed an increase 

in the mean duration of breastfeeding from 16.6 before the 

intervention to 16.8 after intervention. Also, another study 

provided result of impact evaluation of a breastfeeding 

counselling and support group program in Turkey [16]. The 

program increased duration of breastfeeding from 17.83 

months before intervention to 21.17 after intervention. As 

presented in another study conducted to determine impact of 

breastfeeding counselling in homes and health facilities in 

Turkey, the mean duration of breastfeeding increased from 

12.1 months before the intervention to 15.1 months after the 

intervention [17]. Based on the result, a range of values for 

the hyper-parameter was determined as (0<θ<1), with 

specific point estimate of the mean at 0.24, representing 24% 

increase in number of months of breastfeeding [17]. 

2.6. Statistical Data Analysis  

Estimation of Posterior distribution was carried out using 

R, a statistical computing and graphics software developed 

by Bell’s laboratory based on the ‘S’ system. This software is 

widely used among statisticians and is considered the most 

robust statistical software for statistical analysis. A standard 

result of a closed form posterior distribution exists for the 

Poisson model without covariates. However, no conjugate 

prior exists for the (k × 1) parameter vector β in the Poisson 

regression model. Hence parameter estimation will be 

conducted by evaluation of the exact posterior distribution 

using the Metropolis Hasting Algorithm [18]. The 

Metropolis Hasting Algorithm is a special type of Markov 

chain Monte Carlo (MCMC) approach that allows for the 

estimation of posterior distributions in Bayesian statistics 

through simulation [18]. 

2.7. Comparison of Result from Bayesian and Classical 

Procedures  

In Statistics, Mean Squared Error (MSE) is defined as 

Mean or Average of the square of the difference between 

actual and estimated values. The mean square error (MSE) of 

an estimator 𝜃  of a parameter θ is the function of 𝜃 defined 

by 𝐸 𝜃 − 𝜃 
2

. The MSE measures the average squared 

difference between the estimator 𝜃  and the parameter 𝜃 , 

which is considered a reasonable measure of performance for 

an estimator. MSE is used to check how close estimates are 

to actual values. Hence, the lower the MSE, the closer is the 

estimate to the actual. The most common risk function used 

for Bayesian estimation is the mean square error. MSE is a 

useful tool for comparing estimate from Bayesian and 

classical procedures [19-21]. 

3. Result 

3.1. Result from Simulated data 

Using simulated data, the mean of the posterior 

distributions at different values of 𝜃  were computed. This 

section presents the result of analysis. Decision is based on 

Minimum Mean Squared Error 

Table 1.  Result of classical approach (Poisson regression) 

