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Abstract  Several studies have demonstrated that effectively combining machine learning models can improve the 

individual predictions made by the base models. Random forests allow for the selection of a random number of features while 

bagging increases diversity by sampling with replacement and generating multiple training data sets. As a result, random 

forest has become a strong contender for various machine learning applications. Assuming equal weights for each base 

decision tree, however, seems unreasonable because different base decision trees may have varying decision-making abilities 

due to randomization in sampling and input feature selection. As a result, we offer several methods to enhance the regular 

random forest's weighting approach and prediction quality. The developed weighting frameworks include multiple 

stacking-based weighted random forest models, optimal weighted random forest based on area under the curve (AUC), and 

ideal weighted random forest based on accuracy. The numerical result shows that the stacking-based random forest with 

binary prediction can introduce significant improvements compared to regular random forest.  
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1. Introduction 

Several studies have shown that creating ensembles     

of base learners can significantly improve learning 

performance. Boosting [1], random forests [2], bagging [3], 

and their variations are among the most commonly utilized 

examples of this approach. When it comes to classification 

and regression, boosting and random forests are comparable 

and sometimes even outperform, state-of-the-art techniques 

[4]. The margin and correlation of base classifiers are typically 

used to describe the effectiveness of ensemble approaches 

[5]. Base classifiers must be accurate and diversified, 

meaning they should predict differently, to have a decent 

ensemble. The ensemble's extremely accurate predictions are 

then guaranteed by the voting mechanism that runs on the  

top of the base learners. It is important to have a variety    

of decision-makers in the "committee" of basic models to 

make better decisions. This diversity, referred to as the base 

learners' "diversity," is essential as there will be no progress 

from a collection of similar models. Ensemble models that 

perform well individually and collectively have been shown 

to exhibit diversity in base learners. Techniques like bagging, 

random forests, and 
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boosting algorithms have been utilized to add variety to 

ensemble models. 

In the bagging method described in [3], N samples are 

considered, replacing the training data to produce N training 

data sets. Each of these sets is used to build a learning 

algorithm, usually a decision tree. The final prediction is 

made by averaging or voting on the class label. Bagging 

introduces random discrepancies between the input data   

sets to add variety to the ensemble model. The random  

forest learning method [6] adds further variability to the 

bagging process. To reduce the interconnection among   

the constructed trees, the random forest method chooses a 

random set of features each time, while also using replacement 

to generate N training datasets. The result is again an average 

or a collective vote based on all predictions made by the 

forest’s-built trees (Fig. 1). 

Random forests are commonly used in various applications 

and have shown impressive performance. However, making 

minor adjustments in how the base learners are combined 

could enhance the predictions even more. Using a simple 

average for the final predictions, assuming that all base 

learners have equal weights, may seem illogical. The reason 

for randomizing input feature selection and sampling is to 

ensure that every constructed tree is not capable of making 

the same decisions [7]. Therefore, implementing a weighting 

process to weigh the trees based on their performance seems 

fair. 
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Figure 1.  Random forest classifier uses majority voting of the predictions made by randomly created decision trees to make the final predictions 

[7] proposed tree-weighted random forest (TWRF) 

method for classifying high dimensional noisy data. They 

contended that a new approach for ranking the trees based  

on their classification capability could serve as a solution  

for random forests, which are affected by noisy data and 

susceptible to making inaccurate decisions. By assessing  

the trees in the forest using an out-of-bag (OOB) subset of 

the training data, they calculated the tree weights based on 

the OOB accuracies. The results demonstrated that TWRF 

outperformed the regular random forest. 

Various studies have proposed changes to the weighted 

random forest, and have demonstrated slight improvements 

in their results compared to traditional random forest 

predictions [8]. For instance, [9] examined some adjustments 

to enhance the performance of the random forest algorithm. 

Instead of using the Gini index for evaluation, the author 

combined five attributes evaluation measures. Additionally, 

the article identified the most similar examples to the target 

instance and suggested a weighted random forest with 

weights based on the vote margins of these similar instances. 

