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Abstract  The problem of misclassification in a k-group scenario which involves identifying any component from which 

each group elements is drawn from is studied in this paper. These problems were modeled as a Gaussian mixture model while, 

the expectation maximization algorithm (EM) was used in the estimation of the parameters for the identification of the group 

where each group elements is drawn from. Two data sets were used in this paper; the weights of 1000 students and the 

weights of 200 babies at birth. Results show that 70% correct classification rate, attributing 30% to misclassification using 

data set 1 and 74.5% correct classification rate, attributing 25.5% to misclassification using data set 2, were achieved.  
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1. Introduction 

According to Lindsay (1995), Mixture Models (MM) as 

probabilistic models are used for representing the presence 

of population subsets located within an overall population. 

Mixture models provide a much wider range of modeling 

possibilities and capabilities than the single component 

model. Some details of MM can be found in Bohning and 

Seidel (2003) and Bohning et al. (2007). 

For estimation involving mixture models, various 

analytical methods have been developed for estimating 
 

(a parameter space) in finite mixture models. There are many 

methods of estimating the parameters of a MM, four of such 

methods are method of moments, minimum distance method, 

Bayesian method and maximum likelihood (ML) method. 

Pearson’s (1894) method of moments is one of the earliest 

methods for estimating the parameters from finite mixture 

models. This method held sway until the advent of modern 

computers to compute the maximum of the log-likelihood 

function. Some developments in the method of moment 

estimation can be found in Lindsay & Basak (1993), Furman 

& Lindsay (1994a, b), Lindsay (1995), Withers (1996) and 

Craigmile & Titherington (1998).  

Minimum distance estimation methods introduced by 

Wolfowitz (1957) is a general method for estimating   in a 

finite mixture, have been discussed by William et al. (1982) 

and Titherington et al. (1985). 
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Another method for estimating   is the Bayesian method. 

Many reasons abound why some researchers are inclined to 

using Bayesian method of estimation while dealing with    

a finite MM (Fruhwirth-Schnatter, 2006). The reasons for 

these are the introduction of a suitable prior distribution    

or   that eliminates spurious modes in the course of 

maximizing the log-likelihood function, and secondly, in the 

case where the posterior distribution for the unknown 

parameters is handy, this method provides reliable inference 

without recourse to the asymptotic normality of the 

distributions. These are the inherent advantages associated to 

this method especially when the sample size n  is small 

( 30)n  , since the asymptotic theory of MLE can be 

implemented when n  is quite large ( 30)n  . 

The fourth method for estimating the parameters of a finite 

MMs is the ML Estimation method. Likelihood based 

inference has enjoyed tremendous and fast developments and 

has contributed immensely towards resolving estimation 

problems involving finite MMs. Since the explicit 

expression for the MLE’s are typically unavailable, then a 

numerical EM Algorithm is used for maximizing the 

log-likelihood function. The expectation-Maximization (EM) 

Algorithm is one of the methods frequently in use according 

to Dempster et al. (1977). We can find more details about 

this methods in McLachlan and Krishna (1997), McLachlan 

and Peel (2000), Oleszak (2020), Kuroda (2021) and Smyth 

(2021). 

The aim of this paper is to implement classification 

procedure on the Gaussian mixture model involving 2 

groups  2k   and to identify the component from which 

each group elements probably belongs to, and as well as to 

estimate the respective parameters of the groups and their 
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mixture weights. The EM Algorithm procedures were 

implemented in this paper using MATLAB. 

2. Methods 

Let X  be a random variable from a normal population. 

Let also 1 2, ,..., Nx x x  be a random sample from X  that 

constitute two groups, such that 

1 2 1 1 2 1 2, ,..., ; , ,..., ,n n n N Nx x x X x x x x X     where 

1 2( , )X X X . 

According to Wirjanto (2009), we assume that
2

1 1 1( , ),X N   2
2 2 2( , )X N   . The Gaussian 

distribution is defined as  
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  and 1,..., ,i k  i  are the mixing 

parameter weights. 

In two component Gaussian mixture models, 2k  and 

2( ; , )j i iX    is the PDF of a normal distribution with 

finite mean i  and finite variance 
2
i . The number of 

estimable parameters of the Gaussian mixture distributions is 

given by the formula 3 1k   so that if 2k  , as in our case, 

2 2
1 2 1 2{ , , , , }      . 