𝜃  MSE Lower CI Upper CI 

0.1718 0.4680 0.1429 0.2006 

Table 2.  Bayesian regression with Gamma Prior 

𝜃  𝜃  Impact MSE Lowe CI Upper CI 

0.1 0.0824 0.0859 0.0065 0.0001 0.2559 

0.2 0.0754 0.0783 0.0068 0.0004 0.2376 

0.24 0.0169 0.0170 0.0014 0.0002 0.0546 

0.3 0.0885 0.0925 0.0068 0.0003 0.2564 

0.4 0.1034 0.1089 0.0057 0.0020 0.2427 

0.5 0.1077 0.1137 0.0061 0.0014 0.2580 

0.6 0.0947 0.0993 0.0045 0.0017 0.2198 

0.7 0.0976 0.1025 0.0060 0.0013 0.2387 

0.8 0.0997 0.1048 0.0077 0.0032 0.2460 

0.9 0.1007 0.1059 0.0090 0.0027 0.2187 

1.0 0.1067 0.1126 0.0140 0.0077 0.2369 

Table 3.  Result of Bayesian regression with Power prior 

𝜃  𝜃  Impact MSE Lower CI Upper CI 

0 0.0376 0.0383 0.0034 0.0015 0.1227 

0.1 0.0371 0.0378 0.0057 0.0008 0.1128 

0.2 0.0342 0.0348 0.0036 0.0012 0.1166 

0.24 0.0316 0.0321 0.0031 0.0014 0.0990 

0.3 0.0354 0.0360 0.0034 0.0019 0.1060 

0.4 0.0359 0.0366 0.0029 0.0004 0.1149 

0.5 0.0375 0.0382 0.0017 0.0010 0.1081 

0.6 0.0364 0.0371 0.0023 0.0006 0.1100 

0.7 0.0336 0.0342 0.0023 0.0019 0.0977 

0.8 0.0328 0.0333 0.0037 0.0012 0.0934 

0.9 0.0383 0.0390 0.0071 0.0010 0.0953 

1.0 0.0420 0.0429 0.0087 0.0036 0.1026 

Table 4.  Result of Bayesian estimation with Gamma prior 

𝜃  𝜃  MSE Lower CI Upper CI 

0.1 0.1139 0.0086 0.0043 0.3473 

0.2 0.1147 0.0087 0.0042 0.3498 

0.24 0.1142 0.0087 0.0045 0.3482 

0.3 0.1141 0.0087 0.0045 0.3481 

0.4 0.1124 0.0085 0.0040 0.3449 

0.5 0.1140 0.0086 0.0042 0.3460 

0.6 0.1131 0.0085 0.0042 0.3463 

0.7 0.1148 0.0088 0.0043 0.3509 

0.8 0.1127 0.0084 0.0042 0.3471 

0.9 0.1138 0.0087 0.0043 0.3488 

1.0 0.1134 0.0085 0.0042 0.3453 
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Table 5.  Result of Bayesian estimation with Power prior 

𝜃  𝜃  MSE Lowe CI Upper CI 

0.1 0.2282 0.0343 0.0088 0.6931 

0.2 0.2294 0.0346 0.0091 0.7003 

0.24 0.2274 0.0339 0.0088 0.6876 

0.3 0.2296 0.0349 0.0087 0.7005 

0.4 0.2269 0.0340 0.0087 0.6903 

0.5 0.2299 0.0354 0.0090 0.7051 

0.6 0.2307 0.0356 0.0092 0.7062 

0.7 0.2281 0.0345 0.0083 0.6958 

0.8 0.2283 0.0343 0.0086 0.6945 

0.9 0.2296 0.0348 0.0089 0.7027 

1.0 0.2279 0.0346 0.0082 0.6957 

Given that the true value for the impact parameter  𝜃  

from simulated data is 0.25, it was observed that the result 

derived from the proposed Bayesian DID estimation is 

closest to the true value compared to the existing classical 

approach as presented in table 6 and figure 1. 

 

Figure 1.  Comparison of true value and estimated value of impact based 

on proposed and existing approaches for count outcome using simulated 

data 

Table 6.  Comparison between result from classical and Bayesian 
procedures for count outcome based on simulated data 

Method Impact MSE 

Classical Regression Approach 0.1874 0.4680 

Bayesian Regression Using Gamma prior 0.0170 0.0014 

Bayesian Regression Using Power Prior 0.0321 0.0031 

Bayesian Estimation Using Gamma Prior 0.1142 0.0087 

Bayesian Estimation Using Power Prior 0.2274 0.0339 

3.2. Result from Real Life Data 

Table 7.  Summary of data 

Statistic n Mean Variance 

Control site 72 13 12 

Treatment site 68 24.4 24.5 

From table 7, the data suggest the outcome variable may 

have come from a Poisson distribution evidenced by the 

similarity between the mean and variance. Hence a Poisson 

regression analysis was carried out. Table 8 provide result 

from the logistic regression. 

Table 8.  Result from the classical approach (Poisson regression) 

𝜃 Impact MSE P value Lower CL Upper CL 

0.4147 0.5139 0.0616 <0.001 0.2975 0.5324 

The deviance statistic and the Pearson statistic are 

provided in table 9. 

Table 9.  Result of goodness of fit test 

Deviance P value Pearson P value 

222.1541 0.9999 210.5973 1.000 

Result of the goodness of fit test revealed that the model  
fit the data suggesting that data used is from Poisson 

distribution. The impact estimate is obtained as 0.4147, with 

0.0616 MSE, and observed to be significant (p<0.001) at 5% 

level of significance. This implies that participation in 

Breastfeeding Support Group (BFSG) increases number of 

months of breastfeeding by about 51.3% (P<0.001).  