Numerical results on various datasets showed the effectiveness 

of the proposed method in improving performance. 

In a separate study, [10] proposed a probabilistic weighted 

system for combining forest trees, considering four 

combination methods: recall combiner, majority vote, 

weighted majority vote, and naive Bayes combiner. The 

weighted majority vote is a preferable weighting approach 

for small unbalanced data sets, while the naïve Bayes 

combiner is somewhat superior to other options, particularly 

for large balanced data sets based on experimental results 

with 73 data sets. 

In this study, we propose optimization and stacking-based 

weighting mechanisms to combine the trees of the forest 

more effectively. For integrating the benefits of the model 

combinations having diverse input models is a key. To 

achieve this, we aim to keep the trees of the forest shallow to 

prevent near-identical, non-diverse trees as input features. 

The designed models include optimal weighted random 

forest based on accuracy, optimal weighted random forest 

based on area under the curve (AUC), and several 

stacking-based weighted random forest models. 

2. Material and Methods 

A diverse set of initial base learners is necessary to 

improve the performance of the ensemble model. This means 

that there should be little association between the base 

models. Thus, the ensemble random forest models are 

designed with the assumption that the trees in the forest 

should be constructed shallow, meaning they should not 

have large depths. This results in a reasonable degree of 

variation amongst the base decision trees. The improved 

designed weighted random forest models are explained 

below. 

2.1. Random Forest 

Breiman [2] employed random forests, which are made  

up of an ensemble of K classifiers, h1(x), h2(x),..., hk(x). A 

winning class is assigned to an instance that is being classed, 

with each classifier casting a vote for one of the classes. The 

combined classifier is represented by h(x). A replacement is 

chosen at random from the training set of n instances for each 

training set of n instances. By using a sampling technique 

known as bootstrap replication, each tree is constructed  

with an average of 36.8% fewer training instances. These 

"out-of-bag" examples are useful when estimating the 

strength and correlation of the forest internally. 
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For classifier hk, denote the set of out-of-bag instances as 

Ok. Let Q(x, yj) represent the out-of-bag percentage of votes 

for class yj at input x and P(h(x) = yj) be an estimation. 

𝑄 𝑥, 𝑦𝑗  =
 𝐼(ℎ𝑘 𝑥 = 𝑦𝑗 ; (𝑥, 𝑦) ∈ 𝑂𝑘)𝐾

𝑘=1

 𝐼(ℎ𝑘(𝑥); (𝑥, 𝑦) ∈ 𝑂𝑘
𝐾
𝑘=1 )

 

The indicator function is denoted by I(·). The margin 

function calculates the difference between the average vote 

in class y and the average vote in any other class: 

𝑚𝑟 𝑥, 𝑦 = 𝑃 ℎ 𝑥 = 𝑦 − max
𝑗=1
𝑗≠𝑦

𝑃(ℎ 𝑥 = 𝑦𝑗 ) 

It is estimated with Q(x,y) and Q(x,yj). Strength is defined 

as the expected margin, and is computed as the average over 

the training set: 

𝑆 =
1

𝑛
 (𝑄 𝑥𝑖 , 𝑦 − max

𝑗=1
𝑗≠𝑦

𝑄(𝑥𝑖 , 𝑦𝑗 ))

𝑛

𝑖=1

 

The average correlation is computed as the variance of the 

margin over the square of standard deviation of the forest: 

𝜌 =

1
𝑛
 (𝑄 𝑥𝑖 , 𝑦 − max

𝑗=1
𝑗≠𝑦

𝑄(𝑥𝑖 , 𝑦𝑗 ))2 − 𝑆2𝑛
𝑖=1

(
1
𝐾

  (𝑝𝑘 + 𝑝 𝑘 + (𝑝𝑘 − 𝑝 𝑘)2𝐾
𝑘=1 )2

 

𝑤ℎ𝑒𝑟𝑒, 𝑝𝑘 =
 𝐼(ℎ𝑘 𝑥 = 𝑦)(𝑥𝑖,𝑦∈𝑂𝑘)