2.1. Implementation Procedure of EM Algorithm 

Dempster et al (1977) and Wu (1985) have proposed the 

use of initial guesses for the parameters 
2, , jj  

 

( 1,...,j k ). Soderlind (2010) in line with Dempster et al 

(1977) and Wu (1985) suggested using 1 1 2 2, .x x  

Both 
2
1  and 

2
2 can be set equal to the overall sample 

variance 
 
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x x

n




  Here, we take 2 2jX n  , 

similarly for 
2
iS . We initialize the mixing proportion at 

1
2i  .  

(a) e-step: 

Following Huber (1964), for a given number of an 

observed data, we can evaluate the corresponding posterior 

probabilities, called responsibilities as follows 
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for 1,...,i k  and 1,...,j k   

(b) m-step: 

Now, we compute the weighted means and variances 

using the obtained responsibilities in (3) as 
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The mixing probability is computed as; 

(iv) , 1, 2i
i

n
i

N
   .  (7) 

Naturally, iteration continues until convergence is 

achieved. Convergence is generally achieved by evaluating 

the log-likelihood after performing each iteration and stop 

further iteration when it appears that the log-likelihood is  

not changing in a significant manner from one iterative step 

to another. In Kiefer & Wolfowitz (1956), under the 

independent and identically distributed (iid) assumption, the 

log-likelihood is defined as follows:  

2

1 1 1

log ( ) log ( | ) (log ( ; , ))

N N K

j i j i i

i i k

l P x x     

  

    (8) 

The up-dated mixture mean and variance are obtained if 

we have jx  as a random variable with a two component 

Gaussian mixture as follows: Representing the mixture mean 

weight as m  and that of the mixture variance weight 
2
m , 

then the respective mixture mean and variance weights can 

be estimated respectively as 

 1 1 2 2m       (9) 

 2 2 2 2 2 2
1 1 1 2 2 2( ) ( )m m              (10) 
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where m  
and 2

m  is the up-dated mean and variance of 

the Gaussian mixture after each iterative step of the EM 

Algorithm.  

2.2. Classification with Gaussians 

We used Bayes’ Theorem for our problem to relate the 

probability density function of the data, jx , given the class 

to the posterior probability or the class given the data. 

Considering our univariate data consisting of a set of random 

variable jX , whose PDFs, given k , are Gaussians with 

means i  and variances 2
i . Using Bayes’ theorem, we 

specify the component probability density function as; 

 ( | ) ( | )j i jP k X P X k 2( ; , )i j i iX     (11) 

where ( | )jP X k is the likelihood of class k  given 

observation jX . Probability of misclassification is a 

measure of the likelihood that individuals or objects are 

classified wrongly. We have two types of misclassification 

error as; 

1. To classify into population i  given that it is actually 

from population j , .i j  

2. To classify into population j  given that it is actually 

from population i . 

Following Richard et al. (2007), we classify the 

classification against the true group by creating a 

Statistician’s Confusion Matrix as in Table 1. Apparent error 

rate can be defined as the measure of performance in 

classification that does not depend on the form of the parent 

population. This rate is the fraction of observed values in the 

training sample that are misclassified by the sample 

classification function and can be calculated for any 

classification procedure. The confusion matrix is of the form 

Table 1 

 
 

Predicted membership 
 

  
1  2  

 

Actual 1  1n c  1 1 1n m n n c   1n  

membership 2  2 2 2n m n n c   2n c  2n  

     

where 

1n c  Number of 1  objects that are correctly 

classified as 1  objects  

1n m  Number of 1  objects misclassified as 2  

objects 

2n c  Number of 2  objects that are correctly 

classified into 2  objects 

2n m  Number of 2  objects that are misclassified into 

1  objects. 

The formula error rate is given as 

 
1 2

1 2

100
n m n m

APER
n n

 
  

 
 (12) 

See Appendix G for the MATLAB Source codes of 

obtaining the relevant quantities in Table 1. 