Table 10.  Result of Bayesian regression using Gamma prior 

𝜃  𝜃  Impact MSE Lower CI Upper CI 

0.1 0.4234 0.5271 0.0058 0.2821 0.5660 

0.2 0.4214 0.5241 0.0054 0.2829 0.5561 

0.24 0.4244 0.5287 0.0058 0.2850 0.5659 

0.3 0.4230 0.5265 0.0055 0.2854 0.5534 

0.3 0.4219 0.5249 0.0062 0.2852 0.5535 

0.4 0.4191 0.5206 0.0066 0.2792 0.5626 

0.5 0.4184 0.5195 0.0060 0.2783 0.5528 

0.6 0.4216 0.5244 0.0061 0.2911 0.5513 

0.7 0.4189 0.5203 0.0070 0.2862 0.5492 

0.8 0.4185 0.5197 0.0050 0.2857 0.5467 

0.9 0.4174 0.5180 0.0050 0.2869 0.5340 

1.0 0.4159 0.5157 0.0055 0.2933 0.5446 

3.3. Result of Bayesian Regression Using Gamma Prior  

Bayesian analysis was carried out using Gamma prior. 

Table 10 provides result of the analysis.  

The impact estimate obtained at 𝜃 = 0.24 is 0.4244, with 

MSE 0.0058. This implies that participation in Breastfeeding 

Support Group (BFSG) increases number of months of 

breastfeeding by about 53% over baseline values.  

3.4. Result of Bayesian Regression Using Power Prior  

Bayesian analysis was carried out using power prior. 

Historical data for the power prior distribution was obtained 

from a similar study conducted in Borno state in 2018 among 

a different population. Table 11 provides result of the 

analysis.  
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Table 11.  Result of Bayesian analysis using power prior 

𝜃  𝜃  Impact MSE Lower CI Upper CI 

0 0.3389 0.4034 0.0087 0.2458 0.4532 

0.1 0.3355 0.3986 0.0100 0.2162 0.4543 

0.2 0.3423 0.4082 0.0077 0.2327 0.4609 

0.24 0.3385 0.4028 0.0072 0.2453 0.4664 

0.3 0.3375 0.4014 0.0090 0.2440 0.4549 

0.4 0.3399 0.4048 0.0086 0.2182 0.4533 

0.5 0.3411 0.4065 0.0062 0.2417 0.4541 

0.6 0.3414 0.4069 0.0063 0.2436 0.4537 

0.7 0.3426 0.4086 0.0051 0.2330 0.4561 

0.8 0.3411 0.4065 0.0043 0.2315 0.4499 

0.9 0.3441 0.4107 0.0048 0.2487 0.4519 

1.0 0.3432 0.4095 0.0055 0.2313 0.4526 

The impact estimate obtained at 𝜃 = 0.24 is 0.3385, with 

MSE 0.0072. This implies that participation in Breastfeeding 

Support Group (BFSG) increases number of months of 

breastfeeding by about 40% over baseline values.  

3.5. Result of Bayesian Estimation Using Gamma Prior  

Bayesian estimation was carried out using Gamma prior. 

Table 12 provides result of the analysis. 

Table 12.  Result of Bayesian estimation using Gamma prior 

𝜃  𝜃  Impact MSE Lower CI 

0.1 0.4353 0.0061 0.2787 0.5913 

0.2 0.4356 0.0061 0.2788 0.5929 

0.24 0.4354 0.0061 0.2781 0.5925 

0.3 0.4356 0.0062 0.2768 0.5939 

0.4 0.4357 0.0062 0.2776 0.5935 

0.5 0.4354 0.0062 0.2764 0.5952 

0.6 0.4354 0.0061 0.2765 0.5926 

0.7 0.4354 0.0062 0.2789 0.5927 

0.8 0.4354 0.0061 0.2790 0.5926 

0.9 0.4356 0.0061 0.2791 0.5928 

1.0 0.4356 0.0062 0.2770 0.5929 

The impact estimate is obtained at 𝜃  = 0.24 is 0.4354, 

with MSE 0.0061. This implies that participation in 

Breastfeeding Support Group (BFSG) increases number of 

months of breastfeeding by about 44% over baseline values.  