 𝐼(ℎ𝑘 𝑥 )(𝑥𝑖,𝑦∈𝑂𝑘)

 

is an out-of-bag estimate of P(hk(x) = y) and 

Where 𝑝 𝑘 =
 𝐼(ℎ𝑘 𝑥 =𝑦 )(𝑥𝑖,𝑦∈𝑂𝑘)

 𝐼(ℎ𝑘 𝑥 )(𝑥𝑖,𝑦∈𝑂𝑘)

 

is an out-of-bag estimate of 𝑝(ℎ𝑘 𝑥 = 𝑦 𝑗  and  

𝑦 𝑗 = 𝑎𝑟𝑔 max
𝑗=1
𝑗≠𝑦

𝑄(𝑥, 𝑦𝑗 ) 

is estimated for every instance x in the training set with   

Q(x, yj). 

2.2. Accuracy-Based Optimal Weighted Random Forest 

The motivation for creating an optimal weighted random 

forest is based on the optimization model suggested in [11], 

which aimed to minimize the mean squared error (MSE) of   

a linear combination of multiple base regressors. In this 

context, we present an optimization model to minimize the 

prediction accuracy of a weighted random forest ensemble 

model for binary classification, with the weights serving as 

decision variables. The out-of-bag predictions produced by 

k-fold cross-validation are treated as substitutes for unseen 

test observations and are utilized as inputs for the optimization 

problem. The following is the mathematical model. 

max𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑌,   𝑤𝑗𝑌𝑗 + 0.5𝑘
𝑗=1      (1) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ,  𝑤𝑗 = 1

𝑘

𝑗=1

 

𝑤𝑗 ≥ 0,    ∀= 1,2, …… . . 𝑘. 

Where Y represents the vector of actual response values,  

Yj is the out-of-bag prediction of decision tree j, and wj are 

the weights corresponding to decision tree j (j = 1,.., k). The 

accuracy() function measures the percentage of accurate 

predictions (true positives and true negatives) among all 

examples investigated. In addition, for the ensemble model, 

  𝑤𝑗𝑌𝑗 
𝑘
𝑗=1 + 0.5  finds the closest integer between class 

labels (0 and 1). (see Fig. 2). 
 

 

Figure 2.  The optimal weighted random forest classifier utilizes out-of-bag (OOB) binary predictions from the randomly generated decision trees to 

enhance prediction accuracy 
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2.3. Area under the Curve (AUC)-Based Optimal 

Weighted Random Forest 

The AUC (Area under the ROC curve) is a metric primarily 

used to compare various classifiers. The ROC curve is a 

commonly used graph that illustrates the balance between 

true positive and false positive rates at different thresholds 

for classification. The AUC, which represents the area under 

this curve, is valuable for comparing binary classifiers as it 

considers all potential thresholds. Furthermore, accuracy has 

a built-in limitation of reporting excessively high accuracy 

when classifying highly imbalanced data sets [12,21]. The 

optimization model below aims to determine the best 

weights for combining trees in a random forest model by 

optimizing the ensemble's AUC. 

max 𝐴𝑈𝐶 𝑌,   𝑤𝑗𝑃𝑗 
𝑘
𝑗=1              (2) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 ,  𝑤𝑗 = 1

𝑘

𝑗=1

   

𝑤𝑗 ≥ 0,    ∀= 1,2, …… . . 𝑘 

The out-of-bag probability vector of each base classifier is 

referred to as 𝑃𝑗  in the previous formulation, and the area 

under the ROC curve for the created ensemble is calculated 

by AUC(). 