3. Results and Discussions 

Two data sets were used. Data Set 1are weights of male 

and female first year students of Abia State Polytechnic,  

Aba. Data Set 2 consists of weights of 120 males and 80 

female babies at birth from Federal Medical Centre (FMC), 

Owerri, Imo State. See data on Appendix A, B and C. In this 

section, we used MATLAB source codes to implement the 

EM Algorithm procedures and as well, carry out the data 

classification analysis. 

3.1. Result of the Expectation Step 

Using Data set 1, taking initial values for

1 2 1 275.2768, 67.9795, 6.3488, 7.8162       . We 

also take the overall mean
1

71.6282m  . jX ( 1)j   is an 

1N  column vector of the combined weights of male female 

students. We
 
generate the probabilities for each of the data 

points. This step helps us in allocating the distinct mixture 

observations to previously defined groups. See equations  

(1) - (7) in page 3-4. Using Data set 2, the Algorithm     

was initialized with the following parameter values, 

1 2 1 2 10.5, 0.5, 3.1808, 3.2013, 0.6216,        

2 0.5518  , taking its overall initial mean as 

2
3.1885m  . In this case, jX  ( 2)j   is a 1N   

column vector of the combined baby weights at birth. Data 

set 1 consist of 1 2 500n n   while in Data set 2, 1 2n n  

since, 1 120n   and 2 80n  . 

3.2. Results of the Maximization Step 

For us to obtain the log-likelihood and the mixing 

proportions using Data sets 1 & 2, we applied the MATLAB 

code in Appendix F. This approach, maximizes the E-Step 

and outputs the optimal mixing weights using data set 1 as

1 0.4994  , 2 0.5006  and component means as 

1 75.9416  , 2 67.3252   & component variances as 

2
1 38.5815  , 

2
2 52.1053  . Using data set 2 in the same 

manner, we obtained the final requisite parameter up-dates 

as 1 0.4998  , 2 0.5002  , component means as 

1 3.2953  , 2 3.0308  , and component variances as 

2
1 0.4212  , 

2
2 0.2791  . See equations (9) - (10) in page 

4 of this paper. 
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3.3. Results of the EM Algorithm  

Data set 1  

After our implementation of the EM algorithm using data 

set 1, the iterated maximum likelihood estimates for the 

parameters are contained in Table 2. 

To achieve convergence, 17 iterations were required for 

optimality criterion, with log-likelihood = -3492.46. See 

source codes in appendix F for implementation. 

Data set 2  

Also, having implemented the EM algorithm using data 

set 2, the iterated maximum likelihood estimates for the 

parameters are contained in Table 3. 

To iteratively achieve convergence, 87 iterations were 

required for optimality criterion to be met, with 

log-likelihood = -170.968. See the derivation source codes in 

appendix F. 

3.4. Description of the Iteration Procedure Using Data 

Set 1&2 

To implement the EM Algorithm iterative procedure to 

our data sets, we applied the following sequence of operation  

INITIALIZATION 

Data set 1 initial values: 

1 2 1 2

1 2

0.5, 0.5, 75.2768, 67.9795,

6.3488, 7.8162

   

 

   

 
 

Data set 2 initial values: 

1 2 1 2

1 2

0.5, 0.5, 3.1808, 3.2013,

0.6216, 0.5518

   

 

   

   

Expectation step: 

1.  Input: (Slot in the initial values for either data set 1 or 

2 into the source codes of Appendix D) 

Output: A set of k groups  with weights that 

maximizes the log-likelihood function of equation   

(8) will be generated. 

Maximization step: 

2.  Update the mixture model parameters with the 

computed output weights from E-step using the 

MATLAB source codes in Appendix E. 

3.  Stopping criteria: If stopping rule are satisfied 

(convergence of parameters and log-likelihood) then 

we stop, else we set 1j j   and go back to step 1 

and input the updated parameter values for the next 

iteration. 0,1,...,j m . Where m is the 
thn  number 

at which convergence or optimality conditions was 

achieved. Stopping Rule: When all the epsilon 

(| |)eps  values are less than or equal to 0.0001

( . | | 0.0001)i e eps  , or the values of all (| |)eps
 

appears not to be changing significantly from one 

iterative step to another, then we assume that the EM 

solution is optimal at that point and cannot be 

improved upon further. The values of the complete 

iterations are contained in Table 3 and Table 4 of this 

paper. 