3.6. Result of Bayesian Estimation Using Power Prior 

Bayesian analysis was carried out using power prior. 

Historical data for the power prior distribution was obtained 

from a similar study conducted in Borno state in 2018 among 

a different population. Table 13 provides result of the 

analysis.  

The impact estimate is obtained at 𝜃  = 0.24 is 0.4476, 

with MSE 0.0061. This implies that participation in 

Breastfeeding Support Group (BFSG) increases number of 

months of breastfeeding by about 45% over baseline values. 

 

Table 13.  Result of Bayesian estimation using power prior 

𝜃  𝜃  Impact MSE Lower CI 

0.1 0.4474 0.0060 0.2909 0.6018 

0.2 0.4476 0.0059 0.2930 0.6032 

0.24 0.4476 0.0061 0.2907 0.6055 

0.3 0.4475 0.0060 0.2919 0.6034 

0.4 0.4475 0.0060 0.2916 0.6047 

0.5 0.4476 0.0060 0.2929 0.6015 

0.6 0.4478 0.0060 0.2929 0.6048 

0.7 0.4476 0.0060 0.2921 0.6035 

0.8 0.4479 0.0060 0.2918 0.6031 

0.9 0.4473 0.0060 0.2910 0.6010 

1.0 0.4476 0.0061 0.2800 0.6050 

3.7. Comparison of Result from Classical and Bayesian 

Procedure  

 

Figure 2.  Comparison of impact estimates for count outcome based on 

proposed and existing approaches using real life data 

Table 14 shows comparison of result obtained from the 

proposed Bayesian and existing classical approaches. The 

“Bayesian DID estimation approach provided a realistic 

impact estimate and lower Mean Squared Error compared to 

the existing classical approach. Based on this approach, it 

can be inferred that exposure to BFSG increases number of 

months of breastfeeding by 45% compared to 51% realized 

from the existing classical method, as presented in table 14 

and figure 2. 

Table 14.  Comparison between result from classical and Bayesian 
procedures 

Method Impact MSE 

Classical Regression Approach 0.5133 0.0616 

Bayesian Regression using Gamma prior 0.5287 0.0058 

Bayesian Regression using power prior 0.4028 0.0072 

Bayesian Estimation Using Gamma prior 0.4354 0.0061 

Bayesian Estimation Using Power Prior 0.4476 0.0061 

3.8. Result from Non-Informative Prior (Uniform and 

Beta priors) 

Using non informative prior, the results obtained from 
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Bayesian regression and Bayesian estimation approaches 

were very close to the result from the classical regression 

approach. However, the proposed Bayesian estimation of the 

distribution of the DID approach produced a lower Mean 

Squared Error, compared to the existing classical method, as 

presented in table 15. 

Table 15.  Comparison of Bayesian and Classical approach based on real 
life data using non informative prior 

Method 𝜃  MSE 

Classical Regression Approach 0.1874 0.4680 

Bayesian Estimation approach with Beta Prior 0.1199 0.0085 

Bayesian Estimation Approach with Uniform 

Prior 
0.1199 0.0085 

4. Conclusions 

Estimating Impact of experimental intervention from the 

classical approach is widely adopted among evaluators and 

researchers. Bayesian approach are being newly introduced 

into experimental evaluation and this study provides 

framework for adopting Bayesian approach in experimental 

intervention when outcome of interest is count and from 

Poisson distribution. In adopting the Bayesian approach, 

findings from this study showed that Bayesian parameter 

estimation produced lower impact estimate and lower Mean 

Squared Error compared to the Bayesian regression and 

classical regression approaches. Adopting a procedure that 

provides a more precise estimate of impact of experimental 

intervention will help normalize outrageous claims of 

intervention efficacy. Findings from this study will provide 

opportunity to apply a better impact estimation procedure 

than what is commonly adopted to improve decision from 

experimental intervention.  
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