2.4. Random Forest Model Based on Stacking 

Random forest models with stacking involve combining 

multiple base learners to complete at least one additional 

level of the learning activity. The independent and dependent 

variables of the second-level learning problem are the actual 

response values of the training data and the out-of-bag 

predictions of the base learners [13]. Here, we used these 

steps to utilize the out-of-bag predictions from the forest's 

trees and train another machine learning model on top of 

them to create an enhanced random forest.  

i.  Build a random forest model using the training data. 

ii.  Using 𝑘-fold cross-validation to obtain the forest's 

decision trees and generate out-of-bag predictions for 

each tree. 

iii.  Create a new dataset with the response variable as the 

actual response values of the training data points and 

the input variables as the out-of-bag predictions. 

iv.  Train a second-level machine learning model using the 

generated dataset to predict test observations that have 

not been seen before. 

As the second-level classifier, we have selected three machine 

learning models: logistic regression, K-nearest neighbors, 

and random forest. Additionally, for each second-level classifier, 

two scenarios are considered: either using out-of-bag 

predictions of the probability that an observation belongs to 

the majority class or using binary classifications of those 

predictions. In the second scenario, the probability of the 

actual class (class 1) is used as the input variable instead of 

binary predictions. 

3. Experiments and Results 

Ten public binary classification datasets from the UCI 

machine learning repository [14] were utilized to evaluate 

the effectiveness of the proposed enhanced weighted random 

forest classifiers. Minimal pre-processing work, such     

as handling missing values and one hot encoding, was 

conducted to prepare each dataset for training classification 

models. Twenty percent of each dataset was reserved as the 

test set to evaluate the actual performance of the models 

created, while the remaining eighty percent was used to build 

and optimize the ensemble. 

The number of trees (𝑛) is set at 100 to train the regular 

random forest and generate 𝑛 randomly created decision 

trees. The maximum depth of the trees is set at half of the 

common choice for the maximum depth of random forest 

trees, which is the square root of the number of features (√𝑝 ⁄ 

2). This keeps the trees shallow and uncorrelated with one 

another. Ten-fold cross-validation is used to create decision 

tree out-of-bag predictions. The Sequential Least Squares 

Programming technique (SLSQP) from Python's SciPy 

optimization module was used to solve the optimization 

problems [15]. 

Table 1.  Details of example data sets downloaded from UCI machine 
learning repository 

Data set Size Features 
Class 0 

(%) 

Class 1 

(%) 

1) Heart Disease 1025 14 49% 51% 

2) Diabetes 768 9 65% 35% 

3) Breast cancer 569 31 37% 63% 

4) Indian liver patient 

dataset (ILPD) 
583 10 28% 72% 

5) Divorce predictors 170 54 49% 51% 

6) Hepatitis 155 19 20% 80% 

7) Bank 41188 21 89% 12% 

8) Apple Quality 4000 9 49.9% 50.1% 

9) Water Quality 2011 10 59.67% 40.33% 

10) Smoking 55692 26 63.27% 36.73% 

Table 1 displays the dimensions, number of features, and 

percentage of class labels for 10 sample data sets that were 

taken from the UCI machine learning repository. This table 

shows that varying sizes and percentage of class labels are 

covered by the selected data sets. 

Table 2 shows the complete experimental results of all 

ensemble models created and used on the sample datasets. 

Two methods have been developed for stacking-based 

ensembles: binary OOB predictions and OOB probability 

forecasts of the true class label. The results indicate that at 

least one of the proposed models outperforms the standard 

random forest in 8 out of the 10 data sets considered (first 

column of the table). Moreover, it seems that the stacking-based 

random forest, with a second random forest model as the 

second-level classifier, outperforms other models more 

frequently based on binary OOB predictions (based on 10 

data sets). 
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Table 2.  Results of experiments comparing regular random forest classifiers to build improved random forest classifiers. For every data set, the 
top-performing classifier is highlighted. The last row displays the average accuracy of every model while taking into account every data set 

SL No. RF 

Optimal 

WRF 

(Acc.) 

Optimal 

WRF 

(AUC) 

Log. stacked 

RF (binary) 

Log. 

stacked RF 

(prob.) 

KNN 

stacked RF 

(binary) 

KNN 

stacked RF 

(prob.) 

RF stacked 

RF (binary) 

RF stacked 

RF (prob.) 