 

Table 2.  Results of estimation of model parameters using data set 1  

Iterations  1  2  1  2  2
1  

2
2  

0 0.5000 0.5000 75.2768 67.9795 40.3073 61.0930 

1 0.4981 0.5019 75.3350 67.9493 41.0496 55.4302 

2 0.4983 0.5017 75.3848 67.8974 41.3783 58.3558 

3 0.4986 0.5014 75.4320 67.8452 41.4363 57.5626 

4 0.4989 0.5011 75.4786 67.7949 41.3410 56.9285 

5 0.4990 0.5010 75.5248 67.7465 41.1599 56.3836 

6 0.4991 0.5009 75.5705 67.6995 40.9318 55.8891 

7 0.4992 0.5008 75.6155 67.6536 40.6802 55.4236 

8 0.4992 0.5008 75.6598 67.6088 40.4165 54.9748 

9 0.4993 0.5007 75.7033 67.5650 40.1474 54.5382 

10 0.4993 0.5007 75.7458 67.5222 39.8780 54.1107 

11 0.4993 0.5007 75.7730 67.4805 39.6107 53.6923 

12 0.4993 0.5007 75.8277 67.4399 39.3455 53.2812 

13 0.4994 0.5006 75.8669 67.4004 39.0850 52.8791 

14 0.4994 0.5006 75.9049 67.3622 38.8303 52.4871 

15 0.4994 0.5006 75.9415 67.3253 38.5816 52.1052 

16 0.4994 0.5006 75.9416 67.3252 38.5815 52.1053 
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Table 3.  Results of estimation of model parameters using data set 2 

Iterations  1  2  1  2  2
1  

2
2  

0 0.5000 0.5000 3.1808 3.2013 0.3864 0.3045 

1 0.4998 0.5002 3.1625 3.2145 0.4212 0.2791 

2 0.4974 0.5026 3.1433 3.2333 0.4571 0.2416 

3 0.4998 0.5002 3.1625 3.2145 0.4212 0.2791 

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

83 0.4997 0.5003 3.2952 3.0211 0.4160 0.2912 

84 0.4998 0.5002 3.2972 3.0307 0.4210 0.2667 

85 0.4998 0.5002 3.2952 3.0308 0.4210 0.2791 

86 0.4998 0.5002 3.2953 3.0308 0.4212 0.2791 

 
 

3.5. Result of the Classification Using Data Set 1  

After implementing the classification procedures on the 

maximized generated posterior probabilities using equation 

(11) & (12), we obtained the following confusion matrix. See 

Appendix G for the MATLAB’s source codes for deriving 

the discriminant values of Table 4 and Table 5.  

Table 4 

 1  2  

1  380 120 

2  180 320 

Total  1 500n   2 500n   

From the obtained confusion matrix in Table 4, we can 

now compute the apparent error rate to determine the 

probability of misclassification considering the weights of 

students. Using equation (12). The apparent error rate is 

computed as follows:  

1 2

1 2

n m n m
APER

n n





 = 

120 180
100 30%

500 500

 
  

   

3.6. Result of the Classification Using Data Set 2 

Table 5 

 1  2  

1  88 19 

2  32 61 

Total  1 120n   2 80n   

Likewise from Table 5, we compute the APER to 

determine the probability of misclassification considering 

the babies weights at birth. 

1 2

1 2

n m n m
APER

n n





 = 

19 32
100 25.5%

120 80

 
  

 
 

4. Conclusions 

From this paper, we explained the intricacies of how to 

estimate the parameters of two combined Gaussian models 

as well as their classifications using EM Algorithm 

procedure. We also explained exhaustively the actual 

estimation of these model parameters using sets of sample 

data, namely data set 1 for the weights of students and data 

set 2 for the weights of babies at birth. 