1 85.36% 78.04% 79.02% 82.92% 86.34% 86.34% 86.82% 90.73% 85.36% 

2 64.28% 61.68% 66.23% 70.12% 63.63% 67.53% 63.63% 69.48% 61.68% 

3 94.69% 94.73% 94.22% 94.71% 94.76% 94.83% 94.69% 94.77% 93.93% 

4 71.23% 71.23% 71.32% 71.91% 28.76% 64.38% 63.01% 63.01% 71.23% 

5 97.26% 97.26% 97.26% 97.35% 94.40% 97.26% 97.26% 97.02% 97.12% 

6 83.22% 83.05% 80.50% 80.10%% 80.05% 80.40% 79.65% 79.30% 79.50% 

7 89.37% 90.39% 90.33% 91.09% 90.77% 90.75% 90.71% 91.10% 89.39% 

8 73.50% 66.00% 56.80% 67.50% 60.12% 67.12% 70.00% 71.25% 71.30% 

9 69.62% 66.12% 59.00% 67.50% 67.25% 70.75% 67.75% 71.87% 69.00% 

10 73.82% 73.81% 67.82% 75.34% 73.50% 73.32% 74.13% 75.40% 71.84% 

Average 80.26% 78.23% 76.25% 79.83% 73.96% 79.27% 78.77% 80.39% 79.04% 

1
Regular random forest classifier. 

2
Optimal weighted random forest based on accuracy. 

2
Optimal weighted random forest based on AUC. 

4
Stacking-based 

random forest with logistic regression as the 2nd level classifier using binary OOB predictions. 
5
Stacking-based random forest with logistic regression as the 

2nd level classifier using probability OOB predictions. 
6
Stacking-based random forest with KNN as the 2nd level classifier using binary OOB predictions. 

7
Stacking-based random forest with KNN as the 2nd level classifier using probability OOB predictions. 

8
Stacking-based random forest with random  

forest as the 2nd level classifier using binary OOB predictions. 
9
Stacking-based random forest with random forest as the 2nd level classifier using 

probability OOB predictions. 

 

Figure 3.  Comparing weighted random forest classifier with regular random forest 

Figure 3 depicts the mean accuracy of the models created 

across all datasets in an effort to compare the performance  

of the suggested upgraded random forest classifiers with 

conventional random forests more effectively. This figure 

represents a comparison of the average accuracy scores of all 

models using a standard random forest classifier. The graph 

clearly indicates that RF stacked RF using binary OOB 

predictions outperforms regular random forest. This classifier 

has the potential to enhance predictions made by ordinary 

random forests by 0.13%. 

4. Conclusions 

The aim of this research was to improve the random forest, 

a popular machine learning model, as a classifier. Several 

models based on ensemble learning were developed for this 

purpose. The suggested models include stacking-based 

random forest and optimal weighted random forest using 

out-of-bag accuracy and AUC. The models were tested on 10 

public datasets, and the findings showed that only the 

stacking-based random forest model was superior to the 

regular random forest classifier. The stacking-based random 

forest model, which trains a 2nd level of random forest on 

inner randomly created decision trees, outperformed all other 

generated models. After this study, future research may be 

explored the directions: finding an optimal weight solution 

through additional optimization techniques [16,17], and 

combining bagged and boosted trees to enhance prediction 

accuracy while reducing bias and variance. Developing a 

comparable framework to enhance random forest regressor; 

80.26%

78.23%

76.25%

79.83%

73.96%

79.27%

78.77%

80.39%

79.04%

70.00% 72.00% 74.00% 76.00% 78.00% 80.00% 82.00%

RF

Optimal WRF (Acc.)

Optimal WRF (AUC)

Log. stacked RF (binary)

Log. stacked RF (prob.)

KNN stacked RF (binary)

KNN stacked RF (prob.)

RF stacked RF (binary)

RF stacked RF (prob.)

Accuracy
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and applying the same concept to other fields or research, 

such as data envelopment analysis (DEA) [18,19,20]. 
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