Table 2 of our analysis displayed the estimated maximized 

values of the relevant parameters for the Gaussian mixture 

model using data set 1, while Table 3 showed the estimated 

maximized values of the parameters for the mixture model 

using data set 2. Having a look at the both ends of Table 2 & 

Table 3, revealed that convergences have been achieved, 

since the parameter estimates stopped changing significantly 

at those points and (| | 0.0001)eps  . Table 4 presents the 

result of classification using data set 1, whose interpretation 

implies that we misclassified data set 1 by about 30% failure 

rate, attributing 70% to correct classification rate. Table 5 at 

the other hand showed that we misclassified the data set 2  

by about 25.5%, having a classification success rate of 

74.5%. However, the overall classification efficiency of the 

Algorithm based on the output of sample data can be 

considered high, since 70% of Data set 1 and 74.5% of Data 

set 2 were correctly classified by the Algorithm. These 

validations achieved by the sample data procedures suggest 

that EM Algorithm may be useful as early warning statistical 

tool for parameter estimation and for predicting and 

classifying the mixture of Gaussians.  
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Appendix D 

The E-step: See William (2008) for Appendix D, E and F. 

mu   [ 1 2 ]; 

sigma   [ 1  2 ]; 

@( )exp( 0.5*(( ). / ).^ 2). / ;pr X X mu sigma sigma     

( );mpr  % probability of the entire data average  

@( ) ( ). / ( ( ));prn X pr X sum pr X  % non-normalized probability values whose sum is  1. 

( );mpr   % normalized probability values whose sum is equal to 1. 

([ ( ( )),1]);prns prod size X   

for 1: ( ( )); ( ,:) ( ( )); ;j prod size X prns j prn X j end    

(1:10,:)prns % outputs the normalized posterior probabilities from 1 to 10. Hence, in our Algorithm, we replaced 10 

with 1000 or 200 as the case may require. Note: X  is the entire data for student weights or baby weights at birth. ( )mpr   

is the entire mean of either data set 1 or data set 2 as the case may also demand.  

Appendix E  

The M-step source codes 

( .* ( ,[1,2]. / ( ,1)mu sum prns repmat X sum prns  ; 

( ,[1,2]) ( ,[ ( ( )),1]);Xmmu repmat X repmat mu prod size X    

( ( .* .^ 2,1). / ( ,1))sigma sqrt sum prns Xmmu sum prns   

( ,1) / ( ( ))pop sum prns prod size X   

Appendix F 

MATLAB’s Source codes for the Log-likelihood and the mixing proportions.  

(' ', ' ');options statset Display iter   

. ( ,2, ' ', )obj gmdistribution Fit X Options options   

Appendix G 

MATLAB’s Source codes for the classification/Discriminant Analysis: 

For Data Set 1 

(1:1000,:);prns  % generates the entire probabilities from 1 to 1000. 

>> (1:500,:);%A prns Extract the probability values from 1 to 500 and assign it to A . 

1 (:,[1]);%A A   Extract the first column probability values from 1  to 500  and assign to 1A .  

(501:1000,:);%B prns 
 
The probability values from 501  to 1000  and assign to .B   

1 (:,[1]);%B B  the first column probability values from 501  to1000  and assign to 1B . 

 >> Number of 1n c 1( ( 0.5))%length find A  Number of correct classification into 1 .  

>> Number of 1n m 1( ( 0.5))%length find A  Number of misclassification into 2 . 

>> Number of 2n c 1( ( 0.5))%length find B  Number of correct classification into 2 . 

>> Number of 2n m 1( ( 0.5))%length find B  Number of misclassification into 1 . 

For Data Set 2 

(1: 200,:);prns  % generates the entire probabilities from 1 to 200. 

>> (1:120,:);%C prns Extract the probability values from 1 to 120 and assign it to C . 

1 (:,[1]);%C C   Extract the first column probability values from 1  to 120  and assign to 1C .  

(121: 200,:);%D prns   The probability values from 121  to 200  and assign to .B   

1 (:,[1]);%D D  the first column probability values from 121  to 200  and assign to 1D .  
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>> Number of 1n c 1( ( 0.5))%length find C  Number of correct classification into 1 .  

>> Number of 1n m 1( ( 0.5))%length find C  Number of misclassification into 2 . 

>> Number of 2n c 1( ( 0.5))%length find D  Number of correct classification into 2 .  

>> Number of 2n m 1( ( 0.5))%length find D  Number of misclassification into 1 . 
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